Nekonečné číselné řady. January 21, 2015
|
|
- Růžena Křížová
- před 9 lety
- Počet zobrazení:
Transkript
1 Nekonečné číselné řady January 2, 205 IMA 205
2 Příklad 0 = =? n= IMA 205
3 Příklad n= n 2 + n = n =? + n s = 2 s 2 = s 3 = 3 4 IMA 205
4 Příklad (pokr.) = s n = n i= n i= n i n i 2 + i = ( i ) = i + i= i= i + = n + = n n + IMA 205
5 Definice (Součet řady) Součet nekonečné řady je definován prostřednictvím limity posloupnosti částečných součtů jako Příklad (dokončení) n= lim s n. n 2 + n = lim s n = lim n n + =. IMA 205
6 Definice ( Konvergence řady) Má-li posloupnost částečných součtů konečnou limitu, tzn. lim s n = s, pak říkáme, že řada je konvergentní. Pokud uvedená limita neexistuje nebo je nevlastní, pak říkáme, že řada je divergentní. IMA 205
7 (Geometrická řada) a + a.q + a.q a.q n + geometrická řada konverguje ak a = 0, q R a 0, q <. součet je 0 a q IMA 205
8 Příklad s =, s 2 = 2...s n = n lim s n = ( ) n s =, s 2 = 0...s 2n+ =, s 2n = 0 lim s n neexistuje n +... geom. řada, q = 2 (, ) řada konverguje ( 4 3) n +... geom. řada, q = 4 3 (, ) řada diverguje IMA 205
9 Definice (Absolutní konvergence) Pokud konverguje řada n= n= a n, přičemž říkáme, že řada Pokud konverguje řada říkáme, že řada n= n= a n, potom konverguje také řada n= a n konverguje absolutně. a n, avšak řada n= a n diverguje, pak a n konverguje neabsolutně (relativně). IMA 205
10 Definice (Podmínky konvergence) U konvergentních řad lze zavést tzv. zbytek řady po n-tém součtu jako R n = s s n, podmínku konvergence řady lze vyjádřit také tak, že nekonečná řada konverguje právě tehdy, pokud k libovolnému kladnému číslu ε existuje takové N (ε), že pro libovolné n > N (ε) platí nerovnost R n = s s n < ε. IMA 205
11 Věta (Nutná podmínka konvergence řady) Jestliže řada a n konverguje, potom lim a n = 0. IMA 205
12 Příklad (Nutná podmínka konvergence řady) řada n 2 + diverguje řada n= ale řada n 2 +n konverguje n= lim lim n DIVERGUJE!! n 2 =. n 2 + n = 0. lim n = 0, IMA 205
13 Věta (Nutná a postačující podmínka konvergence řady) Pokud součet řady a n vyjádříme ve tvaru s = s n + R n, kde s n je n-tý částečný součet a R n je zbytek řady po n-tém částečném součtu, pak nutnou a postačující podmínku konvergence této řady lze vyjádřit vztahem lim R n = lim (s s n) = 0 Nutná a postačující podmínka konvergence bývá také vyjadřována ve formě tzv. Bolzanova-Cauchyova kritéria. Podle něj je nekonečná řada konvergentní právě tehdy, existuje-li k libovolnému ε > 0 takové číslo N (ε), že pro libovolná m > N (ε), n > N (ε) platí s m s n < ε IMA 205
14 ( Kritéria konvergence) IMA 205
15 Věta ( Srovnávací kritérium) Při srovnávacím (porovnávacím) kritériu uvažujeme dvě řady s kladnými členy a n, b n, přičemž pro všechna n platí a n < b n. Řadu a n označujeme jako minorantní řadu (minorantu) k řadě bn a řadu b n jako majorantní řadu (majorantu) k řadě a n. Potom platí, že pokud konverguje majoranta, tzn. b n, konverguje také minoranta, tedy a n. Diverguje-li minoranta an, diverguje také majoranta, tedy b n. Příklad ( Srovnávací kritérium) porovnejte s n= n= (n+) 2 n porovnejte s n= n= n n 2 +n IMA 205
16 Věta ( Podílové kritérium) Při podílovém (d Alembertově) kritériu konverguje řada s kladnými členy a n tehdy, existuje-li reálné číslo q < a přirozené číslo n 0, takové, že pro každé n > n 0, platí a n+ a n < q. Pokud je a n+ a n, pak řada diverguje. Věta ( Limitní podílové kritérium) Zavedeme-li pro řadu s kladnými členy a n veličinu L = lim, pak dostáváme tzv. limitní podílové kritérium a n+ a n konvergence, podle kterého je řada a n konvergentní pro L <, divergentní pro L >, a pro L =, může být konvergentní nebo divergentní. IMA 205
17 Příklad (Podílové kritérium) n= n= (n!) 2 (2n)! a n+ lim a n n n+ = lim ((n+)!) 2 (2n+2)! (n!) 2 (2n)! = 4 < řada konverguje a n+ lim a n = lim n+ n+2 n n+ = neumíme rozhodnout, ale lim a n = 0 z nutní podm. konvergence: řada diverguje IMA 205
18 Příklad (Podílové kritérium, pokr.) n= n! n n n= a n+ lim a n n = lim (n+)! (n+) n+ n! n n = e < řada konverguje a n+ lim a n = lim n+ n Z předch. příkladu víme, že řada diverguje. = neumíme rozhodnout. IMA 205
