Kepstrální analýza řečového signálu
|
|
- Magdalena Tomanová
- před 6 lety
- Počet zobrazení:
Transkript
1 Semestrální práce Václav Brunnhofer Kepstrální analýza řečového signálu 1. Charakter řečového signálu Lidská řeč je souvislý, časově proměnný proces. Je nositelem určité informace od řečníka k posluchači a je zakódována a zároveň přenášena pomocí akustického vlnění. Řeč je vytvářena ovlivňováním výdechového proudu vzduchu z plic hlasovým ústrojím člověka, začínajícího hlasivkami a končícího rty. a obr.1a je zobrazen řečový signál při promluvě slova "aféra". Řečovým signálem s(t) rozumíme posloupnost diskrétních vzorků signálu, který můžeme obdržet např. z mikrofonu. Pokud si tento signál pozorně prohlédneme, najdeme zde oblasti (obr.1c), které jsou víceméně periodické, jde o znělé části řeči, periodu označujeme symbolem T 0 (Základní perioda řeči, Pitch period). V řečovém signálu najdeme také oblasti (obr.1b), které mají charakter šumu, tyto části řeči jsou neznělé. Znělost, popř. neznělost je způsobena tím, jestli výdechový proud vzduchu z plic rozkmitá hlasivkovou štěrbinu nebo ne. Obr.1. Časový průběh řečového signálu při promluvě slova "aféra"- a), detail neznělého úseku - b), detail znělého úseku - c).
2 2. Model vytváření řeči obr.2. Podle úvahy o charakteru řečového signálu sestrojíme jednoduchý model vytváření řeči Obr.2. Blokové schema vytváření řeči. Tento model je využíván u všech parametrických syntezátorů řeči [1],[2]. Zákledem je model hlasového traktu, který s pomocí co nejmenšího počtu parametrů - koeficientů c(n) napodobuje přenosové vlastnosti lidského hlasového traktu. Hlasový trakt člověka je tvořen soustavou dutin - dutina hrdelní, ústní, nosní a dále do něho zařazujeme zuby, jazyk a rty. Model hlasového traktu lze realizovat např. číslicovým filtrem. Při promluvě se však rozměry dutin hlasového traktu spojitě mění, a tedy mění se i jeho přenosové vlastnosti. Tzn. filtr modelující hlasový trakt musí být časově nestacionární. Změna rozměrů hlasového traktu je ovšem, díky fyziologii, relativně pomalá. Dopustíme se jen malé chyby pokud budeme předpokládát, že tato změna se na krátkém časovém intervalu, který je asi 10 až 30 ms, vůbec neprojeví. Filtr modelující hlasový trakt potom může mít uvnitř tohoto časového intervalu konstantní parametry c(n), které jsou pro každý segment jiné. Druh buzení hlasového traktu zavisí na tom, jestli je uvedený kratký segment řeči znělý či neznělý. V případě, že je řeč znělá, modelujeme kmitání hlasivek generátorem pulsů, jehož perioda odpovídá základní hlasivkové periodě T 0. eznělé části řeči je možné vytvářet buzením modelu hlasového traktu generátorem bílého šumu s plochým výkonovým spektrem. Ve skutečnosti není buzení vždy jen absolutně znělé a vždy úplně neznělé. Pro větší přiblížení skutečnosti se buď používá určitého směšování těchto zdrojů a nebo se jen v případě znělého buzení přimíchává k pulsům generátoru barevný šum s definovaným výkonovým spektrem. Pro jednoduchost budeme v tomto článku uvažovat pro každý segment vždy pouze jedenoho z těchto dvou druhů buzení. Aby později vynikly výhody kepstrální analýzy popíšeme si vytváření řečového signálu na krátkém časovém úseku (10 až 30 ms, tedy parametry hlasového traktu uvažujeme konstantní), také symbolicky. Přeměnu budícího signálu x(n) na výstupní řečový signál s(n) zajišťuje model hlasového traktu, který provádí lineární filtraci. Označme jeho impulsní odezvu jako h(n), kterou jednoznačně zadávají koeficienty c(n). Výstupní řečový signál s(n) je dán konvolucí impusní charakteristiky modelu hlasového traktu h(n) a vstupním budícím signálem x(n): s ( n) = x( n)* h( n) (1)
3 3. Definice reálného kepstra echť S(k) je diskrétní spektrum analyzovaného signálu, které může být určeno pomocí diskrétní Fourierovy transformace DFT: S( k) = DFT{ s( n)} = 1 n= 0 s( n). e 2π j. kn (2) Pro jeho výpočet se dnes většinou používá rychlého algoritmu FFT [2]. Proměnná k označuje frekvenční index, který nabývá diskrétních hodnot 0,1,...,. je počet bodů algoritmu FFT. Ke každému takovému indexu náleží frekvence f = (k/)f vz. Realné kepstrum potom obdržíme jako reálnou část zpětné diskrétní Fourierovy transformace logaritmu modulu spektrální funkce S(k): 1 1 = = c( n) Re{ DFT [ln S( k) ]} Re k= 1 0 ln S( k). e 2π j kn (3) Logaritmus použitý ve vzorci (3) se většinou používá přirozený. 