Charakterizace mikrostruktur

Rozměr: px
Začít zobrazení ze stránky:

Download "Charakterizace mikrostruktur"

Transkript

1 Charakterizace mikrostruktur Vedoucí laboratorní práce: Ing. Tereza Uhlířová Obrazová analýza Je široce využívanou metodou, jejímž principem je získání informací z obrazu (mikroskopického snímku, fotografie atd.). Může být prováděna ručně nebo po vhodné úpravě (např. binarizací obrazu) automaticky. Pro automatickou obrazovou analýzu je třeba mít však dostatečně kvalitní snímky, protože poté vzrůstají chyby způsobené rozpoznávacím softwarem. Mezi využití mikroskopické obrazové analýzy patří počítání mikrobiálních kolonií, v medicíně např. analýza chromozomů, v průmyslu pak například analýza částic práškových materiálů, stanovení koncentrace roztoků podle barvy (zákalu), detekce vad lahví, metalografie. Charakterizace částic Stejné principy platí pro charakterizaci částic, ale i pórů. Tvar Částice mohou být: Izometrické mají ve všech směrech přibližně stejný rozměr kulovitý tvar, pravidelné mnohostěny (tetraedr, krychle, oktaedr, atd.) Anizometrické nemají ve všech směrech přibližně stejný rozměr částice mohou být protažené v jednom směru (jehly, hranolky, válečky) nebo ve dvou směrech (destičky) tyto částice je třeba popsat modelovým tvarem (válec, rotační elipsoid) a dále pomocí tvarového faktoru Tvarový faktor R (aspect ratio) je poměr největšího k nejmenšímu rozměru částice Velikost Velikost kulových částic je charakterizována jejich průměrem, u nekulových či anizometrických částic je potřeba zavést ekvivalentní průměr, což je průměr koule (nebo kruhu v případě dvojrozměrné projekce trojrozměrné částice) který má určitou vlastnost nebo společné chování se zkoumanou částicí. Ekvivalentní průměry lze rozdělit na geometrické a dynamické. K dynamickým patří například Stokesův průměr (= ekvivalentní průměr odpovídající průměru koule se stejnou konečnou rychlostí klesání jako vybraná nepravidelná částice při laminárním toku v tekutině stejné hustoty a viskozity). Ke geometrickým patří plošně ekvivalentní (Heywoodův) běžně využívaný v obrazové analýze. Jedná se o průměr kruhu, který má stejnou plochu jako průmět částice. Dalším využívaným průměrem je Feretův průměr, který udává vzdálenost tečných rovnoběžek. Hodnoty závisí na směru, ve kterém se měří pořadí. Nejčastěji se vyjadřuje maximální a minimální Feretův průměr. 1

2 Distribuce velikosti Částicové soustavy mohou být tvořeny částicemi pouze jediné velikosti (monodisperzní), většinou jsou ale tvořeny částicemi různých velikostí (polydisperzní), tyto soustavy je pak potřeba charakterizovat rozdělovací funkcí velikosti částic. Grafickým znázorněním rozdělovacích funkcí jsou granulometrické křivky. Ty dělíme na: Frekvenční (četnostní) křivky udávají množství částic patřících do určité velikostní třídy. Lze z nich získat modus D m, jehož hodnota uvádí velikost částic odpovídající maximu frekvenční křivky. Kumulativní (součtové) křivky udávají počet částic větších nebo menších než určitá velikost částic x. Lze z nich získat kvantily, které udávají % částic menších než určitá velikost částic. Tedy D 50 = 7 μm znamená, že 50 % částic je menších než 7 mikrometrů. D 50 je nejčastěji používaným kvantilem, označuje se rovněž jako medián a rozděluje populaci částic na dvě stejně velké části. Další obvyklé kvantily jsou D 10 a D 90. Z těchto tří kvantilů lze vypočítat míru šířky distribuce. Span = (D 90 D 10 )/D 50 Kumulativní křivky lze získat integrací frekvenčních křivek a frekvenční křivky lze získat derivací kumulativních křivek. q 0 q 3 Q 0 Q 3 2