19 Příklad (Podílové kritérium, pokr.) n= n 2 +n a n+ lim a n = lim (n+) 2 +n+ n 2 +n Z předch. příkladu víme, že řada konverguje = neumíme rozhodnout. IMA 205
20 Věta ( Odmocninové kritérium) Při odmocninovém (Cauchyově) kritériu uvažujeme, že řada s kladnými členy a n konverguje, pokud existuje reálné číslo q < a přirozené číslo n 0, že pro každé n > n 0, platí n a n < q. Pro n an řada diverguje. Věta ( Limitní odmocninové kritérium) Pokud pro řadu s kladnými členy a n zavedeme K = lim n an, pak můžeme použít limitní odmocninové kritérium, podle kterého je řada konvergentní pro K <, divergentní pro K > a pro K = může konvergovat nebo divergovat. IMA 205
21 Příklad ( Odmocninové kritérium) řada lim n an+ = lim ( ) 3 ( ) n 5 n n n 5n n n +... je konvergentní n n = lim 5 n = 0 IMA 205
22 Věta ( Raabeovo kritérium) Podle Raabeova kritéria je řada s kladnými členy a n konvergentní tehdy, pokud existuje takové přirozené číslo n 0, že pro všechna n > n 0, platí n( a n+ a n ) >. Jestliže n( a n+ a n ), pak řada a n diverguje. Věta ( Limitní Raabeovo kritérium) Jestliže pro řadu s kladnými členy a n zavedeme M = lim n( a n+ a n ), pak na základě limitního Raabeova kritéria určíme, že řada konverguje pro M >, diverguje pro M < a pro M = může konvergovat i divergovat. IMA 205
23 Věta ( Integrální kritérium) Nechť a n je řada s kladnými členy, jejíž členy lze vyjádřit jako a n = f (n). Pokud ve funkci f (n), nahradíme diskrétní proměnnou n, spojitou proměnnou x, přičemž f (x), bude spojitou a nerostoucí funkcí na intervalu a, ), kde a > 0, pak podle tzv. integrálního kritéria je řada a n konvergentní tehdy, pokud konverguje integrál f (x)dx. Pokud integrál a f (x)dx diverguje, pak a diverguje také řada a n. IMA 205
24 Příklad ( Integrální kritérium) n= n= n n 2 lim x x lim x n = lim (ln x ln ) = x x řada diverguje ( n 2 = lim ) = x x řada konverguje IMA 205
25 Příklad ( Integrální kritérium, pokr.) n, p > p n= lim x x ( ) n p = lim x p (p )x p = p řada konverguje IMA 205
26 Věta ( Leibnitzovo kritérium) Pro alternující řady, které zapíšeme jako n= ( ) n+ a n, kde a n > 0, lze použít Leibnitzovo kritérium. Podle tohoto kritéria konverguje uvedená alternující řada tehdy, pokud a > a 2 > a 3 >... a zároveň lim a n = 0. Příklad ( Leibnitzovo kritérium) ( )n+ n +... n > n + a lim a n = lim n = 0 řada konverguje, ale relativně. IMA 205
27 (Operace s nekonečnými řadami) součet a n = a + a a n + n=0 b n = b + b b n + n=0 (a n + b n) = (a + b ) + (a 2 + b 2 ) + + (a n + b n) + n=0 rozdíl (a n b n) = (a b ) + (a 2 b 2 ) + + (a n b n) + n=0 IMA 205
28 (Operace s nekonečnými řadami) součin (a.b ) + (a.b 2 + a 2.b ) + (a.b 3 + a 2.b 2 + a 3.b ) + + přerovnání +(a.b n + a 2.b n + a 3.b n a n.b ) + IMA 205
29 (Výpočet součtu a odhad součtu, příklady) IMA 205
30 (Alternující řady) Nechť posloupnost {a n } n= je nerostoucí s limitou 0. Potom pro součet a n tý částečný součet s n řady a a 2 + a 3 a ( ) n a n + platí s s n a n+. Uvažujme o řadě ( ) n n Pro limitu n tého člena platí lim a n = 0 a posloupnost je nerostoucí, co zjistíme porovnáním n tého a n + ního členu v abs. hodnotě (proč abs. hodnota?): a n a n+ n 2 n+ n 2 2 n n n 2 n.(n + ) 2n n + n. Poslední nerovnost ukazuje, že posloupnost je nerostoucí pro všechny přirozené čísla. Proto součet prvních n členů se liší od nekonečného součtu maximálně o n+ 2. Součet prvních 0 n členů se liší od součtu max. o 2. 0 n IMA 205
31 (Odhad pomocí geom. řady) Nechť řada n= a n je absolutně konvergentní a nechť existují a > 0, q < také, že a n+k a.q k pro k =, 2,. Potom pro součet a n tý částečný součet s n řady platí s s n a q. Uvažujme o řadě +! + 2! Udělejte odhad chyby, které se n! dopustíme, když sečteme prvních 5 členů. Z předchozích příkladů víme, že se jedná o abs. konvergentní řadu. Pro (4 + k)! platí: (4 + k)! = (4 + k) = 5!.6 k. Potom pro k =, 2, (4 + k)! 5! ( ) k. 6 Aplikujeme předošlé tvrzení o odhadu a dostáváme: 5! s s 5 6 s ! 6 IMA 205 = 6 5.5! = 00.