4. Praktický postup výpočtu reálného kepstra Kepstrální analýza byla poprve publikována v roce V aplikaci na řečové signály vychází z časově - frekvenční analýzy [3]. Jak již bylo uvedeno, řečový signál je proměnný v čase a pokud chceme postihnout tuto změnu ve spektrální oblasti, musíme analyzovat pouze segment takové délky, kde můžeme předpokládat stacionaritu signálu. Lze zvolit dvě základní metody segmentování řečového signálu [4]: 1. Pitch synchronní segmentace - kdy délka segmentu odpovídá přesně jedné periodě znělé řeči, 2. Pitch asynchronní segmentace - kdy je délka segmentu pevná a nezávislá na základní periodě řeči a je obvykle rovna dvoum až třem pitch peridám. První z metod je využívána zřídka, je implementačně i výpočetně náročnější a jak později uvidíme ztrácíme potom informaci o základním tónu v kepstru. a druhou stranu tato metoda poskytuje lepší informaci o hlasovém traktu než metoda 2. Dále se budeme zabývat pitch asynchronní segmentací. a tomto místě je vhodné připomenout, že při určování zastoupení jednotlivých frekvenčních složek v krátkém segmentu, který neodpovídá přesně periodě signálu, se vždy dopouštíme určité chyby [3]. Pro omezení chyb je vhodné používat dlouhou délku segmentu, což je ale v rozporu se stacionaritou řečového signálu uvnitř tohoto segmentu. Z těchto důvodu se volí kompromis mezi délkou segmentu a přesností jeho spektra. Dále se využívá určitého překrývání segmentů a každý segment se násobí vhodnou vahovací posloupností. Při analýze řeči je to nejčastěji Hammingovo okno. Postup výpočtu koeficientů reálného kepstra ze segmentu řeči s(n), při diskrétní reprezentaci signálu, je naznačeno blokovým schematem na obr.3.
4 Obr.3. Postup výpočtu reálného kepstra ze segmentu řečového signálu. Význam jednotlivých operací vynikne jejich matematickým zápisem aplikovaným na řečový signál s(n), který můžeme vyjádřit vztahem (1). Z vlastností Fourierovy transformace je známo, že konvoluce dvou signálů, v našem případě x(n) a h(n), se po aplikaci této transformace převede na součin: DFT { s( n)} = DFT{ x( n)* h( n)} = DFT{ x( n){. DFT{ h( n)} = X ( k). H ( k) = S( k) (4) Pokud na vzorec (4) dále aplikujeme přirozený logaritmus, změní se součin na součet: ln[ S ( k) ] = ln[ X ( k). H ( k) ] = ln[ X ( k) ] + ln[ H ( k) ] (5) a obr.4. můžeme vidět diskrétní spektrum krátkého stacionárního úseku znělé hlásky "a", které je naznačeno modrým průběhem. Rychlé změny (zvlnění) spektra jsou dány kvaziperiodickým buzením, pomalá změna průběhu spektra, což je naznačeno červenou křivkou, je dána přenosem hlasového traktu. Tzn. těmito operacemi jsme převedli konvoluci v časové oblasti na additivní směs dvou logaritmů diskrétních modulových spekter. Pokud dále aplikujeme zpětnou diskrétní Fourierovu transformaci operace součtu zůstane zachována a pokud uvažujeme pouze reálné složky obdržíme realné kepstrum, kde osa n značí časovou osu obr.5.: c ( n) = Re{ DFT x c ( n) = Re{ DFT h c( n) = Re{ DFT [ln X ( k) ]} [ln H ( k) ]} [ln S( k) ]} = c x ( n) + c h ( n) (6) Obr.4. Modulové spektrum stacionárného segmentu znělé hlásky "a" a jeho vyhlazení metodou homomorfní filtrace.
5 Pomalé změny ve spektru na obr.4. se v kepstru promítnou blízko počátku. Můžeme tedy řící, že počáteční hodnoty kepstra c h (n) jsou parametry hlasového traktu. Rychlá periodická změna průběhu spektra vlivem buzení se projeví jako špička v čase odpovídajícím základní hlasivkové periodě. Polohu této špičky můžeme také využít při určování základní periody řeči T 0 viz. obr.6. Složky kepstra c x (n), tedy ty, které neuvažujeme jako parametry hlasového traktu, jsou způsobeny reálným budícím signálem x(n). Parametry budícího signálu však většinou zanedbáváme, případně uvažujeme pouze jejich příspěvek k energii buzení [5]. Pokud bychom vyšetřovali spektrum pouze jedné periody znělého úseku (např. při pitch synchronní segmentaci) ztratíme informaci o buzení. Modulové spektrum nebude zvlněné a špička v kepstru nebude přítomná. Obr.5. Reálné kepstrum stacionárního segmentu znělé hlásky "a" Pokud vyšetřujeme neznělou část řeči má spektrum také pomalu a rychle se měnící složku obr.6. Pomalé změny můžeme opět považovat za modulové spektrum hlasového traktu. Rychlé změny spektra však již nejsou periodické a mají víceméně náhodný charakter. Díky tomu se v kepstru obr.7. nevyskytuje špička vlivem základního tónu podobně jako při analýze znělého segmentu řeči.