3 Rozlišují se distribuční křivky vážené vzhledem k počtu částic (f 0 ), délkově vážené (f 1 ), plošně vážené (f 2 ) a objemově vážené (f 3 ). Nejčastěji používané jsou počtově a objemově vážené distribuce. Počtově vážené distribuční křivky f 0 jsou výstupem z obrazové analýzy. Ze sedimentačních metod (za předpokladu stejné hustoty všech částic) nebo z měření velikosti částic pomocí laserové difrakce na přístroji Analysette 22 (Fritch GmbH, SRN) získáme objemově vážené distribuční křivky. Abychom mohli srovnat výsledky z různých metod, je třeba provést přepočet: (q 3 ) i = D i 3 (q 0 ) i kde D je plošně ekvivalentní průměr, index i značí velikostní třídu. Po získání hodnot q 3 je nutné provést integrace a získat hodnoty Q 3 (postupnou sumací relativních objemů jednotlivých velikostních tříd). Analýza mikrostruktur Příprava pevných vzorků pro analýzu mikrostruktur se nejčastěji provádí zhotovením leštěného nábrusu. Následuje snímání pomocí optického mikroskopu. Ve vhodném software (v naší laboratoři používáme český program LUCIA G) se provede měření velikosti zrn, inkluzí, či pórů. Existují dva typy mikrostruktur. Mikrostruktura typu matrice a inkluze zde jsou póry odděleny matricí a jsou uzavřené. Mikrostrukturu tohoto typu nelze měřit rtuťovou porozimetrií, ale snáze se definuje velikost pórů. Druhý typ extrému je bikontinuální mikrostruktura. Tu získáme například z replikační metody. Pórový prostor je prakticky tvořen jediným souvislým pórem. V reálných systémech mohou být přítomny oba tyto typy mikrostruktury. Přechod mezi těmito dvěma typy mikrostruktur charakterizuje perkolační práh. Ze škrobového lití je možno v závislosti na množství škrobu v licí suspenzi získat soustavu pórů více, či méně propojenou spojovacími krčky. Při stanovování velikosti a rozdělení velikosti pórů dochází ke zkreslení výsledků, jedná se o Wicksellův problém. Za předpokladu, že máme náhodně uspořádané, stejně veliké kulovité póry o známé velikosti a provedeme vzorkem řez, nedostaneme ve výsledku daný poměr, ale nižší hodnotu, jak ilustruje níže uvedený obrázek. 3

4 Tento problém lze obejít použitím Saltykovy matice, pomocí které lze uskutečnit přepočet na skutečnou střední velikost přítomných pórů: N i = A ij n j ( 1 ) kde N i je vektor rozdělení ekvivalentních průměrů kulovitých částic, A ij je Saltykova matice, n j je vektor rozdělení ekvivalentních průměrů kruhů naměřených obrazovou analýzou, Δ je šířka velikostní třídy. Δ není potřeba používat v případě, že jsou všechny třídy stejně široké. Saltykova matice n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15 N N N N N N N N N N N N N N N N Kvantifikace mikrostruktury Přehled parametrů používaných ke kvantifikaci mikrostruktur: Objemová frakce základní parametr pro kvantifikaci vícefázové struktury, objemová frakce póru se nazývá pórovitost. Velikost zrn lze získat pomocí obrazové analýzy, nebo rentgenové difrakce. Tvar zrn lze získat pomocí obrazové analýzy. Velikost pórů lze získat pomocí obrazové analýzy, rtuťové porozimetrie nebo počítačové tomografie. Je nutné pamatovat na to, že jednotlivé metody dávají různé informace a zvláště u hierarchické mikrostruktury je pro komplexní popis třeba kombinace metod. Tvar pórů lze získat pomocí obrazové analýzy. Specifický povrch může být tvořen hranicí mezi dvěma strukturami nebo plocha pórů. Specifický povrch otevřených pórů lze získat pomocí rtuťové porozimetrie nebo adsorpce plynů. Specifický povrch pórů bez rozlišení otevřených nebo uzavřených pórů lze získat pomocí obrazové analýzy Tloušťka rozhraní lze získat pomocí vysokorozlišovací transmisní elektronové mikroskopie. 4