32 (Odhad pomocí integrálu) Nechť řada n= a n je absolutně konvergentní a nechť existuje nerostoucí funkce f (x) taká, že f (n) = a n pro n N, přičemž N je přirozené číslo. Potom pro součet a N tý částečný součet s N řady platí s s N lim x x N f (t)dt. Nechť α >. Víme, že α + 2 α + + n α +. Udělejte odhad chyby, které se dopustíme, když sečteme prvních N členů. Aplikujeme předošlé tvrzení o odhadu a dostáváme: s s N lim x x [ ] x dt = lim tα x ( α)t α N N [ ] lim x ( α)x α ( α)n α = = (α )N α. IMA 205
1 Posloupnosti a řady.
1 Posloupnosti a řady. 1.1 Posloupnosti reálných čísel. Definice 1.1: Posloupností reálných čísel nazýváme zobrazení f množiny N všech přirozených čísel do množiny R všech reálných čísel. Pokud nemůže
VícePosloupnosti a řady. 28. listopadu 2015
Posloupnosti a řady Přednáška 5 28. listopadu 205 Obsah Posloupnosti 2 Věty o limitách 3 Řady 4 Kritéria konvergence 5 Absolutní a relativní konvergence 6 Operace s řadami 7 Mocninné a Taylorovy řady Zdroj
VíceMatematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2
Matematika 2 14. přednáška Číselné a mocninné řady Jan Stebel Fakulta mechatroniky, informatiky a mezioborových studíı Technická univerzita v Liberci jan.stebel@tul.cz http://bacula.nti.tul.cz/~jan.stebel
Více11. Číselné a mocninné řady
11. Číselné a mocninné řady Aplikovaná matematika III, NMAF072 M. Rokyta, KMA MFF UK ZS 2017/18 11.1 Základní pojmy Definice Necht {a n } C je posloupnost komplexních čísel. Pro m N položme s m = a 1 +
VíceMichal Fusek. 10. přednáška z AMA1. Ústav matematiky FEKT VUT, Michal Fusek 1 / 62
Nekonečné řady Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 0. přednáška z AMA Michal Fusek (fusekmi@feec.vutbr.cz) / 62 Obsah Nekonečné číselné řady a určování jejich součtů 2 Kritéria
VíceMatematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky
Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.
Více1 Základní pojmy a vlastnosti 2 1.1 Význačnéřady... 2 1.2 Základnívlastnostiřad... 3
VII. Číselné řady Obsah 1 Základní pojmy a vlastnosti 2 1.1 Význačnéřady...... 2 1.2 Základnívlastnostiřad..... 3 2 Řady s nezápornými členy 3 2.1 Kritériakonvergenceadivergence...... 3 3 Řady absolutně
VíceLEKCE10-RAD Otázky
Řady -ekv ne ŘADY ČÍSEL 1. limita posloupnosti (operace založená na vzdálenosti bodů) 2. supremum nebo infimum posloupnosti (operace založená na uspořádání bodů). Z hlavních struktur reálných čísel zbývá
VíceNechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady.
Číselné řady Definice (Posloupnost částečných součtů číselné řady). Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady. Definice (Součet číselné
VícePetr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 183
Nekonečné řady Petr Hasil Přednáška z Matematické analýzy III c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 183 Obsah 1 Nekonečné číselné řady Základní pojmy Řady s nezápornými členy Řady s libovolnými
VícePŘEDNÁŠKA 2 POSLOUPNOSTI
PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému
VíceKapitola 15. Číselné řady. 15.1 Základní pojmy. Definice 15.1.1.Symbol a 1 + a 2 + +a n +,kde n N, a n R,se. nazývá číselná řada.