6 Obr.6. Modulové spektrum stacionárného segmentu neznělé hlásky "f" a jeho vyhlazení metodou homomorfní filtrace. Obr.7. Reálné kepstrum stacionárního segmentu neznělé hlásky "f"
7 5. Homorfická filtrace Pro výpočet vyhlazeného modulového spektra hlasového traktu můžeme s výhodou použít určitý počet počátečních kepstrálních koeficientů c h (n), který můžeme ze všech vypočtených podle obr.5. nebo obr.7. vybrat nějakým oknem. ejčastěji se používá pravouhlé okno. Operaci vyhlazení spektra přepočtem pouze určitého počtu kepstrálních koeficientů říkáme homomorfická filtrace. Při tomto přepočtu provádíme opačný postup než jsme použily pro výpočet reálného kepstra ze známého modulového spektra. Protože jsme při výpočtu reálného kepstra neuvažovali fázy, ale pouze modul, je třeba pro zpětný přepočet reálné kepstrální koeficienty c(n) upravit na minimimální fázovou část komplexního kepstra k(n) [6]: c(n), n=0, /2 k(n)= { 2c(n), 1 n / 2 (7) 0, / 2 < n 1 Kepstrální koeficient c(0) je roven přirozenému logaritmu střední hodnoty modulového spektra S(k). Hodnota c(0) pro neznělý úsek je výrazně záporná (viz. obr.7.), protože neznělý úsek má obecně většinou menší amplitudu než znělý - viz obr.1. Vyhlazené spektrum potom vypočítáme tímto způsobem: = = 1 H ( k) exp{ DFT[ kh ( n)]} exp k n= 0 h ( n). e 2π j kn Postup při výpočtu vyhlazeného modulového spektra metodou homomorfní filtrace je naznačeno na obr.8.: (8) Obr.8. Postup při výpočtu vyhlazeného modulového spektra metodou homomorfní filtrace yní vyvstává otázka kolik kepstrálních koeficientů c h (n) = c(0) až c( 0 ) vlastně náleží hlasovému traktu? Tedy, jak zvolit hodnotu indexu 0 pro poslední kepstrální koeficient? Kepstrální koeficienty s vyšším indexem určují detaily ve spektru hlasového traktu. Pokud bychom zvolili 0 velké bylo by spektrum hlasového traktu parazitně zvlněno. Pokud bychom naopak zvolili hodnotu indexu 0 pro poslední kepstrální koeficient malou, nevystihli bychom už ani všechny pomalé změny. Vliv počtu kepstrálních koeficientů na výsledné vyhlazené spektrum hlasového traktu reprezentuje obr.9.:
8 Obr.9. Vliv počtu kepstrálních koeficientů na vyhlazené spektrum hlasového traktu Bylo zjišteno [7], že pro dobrou reprezentaci hlasového traktu postačí, při vzorkovací frekvenci f vz = 8 khz prvních 0 = 26 kepstrálních koeficientů. Při použití jiné vzorkovací frekvence určíme hodnotu 0 jako násobek 26 a poměru nové vzorkovací frekvence k 8kHz. 6. Závěr V tomto článku byl uveden popis charakteru řečového signálu, způsob jeho vytváření a dále bylo poukázáno na jednu z metod jeho krátkodobé analýzy - kepstrální analýzu. Pomocí této analýzy můžeme zjistit všechny parametry pro model vytváření řeči - parametry hlasového traktu, znělý-neznělý segment a periodu budícího signálu, je-li segment znělý. V článku je dále věnována pozornost tomu, jak tyto parametry v reálném kepstru najít a je uvedeno optimální řešení pro výběr parametrů hlasového traktu. Pomocí nich je možno provést homomorfickou filtraci moduloveho spektra segmentu rečového signálu a takto zjistit přenosové vlastnosti lidského hlasového traktu. Pokud by se podařilo navrhnout číslicový filtr s tímto přenosem, který by nastavovali kepstrální koeficienty c(0) až c( 0 ) mohli bychom podle obr.2. řeč syntetizovat.
Úvod do zpracování signálů
1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování
Úvod do praxe stínového řečníka. Proces vytváření řeči
Úvod do praxe stínového řečníka Proces vytváření řeči 1 Proces vytváření řeči člověkem Fyzikální podstatou akustického (tedy i řečového) signálu je vlnění elastického prostředí v oboru slyšitelných frekvencí.
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)
STANOVENÍ CHARAKTERU SEGMENTU ŘEČI S VYUŽITÍM REÁLNÉHO KEPSTRA
STANOVENÍ CHARAKTERU SEGMENTU ŘEČI S VYUŽITÍM REÁLNÉHO KEPSTRA Oldřich Horák Univerzita Pardubice, Fakulta ekonomicko-správní, Ústav systémového inženýrství a informatiky Abstract: The extraction of the
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cziba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické
MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH. Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky
MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky Při návrhu elektroakustických soustav, ale i jiných systémů, je vhodné nejprve
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické či jiné
3 METODY PRO POTLAČENÍ ŠUMU U ŘE- ČOVÉHO SIGNÁLU
3 METODY PRO POTLAČENÍ ŠUMU U ŘE- ČOVÉHO SIGNÁLU V současné době se pro potlačení šumu u řečového signálu používá mnoho různých metod. Jedná se například o metody spektrálního odečítání, Wienerovy filtrace,
KTE/TEVS - Rychlá Fourierova transformace. Pavel Karban. Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni
KTE/TEVS - Rychlá Fourierova transformace Pavel Karban Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni 10.11.011 Outline 1 Motivace FT Fourierova transformace
ZPRACOVÁNÍ SIGNÁLŮ Z MECHANICKÝCH. Jiří Tůma
ZPRACOVÁNÍ SIGNÁLŮ Z MECHANICKÝCH SYSTÉMŮ UŽITÍM FFT Jiří Tůma Štramberk 1997 ii Anotace Cílem této knihy je systematicky popsat metody analýzy signálů z mechanických systémů a strojních zařízení. Obsahem
Funkce komplexní proměnné a integrální transformace
Funkce komplexní proměnné a integrální transformace Fourierovy řady I. Marek Lampart Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na
31ZZS 9. PŘEDNÁŠKA 24. listopadu 2014
3ZZS 9. PŘEDNÁŠKA 24. listopadu 24 SPEKTRÁLNÍ ANALÝZA Fourierovy řady Diskrétní Fourierovy řady Fourierova transformace Diskrétní Fourierova transformace Spektrální analýza Zobrazení signálu ve frekvenční
Signál v čase a jeho spektrum
Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě
Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů
Kapitola 1 Signály a systémy 1.1 Klasifikace signálů Signál představuje fyzikální vyjádření informace, obvykle ve formě okamžitých hodnot určité fyzikální veličiny, která je funkcí jedné nebo více nezávisle
Lineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita
Lineární a adpativní zpracování dat 3. Lineární filtrace I: Z-transformace, stabilita Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály, systémy, jejich vlastnosti a popis v časové
Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady, vlastnosti Vzorkovací
Spektrální analýza a diskrétní Fourierova transformace. Honza Černocký, ÚPGM
Spektrální analýza a diskrétní Fourierova transformace Honza Černocký, ÚPGM Povídání o cosinusovce 2 Argument cosinusovky 0 2p a pak každé 2p perioda 3 Cosinusovka s diskrétním časem Úkol č. 1: vyrobit
fluktuace jak dob trvání po sobě jdoucích srdečních cyklů, tak hodnot Heart Rate Variability) je jev, který
BIOLOGICKÉ A LÉKAŘSKÉ SIGNÁLY VI. VARIABILITA SRDEČNÍHO RYTMU VARIABILITA SRDEČNÍHO RYTMU VARIABILITA SRDEČNÍHO RYTMU, tj. fluktuace jak dob trvání po sobě jdoucích srdečních cyklů, tak hodnot okamžité
ADA Semestrální práce. Harmonické modelování signálů
České vysoké učení technické v Praze ADA Semestrální práce Harmonické modelování signálů Jiří Kořínek 31.12.2005 1. Zadání Proveďte rozklad signálu do harmonických komponent (řeč, hudba). Syntetizujte
1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15
Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních
Číslicové filtry. Honza Černocký, ÚPGM
Číslicové filtry Honza Černocký, ÚPGM Aliasy Digitální filtry Diskrétní systémy Systémy s diskrétním časem atd. 2 Na co? Úprava signálů Zdůraznění Potlačení Detekce 3 Zdůraznění basy 4 Zdůraznění výšky
Při návrhu FIR filtru řešíme obvykle následující problémy:
Návrh FIR filtrů Při návrhu FIR filtru řešíme obvykle následující problémy: volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř.