Kapitola 5 Číselné řady 5. Základní pojmy Definice 5...Symbol a + a 2 + +a n +,kde n N, a n R,se nazývá číselná řada. Jiná označení: n= a n, a n (vynecháme-lipodmínku pro n,uvažujemečlenyodnejmenšího n
VíceTo je samozřejmě základní pojem konvergence, ale v mnoha případech je příliš obecný a nestačí na dokazování některých užitečných tvrzení.
STEJNOMĚRNÁ KONVERGENCE Zatím nebylo v těchto textech věnováno příliš pozornosti konvergenci funkcí, at jako limita posloupnosti nebo součet řady. Jinak byla posloupnosti funkcí nebo řady brána jako. To
VícePosloupnosti a jejich limity
KMA/MAT Přednáška č. 7, Posloupnosti a jejich ity 5. listopadu 203 Motivační příklady Prozkoumejme, zatím laicky, následující posloupnosti: Posloupnost, 4, 9,..., n 2,... : Hodnoty rostou nade všechny
Více(verze 12. května 2015)
Pár informací o nekonečných řadách (doplňkový text k předmětu Matematická analýza 3) Pavel Řehák (verze 12. května 2015) 2 Několik slov na úvod Tento text tvoří doplněk k části předmětu Matematická analýza
VícePřednáška 6, 6. listopadu 2013
Přednáška 6, 6. listopadu 2013 Kapitola 2. Posloupnosti a řady funkcí. V dalším jsou f, f n : M R, n = 1, 2,..., reálné funkce jedné reálné proměnné definované na (neprázdné) množině M R. Co to znamená,
Více1. Posloupnosti čísel
1. Posloupnosti čísel 1.1. Posloupnosti a operace s nimi Definice 1.1 Posloupnost reálných čísel ( = reálná posloupnost ) je zobrazení, jehož definičním oborem je množina N a oborem hodnot je nějaká podmnožina
VíceOtázky k ústní zkoušce, přehled témat A. Číselné řady
Otázky k ústní zkoušce, přehled témat 2003-2004 A Číselné řady Vysvětlete pojmy částečný součet řady, součet řady, řadonverguje, řada je konvergentní Formulujte nutnou podmínku konvergence řady a odvoďte
VíceFunkcionální řady. January 13, 2016
Funkcionální řady January 13, 216 f 1 + f 2 + f 3 +... + f n +... = f n posloupnost částečných součtů funkcionální řada konverguje na množine M konverguje posloupnost jeho částečných součtů na množine
VíceZobecněný Riemannův integrál
Zobecněný Riemannův integrál Definice (Zobecněný Riemannův integrál). Buď,,. Nechť pro všechna existuje určitý Riemannův integrál. Pokud existuje konečná limita, říkáme, že zobecněný Riemannův integrál
VíceUrčete (v závislosti na parametru), zda daný integrál konverguje, respektive zda konverguje. dx = t 1/α 1 dt. sin x α dx =
. cvičení http://www.karlin.mff.cuni.cz/ kuncova/ kytaristka@gmail.com Teorie Věta 1 (Abelovo-Dirichletovo kritérium konveregnce Newtonova integrálu). Necht a R, b R a necht a < b. Necht f : [a, b) R je
VícePožadavky k ústní části zkoušky Matematická analýza 1 ZS 2014/15
Požadavky k ústní části zkoušky Matematická analýza 1 ZS 2014/15 Klíčové pojmy Neznalost některého z klíčových pojmů bude mít za následek ukončení zkoušky se známkou neprospěl(a). supremum infimum limita
VíceSpojitost a limita funkce
Spojitost a ita funkce Okolí bodu Značení: a R ε > 0 označujeme O ε (a) = (a ε, a + ε) ε-ové okolí bodu a O + ε (a) = a, a + ε) pravé okolí, O ε (a) = (a ε, a levé okolí P ε (a) = O ε (a) \ {a} x a ε-ové
VíceMatematická analýza pro informatiky I. Limita posloupnosti (I)
Matematická analýza pro informatiky I. 3. přednáška Limita posloupnosti (I) Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 25. února 2011 tomecek@inf.upol.cz
VíceČíselné posloupnosti
Číselné posloupnosti Jiří Fišer KMA, PřF UP Olomouc ZS09 Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 43 Pojem posloupnosti Každé zobrazení N do R nazýváme číselná posloupnost. 1 a 1, 2 a 2, 3 a
VíceMATEMATIKA B 2. Integrální počet 1
metodický list č. 1 Integrální počet 1 V tomto tématickém celku se posluchači seznámí s některými definicemi, větami a výpočetními metodami užívanými v části matematiky obecně známé jako integrální počet
VícePřednáška 6, 7. listopadu 2014
Přednáška 6, 7. listopadu 204 Část 3: nekonečné řady Základní definice. Nekonečná řada, krátce řada, je posloupnost reálných čísel (a n ) R uvedená v zápisu a n = a + a 2 + a 3 +..., spolu s metodou přiřazující
VíceBAKALÁŘSKÁ PRÁCE. Kristýna Suchanová. Přírodovědná studia, obor Matematika
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA PEDAGOGICKÁ KATEDRA MATEMATIKY, FYZIKY A TECHNICKÉ VÝCHOVY POSLOUPNOSTI A ŘADY: ZÁKLADNÍ VLASTNOSTI, LIMITY: ŘEŠENÉ PŘÍKLADY BAKALÁŘSKÁ PRÁCE Kristýna Suchanová Přírodovědná
VícePosloupnosti a jejich konvergence
a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace, integrály.
VíceMA2, M2. Kapitola 1. Funkční posloupnosti a řady. c 2009, analyza.kma.zcu.cz
1 Kapitola 1 Funkční posloupnosti a řady 2 Definice 1.1(funkční posloupnost) Funkční posloupnost( = posloupnost funkcí) je zobrazení, které každému přirozenému číslu n N přiřazuje právějednufunkci f n
VícePosloupnosti a jejich konvergence POSLOUPNOSTI
Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,
VíceIV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel
Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:
VícePOSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
Vícef konverguje a g je omezená v (a, b), pak také konverguje integrál b a fg. Dirichletovo kritérium. Necht < a < b +, necht f : [a, b) R je funkce
1. cvičení http://www.karlin.mff.cuni.cz/ kuncova/ kytaristka@gmail.com Teorie Abelovo kritérium. Necht < a < b +, necht f : [a, b) R je funkce spojitá na [a, b) a funkce g : [a, b) R je na [a, b) spojitá
VíceLimita posloupnosti, limita funkce, spojitost. May 26, 2018
Limita posloupnosti, limita funkce, spojitost May 26, 2018 Definice (Okolí bodu) Okolím bodu a R (také ε- okolím) rozumíme množinu U(a, ε) = {x R; x a < ε} = (a ε, a + ε), bod a se nazývá střed okolí a
VíceKapitola 2: Spojitost a limita funkce 1/20
Kapitola 2: Spojitost a limita funkce 1/20 Okolí bodu 2/20 Značení: a R, ε > 0 O ε (a) = (a ε, a + ε) ε-ové okolí bodu a O + ε (a) = a, a + ε) pravé okolí, O ε (a) = (a ε, a levé okolí P ε (a) = O ε (a)
VíceKonvergence kuncova/
Konvergence http://www.karlin.mff.cuni.cz/ kuncova/ kytaristka@gmail.com Příklady.. 3. 3 + d Konverguje - u je funkce spojitá, u srovnáme s /. e d Konverguje - na intervalu [, ] je funkce spojitá, na intervalu
Více2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem
2. Funkční řd Studijní text 2. Funkční řd V předcházející kpitole jsme uvžovli řd, jejichž člen bl reálná čísl. Nní se budeme zbývt studiem obecnějšího přípdu, kd člen řd tvoří reálné funkce. Definice
VícePOSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
VíceKapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...
Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -
VíceLimita a spojitost funkce. 3.1 Úvod. Definice: [MA1-18:P3.1]
KAPITOLA 3: Limita a spojitost funkce [MA-8:P3.] 3. Úvod Necht je funkce f definována alespoň na nějakém prstencovém okolí bodu 0 R. Číslo a R je itou funkce f v bodě 0, jestliže pro každé okolí Ua) bodu
VíceUčební texty k státní bakalářské zkoušce Matematika Posloupnosti a řady funkcí. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Poslounosti a řady funkcí študenti MFF 15. augusta 2008 1 3 Poslounosti a řady funkcí Požadavky Sojitost za ředokladu stejnoměrné konvergence Mocninné
VíceKapitola 1. Funkční posloupnosti a řady
1 2 Kapitola 1 Funkční posloupnosti a řady Definice 1.1(funkční posloupnost) Funkční posloupnost( = posloupnost funkcí) je zobrazení, které každému přirozenému číslu n N přiřazuje právějednufunkci f n
Více17. Posloupnosti a řady funkcí
17. Posloupnosti a řady funkcí Aplikovaná matematika III, NMAF073 M. Rokyta, KMA MFF UK ZS 2011/12 17.1 Stejnoměrná konvergence posloupnosti funkcí Definice Necht M je množina, f, f n : M R m, m, n N.