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 8. přednáška 11MSP pondělí 20. dubna 2015 verze: 2015-04-14 12:31
Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti
Lineární a adaptivní zpracování dat 3. SYSTÉMY a jejich popis ve frekvenční oblasti Daniel Schwarz Osnova Opakování: systémy a jejich popis v časové oblasti Fourierovy řady Frekvenční charakteristika systémů
Fourierova transformace
Fourierova transformace EO Přednáška Pavel Máša ÚVODEM Známe Fourierovy řady v komplexním tvaru f(t) = 1X k= 1 A k e jk! t Spektrum této řady je diskrétní A k = 1 T Obvody tedy musíme řešit v HUS člen
doc. Dr. Ing. Elias TOMEH Elias Tomeh / Snímek 1
doc. Dr. Ing. Elias TOMEH e-mail: elias.tomeh@tul.cz Elias Tomeh / Snímek 1 Frekvenční spektrum Dělení frekvenčního pásma (počet čar) Průměrování Časovou váhovou funkci Elias Tomeh / Snímek 2 Vzorkovací
A6M33BIO- Biometrie. Biometrické metody založené na rozpoznávání hlasu I
A6M33BIO- Biometrie Biometrické metody založené na rozpoznávání hlasu I Doc. Ing. Petr Pollák, CSc. 16. listopadu 216-15:16 Obsah přednášky Úvod Aplikace hlasové biometrické verifikace Základní princip
1 Zpracování a analýza tlakové vlny
1 Zpracování a analýza tlakové vlny 1.1 Cíl úlohy Prostřednictvím této úlohy se naučíte a zopakujete: analýzu biologických signálů v časové oblasti, analýzu biologických signálů ve frekvenční oblasti,
základní vlastnosti, používané struktury návrhové prostředky MATLAB problém kvantování koeficientů
A0M38SPP - Signálové procesory v praxi - přednáška 4 2 Číslicové filtry typu FIR a IIR definice operace filtrace základní rozdělení FIR, IIR základní vlastnosti, používané struktury filtrů návrhové prostředky
Zvuk. 1. základní kmitání. 2. šíření zvuku
Zvuk 1. základní kmitání - vzduchem se šíří tlakové vzruchy (vzruchová vlna), zvuk je systémem zhuštěnin a zředěnin - podstatou zvuku je kmitání zdroje zvuku a tím způsobené podélné vlnění elastického
FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth
FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického
8. Sběr a zpracování technologických proměnných
8. Sběr a zpracování technologických proměnných Účel: dodat v částečně předzpracovaném a pro další použití vhodném tvaru ucelenou informaci o procesu pro následnou analyzu průběhu procesu a pro rozhodování
31SCS Speciální číslicové systémy Antialiasing
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE 2006/2007 31SCS Speciální číslicové systémy Antialiasing Vypracoval: Ivo Vágner Email: Vagnei1@seznam.cz 1/7 Převod analogového signálu na digitální Složité operace,
Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady,
Multimediální systémy
Multimediální systémy Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI přednášky Získání obsahu Jan Outrata (Univerzita Palackého v Olomouci) Multimediální systémy Olomouc, září prosinec
Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy
ANALÝZA LIDSKÉHO HLASU
ANALÝZA LIDSKÉHO HLASU Pomůcky mikrofon MCA-BTA, LabQuest, program LoggerPro (nebo LoggerLite), tabulkový editor Excel, program Mathematica Postup Z každodenní zkušenosti víme, že každý lidský hlas je
Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady,
Fourierova transformace
Fourierova transformace Jean Baptiste Joseph Fourier (768-83) Jeho obdivovatel (nedatováno) Opáčko harmonických signálů Spojitý harmonický signál ( ) = cos( ω + ϕ ) x t C t C amplituda ω úhlová frekvence
Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy
A/D převodníky - parametry
A/D převodníky - parametry lineární kvantování -(kritériem je jednoduchost kvantovacího obvodu), parametry ADC : statické odstup signálu od kvantizačního šumu SQNR, efektivní počet bitů n ef, dynamický
UNIVERZITA PARDUBICE. 4.4 Aproximace křivek a vyhlazování křivek
UNIVERZITA PARDUBICE Licenční Studium Archimedes Statistické zpracování dat a informatika 4.4 Aproximace křivek a vyhlazování křivek Mgr. Jana Kubátová Endokrinologický ústav V Praze, leden 2012 Obsah
Automatizace je proces při němž je řídicí funkce člověka nahrazována činností
Automatizace je proces při němž je řídicí funkce člověka nahrazována činností různých přístrojů a zařízení. (Mechanizace, Automatizace, Komplexní automatizace) Kybernetika je Věda, která zkoumá obecné
PSK1-9. Číslicové zpracování signálů. Číslicový signál
Název školy: Autor: Anotace: PSK1-9 Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Princip funkce číslicové filtrace signálu Vzdělávací oblast: Informační a komunikační
Teoretický úvod: [%] (1)
Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy Číslo úlohy ZESILOVAČ OSCILÁTOR 101-4R Zadání 1. Podle přípravku
VY_32_INOVACE_E 15 03
Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory
UŽITÍ KOHERENČNÍ FUNKCE PRO DISTRIBUOVANOU
UŽITÍ KOHERENČNÍ FUNKCE PRO DISTRIBUOVANOU ANALÝZU VÍCEKANÁLOVÝCH SIGNÁLŮ Robert Háva, Aleš Procházka Vysoká škola chemicko-technologická, Abstrakt Ústav počítačové a řídicí techniky Analýza vícekanálových
13 Barvy a úpravy rastrového
13 Barvy a úpravy rastrového Studijní cíl Tento blok je věnován základním metodám pro úpravu rastrového obrazu, jako je např. otočení, horizontální a vertikální překlopení. Dále budo vysvětleny různé metody
Diskretizace. 29. dubna 2015
MSP: Domácí příprava č. 3 Vnitřní a vnější popis diskrétních systémů Dopředná Z-transformace Zpětná Z-transformace Řešení diferenčních rovnic Stabilita diskrétních systémů Spojování systémů Diskretizace
I. Současná analogová technika
IAS 2010/11 1 I. Současná analogová technika Analogové obvody v moderních komunikačních systémech. Vývoj informatických technologií v poslední dekádě minulého století digitalizace, zvýšení objemu přenášených
doc. Dr. Ing. Elias TOMEH Elias Tomeh / Snímek 1
doc. Dr. Ing. Elias TOMEH e-mail: elias.tomeh@tul.cz Elias Tomeh / Snímek 1 Elias Tomeh / Snímek 2 Elias Tomeh / Snímek 3 Elias Tomeh / Snímek 4 ZÁKLADNÍ VIBRODIAGNOSTICKÉ MĚŘICÍ METODY Měření celkových
Primární zpracování radarového signálu dopplerovská filtrace
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE K13137 - Katedra radioelektroniky A2M37RSY Jméno Stud. rok Stud. skupina Ročník Lab. skupina Václav Dajčar 2011/2012 2. 101 - Datum zadání Datum odevzdání Klasifikace
Transformace obrazu Josef Pelikán KSVI MFF UK Praha
Transformace obrazu 99725 Josef Pelikán KSVI MFF UK Praha email: Josef.Pelikan@mff.cuni.cz WWW: http://cgg.ms.mff.cuni.cz/~pepca/ Transformace 2D obrazu dekorelace dat potlačení závislosti jednotlivých
Filtrace snímků ve frekvenční oblasti. Rychlá fourierova transformace
Filtrace snímků ve frekvenční oblasti Rychlá fourierova transformace semestrální práce z předmětu KIV/ZVI zpracoval: Jan Bařtipán A03043 bartipan@students.zcu.cz Obsah Úvod....3 Diskrétní Fourierova transformace
Světlo jako elektromagnetické záření
Světlo jako elektromagnetické záření Základní pojmy: Homogenní prostředí prostředí, jehož dané vlastnosti jsou ve všech místech v prostředí stejné. Izotropní prostředí prostředí, jehož dané vlastnosti
filtry FIR zpracování signálů FIR & IIR Tomáš Novák
filtry FIR 1) Maximální překývnutí amplitudové frekvenční charakteristiky dolní propusti FIR řádu 100 je podle obr. 1 na frekvenci f=50hz o velikosti 0,15 tedy 1,1dB; přechodové pásmo je v rozsahu frekvencí
Soustavy se spínanými kapacitory - SC. 1. Základní princip:
Obvody S - popis 1 Soustavy se spínanými kapacitory - S 1. Základní princip: Simulace rezistoru přepínaným kapacitorem viz známý obrázek! (a rovnice) Modifikace základního spínaného obvodu: Obr. 2.1: Zapojení
Flexibilita jednoduché naprogramování a přeprogramování řídícího systému
Téma 40 Jiří Cigler Zadání Číslicové řízení. Digitalizace a tvarování. Diskrétní systémy a jejich vlastnosti. Řízení diskrétních systémů. Diskrétní popis spojité soustavy. Návrh emulací. Nelineární řízení.
Vlastnosti a modelování aditivního
Vlastnosti a modelování aditivního bílého šumu s normálním rozdělením kacmarp@fel.cvut.cz verze: 0090913 1 Bílý šum s normálním rozdělením V této kapitole se budeme zabývat reálným gaussovským šumem n(t),
FILTRACE VE FOURIEROVSKÉM SPEKTRU
1/18 FILTRACE VE FOURIEROVSKÉM SPEKTRU (patří do lineárních integrálních transformací) Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz
VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ
VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ Michal Kořenář 1 Abstrakt Rozvoj výpočetní techniky v poslední době umožnil také rozvoj výpočetních metod, které nejsou založeny na bázi
Číslicové zpracování signálů a Fourierova analýza.