VíceŘADY KOMPLEXNÍCH FUNKCÍ
ŘADY KOMPLEXNÍCH FUNKCÍ OBECNÉ VLASTNOSTI Řady komplexních čísel z n byly částečně probírány v kapitole o číselných řadách. Definice říká, že n=0 z n = z, jestliže z je limita částečných součtů řady z
VíceDerivace a monotónnost funkce
Derivace a monotónnost funkce Věta : Uvažujme funkci f (x), která má na intervalu I derivaci f (x). Pak platí: je-li f (x) > 0 x I, funkce f je na intervalu I rostoucí. je-li f (x) < 0 x I, funkce f je
VíceČíselné posloupnosti. H (å) a. a å
Pokud napíšeme značku H a (ε), je třeba dát pozor, neboť značka je stejná u komplexního i u reálného okolí, ačkoliv jde o jinou množinu (reálné okolí je jen otevřený interval na reálné ose, komplexní zahrnuje
VíceZáklady matematické analýzy
Základy matematické analýzy Spojitost funkce Ing. Tomáš Kalvoda, Ph.D. 1, Ing. Daniel Vašata 2 1 tomas.kalvoda@fit.cvut.cz 2 daniel.vasata@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
VíceOtázky z kapitoly Posloupnosti
Otázky z kapitoly Posloupnosti 8. září 08 Obsah Aritmetická posloupnost (8 otázek). Obtížnost (0 otázek)........................................ Obtížnost (0 otázek).......................................
VíceINTEGRÁLY S PARAMETREM
INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity
VíceFunkce. Limita a spojitost
Funkce. Limita a spojitost skriptum J. Neustupa text Funkce (úvod) na této web stránce III.2 Fce - základní pojmy 1. Definice, def. obor D(f), obor hodnot H(f), graf 2. Fce složená, omezená, 3. Fce sudá,
VíceJednou z nejdůležitějších funkcí, které se v matematice a jejích aplikacích používají je
74 Příloha A Funkce Γ(z) Úvod Jednou z nejdůležitějších funkcí, které se v matematice a jejích aplikacích používají je nesporně funkce Γ(z). Její důležitost se vyrovná exponenciální funkci i funkcím goniometrickým.
VíceZáklady matematiky pro FEK
Základy matematiky pro FEK 12. přednáška Blanka Šedivá KMA zimní semestr 216/21 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 216/21 1 / 15 Integrování jako inverzní operace příklady inverzních
VíceJiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou
VíceFunkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015
Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární
VícePetr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57
Úvod do infinitezimálního počtu Petr Hasil Prvákoviny 2015 c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny 2015 1 / 57 Obsah 1 Úvod Funkce Reálná čísla a posloupnosti Limita a spojitost
VíceDiferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36
Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic
VíceMATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce
Metodický list č. 1 Význam první a druhé derivace pro průběh funkce Cíl: V tomto tématickém celku se studenti seznámí s některými základními pojmy a postupy užívanými při vyšetřování průběhu funkcí. Tématický
VíceMatematika (KMI/PMATE)
Matematika (KMI/PMATE) Přednáška druhá aneb Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) 1 / 30 Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam
VícePožadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při
VíceMATEMATIKA 1B ÚSTAV MATEMATIKY
MATEMATIKA B Sbírka úloh Edita Kolářová ÚSTAV MATEMATIKY MATEMATIKA B Sbírka úloh Úvod Dostali jste do rukou sbírku příkladů k přednášce Matematika B - Sbírka úloh. Tato sbírka je doplněním tetu Fuchs,
VíceDiferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
VíceMATEMATICKÁ ANALÝZA 1, NMMA101, ZIMNÍ SEMESTR POPIS PŘEDMĚTU A INFORMACE K ZÁPOČTU A KE ZKOUŠCE
MATEMATICKÁ ANALÝZA 1, NMMA101, ZIMNÍ SEMESTR 2018 2019 POPIS PŘEDMĚTU A INFORMACE K ZÁPOČTU A KE ZKOUŠCE LUBOŠ PICK Popis předmětu Jde o první část čtyřsemestrálního základního kursu matematické analýzy.
VíceMatematická analýza I Martin Klazar (Diferenciální počet funkcí jedné reálné proměnné)