Číslicové zpracování signálů a Fourierova analýza www.kme.zcu.cz/kmet/exm 1 Obsah prezentace 1. Úvod a motivace 2. Data v časové a frekvenční oblasti 3. Fourierova analýza teoreticky 4. Fourierova analýza
Zpracování obrazů. Honza Černocký, ÚPGM
Zpracování obrazů Honza Černocký, ÚPGM 1D signál 2 Obrázky 2D šedotónový obrázek (grayscale) Několikrát 2D barevné foto 3D lékařské zobrazování, vektorová grafika, point-clouds (hloubková mapa, Kinect)
Biofyzikální ústav LF MU Brno. jarní semestr 2011
pro obor Ošetřovatelská péče v gerontologii Biofyzikální ústav LF MU Brno jarní semestr 2011 Obsah letmý dotyk teorie systémů klasifikace a analýza biosignálů Co je signál? Co je biosignál? Co si počít
U Úvod do modelování a simulace systémů
U Úvod do modelování a simulace systémů Vyšetřování rozsáhlých soustav mnohdy nelze provádět analytickým výpočtem.často je nutné zkoumat chování zařízení v mezních situacích, do kterých se skutečné zařízení
Komplexní obálka pásmového signálu
České vysoké učení technické v Praze, Fakulta elektrotechnická X37SGS Signály a systémy Komplexní obálka pásmového signálu Daniel Tureček 8.11.8 1 Úkol měření Nalezněte vzorky komplexní obálky pásmového
P7: Základy zpracování signálu
P7: Základy zpracování signálu Úvodem - Signál (lat. signum) bychom mohli definovat jako záměrný fyzikální jev, nesoucí informaci o nějaké události. - Signálem je rovněž funkce, která převádí nezávislou
SYNTÉZA ŘEČI. Ústav fotoniky a elektroniky, v.v.i. AV ČR, Praha
SYNTÉZA ŘEČI Petr Horák horak@ufe.cz Ústav fotoniky a elektroniky, v.v.i. AV ČR, Praha Obsah Úvod a historie Zpracování textu Modelování prozodie Metody syntézy řeči Aplikace syntézy řeči Petr Horák SYNTÉZA
Filtrace obrazu ve frekvenční oblasti
Filtrace obrazu ve frekvenční oblasti Václav Hlaváč České vysoké učení technické v Praze Český institut informatiky, robotiky a kybernetiky 166 36 Praha 6, Jugoslávských partyzánů 1580/3 http://people.ciirc.cvut.cz/hlavac,
VOLBA ČASOVÝCH OKEN A PŘEKRYTÍ PRO VÝPOČET SPEKTER ŠIROKOPÁSMOVÝCH SIGNÁLŮ
VOLBA ČASOVÝCH OKEN A PŘEKRYTÍ PRO VÝPOČET SPEKTER ŠIROKOPÁSOVÝCH SIGNÁLŮ Jiří TŮA, VŠB Technická univerzita Ostrava Petr Czyž, Halla Visteon Autopal Services, sro Nový Jičín 2 Anotace: Referát se zabývá
Při návrhu FIR filtru řešíme obvykle následující problémy:
Návrh FIR filtrů Při návrhu FIR filtru řešíme obvykle následující problémy: volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř.
" Furierova transformace"
UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM FAKULTA ŽIVOTNÍHO PROSTŘEDÍ " Furierova transformace" Seminární práce z předmětu Dálkový průzkum Země Marcela Bartošová, Veronika Bláhová OŽP, 3.ročník
Syntéza zvuků a hudebních nástrojů v programovém prostředí MATLAB
Syntéza zvuků a hudebních nástrojů v programovém prostředí MATLAB Úvod Cílem této semestrální práce je syntéza orchestrálních nástrojů pro symfonickou báseň Vltava Bedřicha Smetany a libovolná vlastní
Modelov an ı syst em u a proces
Modelování systémů a procesů 13. března 2012 Obsah 1 Vnější popis systému 2 Vnitřní popis systému 3 Příklady na stavový popis dynamických systémů Obsah 1 Vnější popis systému 2 Vnitřní popis systému 3
13 Měření na sériovém rezonančním obvodu
13 13.1 Zadání 1) Změřte hodnotu indukčnosti cívky a kapacity kondenzátoru RC můstkem, z naměřených hodnot vypočítej rezonanční kmitočet. 2) Generátorem nastavujte frekvenci v rozsahu od 0,1 * f REZ do
ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 1. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská
Algoritmy I. Číselné soustavy přečíst!!! ALGI 2018/19
Algoritmy I Číselné soustavy přečíst!!! Číselné soustavy Každé číslo lze zapsat v poziční číselné soustavě ve tvaru: a n *z n +a n-1 *z n-1 +. +a 1 *z 1 +a 0 *z 0 +a -1 *z n-1 +a -2 *z -2 +.. V dekadické
Nastavení parametrů PID a PSD regulátorů
Fakulta elektrotechniky a informatiky Univerzita Pardubice Nastavení parametrů PID a PSD regulátorů Semestrální práce z předmětu Teorie řídicích systémů Jméno: Jiří Paar Datum: 9. 1. 2010 Zadání Je dána
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).