Matematická analýza I Martin Klazar (Diferenciální počet funkcí jedné reálné proměnné) 0. Úvod a opakování (značení, operace s množinami apod.) 1. Reálná čísla a jejich vlastnosti Uspořádané těleso Komutativní
Více1 Topologie roviny a prostoru
1 Topologie roviny a prostoru 1.1 Základní pojmy množin Intervaly a okolí Intervaly v rovině nebo prostoru jsou obdélníky nebo hranoly se stranami rovnoběžnými s osami souřadnic. Podmnožiny intervalů se
VíceDefinice. Na množině R je dána relace ( R R), operace sčítání +, operace násobení a množina R obsahuje prvky 0 a 1 tak, že platí
1. Úvod 1.1. Výroky a metody důkazů Výrok je tvrzení, o kterém má smysl říci, že je pravdivé či ne. Vytváření nových výroků: Logické spojky & a, Implikace, Ekvivalence, Negace. Obecný kvatifikátor a existenční
VíceMATEMATIKA I DIFERENCIÁLNÍ POČET I FAKULTA STAVEBNÍ MODUL BA01 M05, GA01 M04 LIMITA A SPOJITOST FUNKCE
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL BA0 M05, GA0 M04 DIFERENCIÁLNÍ POČET I LIMITA A SPOJITOST FUNKCE STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 0 Typeset
VíceMatematika V. Dynamická optimalizace
Matematika V. Dynamická optimalizace Obsah Kapitola 1. Variační počet 1.1. Derivace funkcí na vektorových prostorech...str. 3 1.2. Derivace integrálu...str. 5 1.3. Formulace základní úlohy P1 var. počtu,
Více7B. Výpočet limit L Hospitalovo pravidlo
7B. Výpočet it L Hospitalovo pravidlo V prai často potřebujeme určit itu výrazů, které vzniknou operacemi nebo složením několika spojitých funkcí. Většinou pomohou pravidla typu ita součtu násobku, součinu,
VíceKomplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice
VícePosloupnosti a řady. a n+1 = a n + 4, a 1 = 5 a n+1 = a n + 5, a 1 = 5. a n+1 = a n+1 = n + 1 n a n, a 1 = 1 2
Vlastnosti posloupností 90000680 (level ): Je dána posloupnost (an + b), ve které platí, že a = a a 4 = 8. Potom: Posloupnosti a řady 900006807 (level ): Které z čísel 5, 5, 8, 47 není členem posloupnosti
Více9. Vícerozměrná integrace
9. Vícerozměrná integrace Tomáš Salač Ú UK, FF UK LS 2017/18 Tomáš Salač ( Ú UK, FF UK ) 9. Vícerozměrná integrace LS 2017/18 1 / 29 9.1 Elementy teorie míry Poznámka Na R n definujeme systém tzv. měřitelných
Vícep 2 q , tj. 2q 2 = p 2. Tedy p 2 je sudé číslo, což ale znamená, že
KAPITOLA 1: Reálná čísla [MA1-18:P1.1] 1.1. Číselné množiny Přirozená čísla... N = {1,, 3,...} nula... 0, N 0 = {0, 1,, 3,...} = N {0} Celá čísla... Z = {0, 1, 1,,, 3,...} Racionální čísla... { p } Q =
VíceMATEMATICKÁ ANALÝZA 1 - ZIMNÍ SEMESTR PŘEDNÁŠKA
MATEMATICKÁ ANALÝZA 1 - ZIMNÍ SEMESTR 2018 2019 PŘEDNÁŠKA LUBOŠ PICK 1. Logika, množiny a základní číselné obory 1.1. Logika. Logika je věda o formální správnosti myšlení. Formálně logická správnost spočívá
VíceMatematický seminář. OVO ŠVP Tématický celek Učivo ŠVP Integrace Mezipředmětové vztahy. jejich soustavy. Spojitost funkce v bodě. Limita funkce v bodě
Řeší s porozumněním rovnice s parametrem Rovnice, nerovnice a jejich soustavy Řovnice, nerovnice a jejich soustavy Třetí, 24 hodin Zvolí vhodnou metodu řešení rovnice nebo nerovnice Vysvětlí zvolený způsob
VíceVýznam a výpočet derivace funkce a její užití
OPAKOVÁNÍ ZÁKLADŮ MATEMATIKY Metodický list č. 1 Význam a výpočet derivace funkce a její užití 1. dílčí téma: Výpočet derivace přímo z definice a pomocí základních vzorců. K tomuto tématu je třeba zopakovat
Více10 Určitý integrál Riemannův integrál. Definice. Konečnou posloupnost {x j } n j=0 nazýváme dělením intervalu [a,b], jestliže platí
10 Určitý integrál 10.1 Riemnnův integrál Definice. Konečnou posloupnost {x j } n j=0 nzýváme dělením intervlu [,b], jestliže pltí = x 0 < x 1 < < x n = b. Body x 0,...,x n nzýváme dělícími body. Normou
VíceVzdělávací materiál. vytvořený v projektu OP VK. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu: CZ.1.07/1.5.00/34.
Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 0 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.011 Zlepšení podmínek
VíceUNIVERZITA PALACKÉHO V OLOMOUCI
UNIVERZITA PALACKÉHO V OLOMOUCI PEDAGOGICKÁ FAKULTA Katedra matematiky TAYLOROVA ŘADA A JEJÍ VYUŽITÍ PRO VÝPOČET HODNOT FUNKCÍ Bakalářská práce Lenka Grygarová 3. ročník prezenční studium Obor: Matematika
VíceRiemannův určitý integrál
Riemannův určitý integrál 1. Motivační příklad Příklad (Motivační příklad pro zavedení Riemannova integrálu). Nechť,. Vypočtěme obsah vybarvené oblasti ohraničené grafem funkce, osou a svislými přímkami
VíceTéma 22. Ondřej Nývlt
Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené
VíceZ transformace. Definice. Z transformací komplexní posloupnosti f = { } f n z n, (1)
Z transformace Definice Z transformací komplexní posloupnosti f = { roumíme funkci F ( definovanou vtahem F ( = n, ( pokud řada vpravo konverguje aspoň v jednom bodě 0 C Náev Z transformace budeme také
VíceLimita posloupnosti a funkce
Limita posloupnosti a funkce Petr Hasil Přednáška z Matematické analýzy I c Petr Hasil (MUNI) Limita posloupnosti a funkce MA I (M1101) 1 / 90 Obsah 1 Posloupnosti reálných čísel Úvod Limita posloupnosti
Více+ n( 1)n+1 (x 7) n, poloměr konvergence 6. 3.Poloměr konvergence je vždy +. a) f(x) = x n. (x 7) n, h(x) = 7 + 7(n+1)( 1) n. ( 1)n
VÝSLEDKY I. TAYLORŮV POLYNOM. a + b + 4 4 c + 0 d e + + 4 f + + 4 g + 70 4 h 4 4. a b c d - e log a f 0 g h i j k - 4. a 7 b 4. a AK absolutně konverguje b D diverguje c D d AK e D f AK g AK II. MOCNINNÉ
VíceI. D i s k r é t n í r o z d ě l e n í
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
VíceČÍSELNÉ RADY. a n (1) n=1
ČÍSELNÉ RADY Budeme sa zaoberať výrazmi, ktoré obsahujú nekonečne veľa sčítancov. Takéto výrazy budeme nazývať nekonečné rady. V nasledujúcom príklade je ilustrované, ako môže takýto výraz vzniknúť. Príklad.
VíceZimní semestr akademického roku 2014/ prosince 2014
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 2. prosince 2014 Předmluva
VíceKombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy
Vícep(x) = P (X = x), x R,
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
VíceVektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
VíceUniverzita Karlova Pedagogická fakulta. Katedra matematiky a didaktiky matematiky BAKALÁŘSKÁ PRÁCE. Posloupnosti - rozšiřující učební text
Univerzita Karlova Pedagogická fakulta Katedra matematiky a didaktiky matematiky BAKALÁŘSKÁ PRÁCE Posloupnosti - rozšiřující učební text Sequences - extended reading Karel Hamšík Vedoucí práce: Mgr. Derek
Vícef(x) = ln arcsin 1 + x 1 x. f(x) = (cos x) cosh x + 3x a nalezněte rovnici tečen ke grafu této funkce v bodech f(x) = (sin x) x2 + 3 cos x
Příkad Nalezněte definiční obor funkce f(x) = ln arcsin + x x Určete definiční obor funkce f(x) = (cos x) cosh x + 3x a nalezněte rovnici tečen ke grafu této funkce v bodech [;?] a Určete definiční obor
Více2. přednáška 8. října 2007
2. přednáška 8. října 2007 Konvergence v metrických prostorech. Posloupnost bodů (a n ) M v metrickém prostoru (M, d) konverguje (je konvergentní), když v M existuje takový bod a, že lim n d(a n, a) =
Více9. Vícerozměrná integrace
9. Vícerozměrná integrace Aplikovaná matematika II, NMAF072 M. Rokyta, KMA MFF UK LS 2016/17 9.1 Elementy teorie míry Poznámka Na R n definujeme systém tzv. měřitelných množin, M n, který má následující
VíceAplikovaná numerická matematika - ANM
Aplikovaná numerická matematika - ANM 3 Řešení soustav lineárních rovnic iterační metody doc Ing Róbert Lórencz, CSc České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových
VíceSoučet řady je definován jediným možným rozumným
Řady ŘADY ČÍSEL Zatím byly probrány dva druhy operací s posloupnostmi: 1. limita posloupnosti (operace založená na vzdálenosti bodů) 2. supremum nebo infimum posloupnosti (operace založená na uspořádání
Více0.1 Úvod do matematické analýzy
Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Limita a spojitost funkce Lineární funkce Lineární funkce je jedna z nejjednodušších a možná i nejpoužívanějších funkcí. f(x) = kx + q D(f)
VíceUzavřené a otevřené množiny
Teorie: Uzavřené a otevřené množiny 2. cvičení DEFINICE Nechť M R n. Bod x M nazveme vnitřním bodem množiny M, pokud existuje r > 0 tak, že B(x, r) M. Množinu všech vnitřních bodů značíme Int M. Dále,
VíceAplikovaná matematika I, NMAF071
M. Rokyta, MFF UK: Aplikovaná matematika I kap. 1: Úvod, čísla, zobrazení, posloupnosti 1 Aplikovaná matematika I, NMAF071 M. Rokyta, KMA MFF UK ZS 2013/14 Sylabus = obsah (plán) přednášky [a orientační
VíceHL Academy - Chata Lopata Emu (Brkos 2012) Řetězové zlomky / 27
Řetězové zlomky HL Academy - Chata Lopata 2012 13.2. 18.2.2012 Emu (Brkos 2012) Řetězové zlomky 13.2. 18.2.2012 1 / 27 Obsah 1 Úvod 2 Základní pojmy 3 Konečné řetězové zlomky Sblížené zlomky Euklidův algoritmus
Více