14. přednáška. Přímka
14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1
Základní metody číslicového zpracování signálu a obrazu část II.
A4M38AVS Aplikace vestavěných systémů Přednáška č. 8 Základní metody číslicového zpracování signálu a obrazu část II. Radek Sedláček, katedra měření, ČVUT FEL, 2015 Obsah přednášky Převzorkování decimace,
CW01 - Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 SPEC. 2.p 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace
0.0001 0.001 0.01 0.1 1 10 100 1000 10000. Čas (s) Model časového průběhu sorpce vyplývá z 2. Fickova zákona a je popsán následující rovnicí
Program Sorpce1.m psaný v prostředí Matlabu slouží k vyhlazování naměřených sorpčních křivek a výpočtu difuzních koeficientů. Kromě standardního Matlabu vyžaduje ještě Matlab Signal Processing Toolbox
1 Modelování systémů 2. řádu
OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka
JAK VZNIKÁ LIDSKÝ HLAS? Univerzita Palackého v Olomouci
JAK VZNIKÁ LIDSKÝ HLAS? JAN ŠVEC Katedra biofyziky, ik Př.F., Univerzita Palackého v Olomouci HLAS: Všichni jej každodenně používáme, ale víme o něm v podstatě jen málo Studium lidského hlasu Je založeno
Využití algoritmu DTW pro vyhodnocování vad řeči dětí postižených Landau-Kleffnerovým syndromem (LKS)
Využití algoritmu DTW pro vyhodnocování vad řeči dětí postižených Landau-Kleffnerovým syndromem (LKS) Petr Zlatník České vysoké učení technické v Praze, Fakulta elektrotechnická zlatnip@fel.cvut.cz Abstrakt:
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
6 Algebra blokových schémat
6 Algebra blokových schémat Operátorovým přenosem jsme doposud popisovali chování jednotlivých dynamických členů. Nic nám však nebrání, abychom přenosem popsali dynamické vlastnosti složitějších obvodů,
Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté
Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0
Semestrální projekt. Vyhodnocení přesnosti sebelokalizace VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Fakulta elektrotechniky a komunikačních technologií
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta elektrotechniky a komunikačních technologií Semestrální projekt Vyhodnocení přesnosti sebelokalizace Vedoucí práce: Ing. Tomáš Jílek Vypracovali: Michaela Homzová,
Číslicová filtrace. FIR filtry IIR filtry. ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Ing. Radek Sedláček, Ph.D., katedra měření K13138 Číslicová filtrace FIR filtry IIR filtry Tyto materiály vznikly za podpory Fondu rozvoje
1. Základy teorie přenosu informací
1. Základy teorie přenosu informací Úvodem citát o pojmu informace Informace je název pro obsah toho, co se vymění s vnějším světem, když se mu přizpůsobujeme a působíme na něj svým přizpůsobováním. N.
Matematika I (KMI/PMATE)
Přednáška první aneb Úvod do matematické analýzy Funkce a její vlastnosti Úvod do matematické analýzy Osnova přednášky pojem funkce definice funkce graf funkce definiční obor funkce obor hodnot funkce
Neuronové časové řady (ANN-TS)
Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci
transmitter Tx - vysílač receiver Rx přijímač (superheterodyn) duplexer umožní použití jedné antény pro Tx i Rx
Lekce 2 Transceiver I transmitter Tx - vysílač receiver Rx přijímač (superheterodyn) duplexer umožní použití jedné antény pro Tx i Rx u mobilního telefonu pouze anténní přepínač řídící část dnes nejčastěji
KONVERZE VZORKOVACÍHO KMITOČTU
VOLUME: 8 NUMBER: 00 BŘEZEN KONVERZE VZORKOVACÍHO KMITOČTU Jan VITÁSEK Katedra telekomunikační techniky, Fakulta elektrotechniky a informatiky, VŠB-TU Ostrava, 7. Listopadu 5, 708 33 Ostrava-Poruba, Česká
0.1 Úvod do matematické analýzy
Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Pojem funkce Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost
Nekonečné číselné řady. January 21, 2015
Nekonečné číselné řady January 2, 205 IMA 205 Příklad 0 = 0 + 0 +... + 0 +... =? n= IMA 205 Příklad n= n 2 + n = 2 + 6 + 2 +... + n 2 +... =? + n s = 2 s 2 = 2 3... s 3 = 3 4 IMA 205 Příklad (pokr.) =
ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 8. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská
Operace s obrazem I. Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno. prezentace je součástí projektu FRVŠ č.
Operace s obrazem I Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 Osnova 1 Filtrování obrazu 2 Lineární a nelineární filtry 3 Fourierova