5 Spojitost pórového prostoru určuje, do jaké míry je pór otevřený, tedy jaké je perkolační chování a perkolační práh vzorku. Stupeň izotropie/anizotropie stupeň náhodnosti orientace zrn, pórů. Lze získat z obrazové analýzy nebo rentgenové analýzy. Stupeň uniformity/neuniformity uniformní materiál nevykazuje gradient Stupeň homogenity/heterogenity stupeň náhodnosti zrn nebo pórů v prostorové distribuci Stereologická terminologie a přehled měřených veličin Základní symboly užívané ve stereologii a jejich odpovídající fyzikální jednotky jsou P = počet bodů (např. pixelů nebo bodů v měřící mřížce) N = počet objektů (např. zrn nebo pórů) L = délka čáry nebo křivky (sondy nebo objektu!) [m] A = plocha objektu v rovinném řezu (vždy rovinná) [m 2 ] S = povrch nebo rozhraní objektu v 3D prostoru (obecně zakřivený) [m 2 ] V = objem objektu v 3D prostoru [m 3 ] M = zakřivení (integrální střední zakřivení) [m]. Ve stereologii je běžnou praxí psát poměry s indexem místo ve formě zlomků. Proto máme následující zkrácenou terminologii pro stereologické poměry: P P = bodová frakce = počet bodů dopadajících na vybrané objekty (např. fáze nebo zrna) dělený celkovým počtem bodů dopadajících na obraz, L L = délková frakce = kumulativní délka úseků ležící uvnitř vybraných objektů (např. fáze nebo zrn) dělená celkovou délkou úseků ležících v obrazu, A A = plošná frakce = kumulativní plocha vybraných objektů (např. fáze nebo zrn) dělená celkovou plochou obrazu, V V = objemová frakce vybrané fáze v trojrozměrném prostoru (pokud jsou vybranou fází póry, pak V V = ϕ je pórovitost resp. porozita), P L = počet bodů protínajících čáry objektů (např. obvody zrn) vztažený na jednotkovou délku lineární sondy (např. čar v měřící mřížce) [m 1 ], N A = počet objektů vztažený na plochu rovinného řezu [m 2 ], S V = hustota rozhraní (kumulativní povrch nebo plocha rozhraní objektů vztažený (vztažená) na jednotkový objem v 3D prostoru) [m 1 ] M V = hustota zakřivení (intergrální střední zakřivení vztažené na jednotkový objem) [m 2 ]. Na řezu lze měřit pouze tři nezávislé veličiny V V, S V a M V. Pokud je mikrostruktura vzorku UIR tedy uniformní, izotropní a náhodná (uniform, isotropic, random), je možné určit pórovitost vzorku pomocí obrazové analýzy za využití Delesse- Rosiwalova zákona. V V = A A = L L = P P 5

6 Při obrazové analýze se nejčastěji využívá metoda počítání bodů. Má větší statistickou spolehlivost než analýza ploch a analýza čar. Analýza čar se využívá v případě vzorků s nízkou pórovitostí (nízkým počtem inkluzí). P P = = 0,45 Střední délka úseků L souvisí s hustotou rozhraní a ve vícefázových materiálech je definovaná vztahem: L = 4φ S V = 2P P P L Při měření střední délky úseků jsou označovány body, kde protíná sonda fázové rozhraní a počet těchto bodů je dělen celkovou délkou sondy. Bodovou frakci jsme měřili v předchozí části. P L = 70 bodů 8,4 mm = 8,33 mm 1 Pro jednofázový vzorek je střední délka úseků L definována vztahem: 6

7 L = 2 S V = 1 P L Jeffriesova velikost J souvisí s hustotou integrálního středního zakřivení: J = 2πP P M V = P P N A Měření probíhá tak, že v ploše měřícího rámečku jsou spočítány objekty (póry, zrna), přičemž 3 rohy a 2 strany rámečku jsou kvůli statistice vynechány. A pro jednosložkový systém: N A = 70 objektů 1,44 mm J = 2π M V = 1 N A Ukázka jednofázové a dvoufázové mikrostruktury 2 = 48,61 mm 2 7

8 Experimentální část 1. Na zadaných snímcích mikrostruktur proveďte pomocí počítačového programu LUCIA G měření rozdělení velikosti pórů. a. Proveďte kalibraci b. Aplikujte vhodný geometrický tvar (kruh, elipsu, mnohoúhelník, ) pro měření ekvivalentního průměru c. Proveďte rozdělení do vhodných velikostních tříd (8-15) d. Použijte Saltykovu matici pro transformaci e. Graficky znázorněte závislosti q 0 a Q 0 na ekvivalentním průměru f. Proveďte přepočet q 0 q 3 g. Graficky znázorněte závislosti q 3 a Q 3 na ekvivalentním průměru h. Ze závislostí q 0 a q 3 určete hodnotu D m. i. Ze závislosti Q 0 a Q 3 určete hodnotu D 10, D 50 a D 90 a stanovte hodnotu SPAN. 2. Na zadaných snímcích mikrostruktur proveďte pomocí počítačového programu LUCIA G měření pórovitosti a velikosti pórů (střední délka úseků, Jeffriesova velikost) a. Proveďte kalibraci b. Proložte mřížkou o vhodné mřížkové konstantě (maximálně 4 body mřížky v jednom póru) c. Určete pórovitost pomocí Delesse-Rosiwalova zákona d. Určete střední délku úseků L e. Určete Jeffriesovu velikost J f. Obě tyto velikosti srovnejte s výsledky z části 1 3. Na zadaných snímcích mikrostruktur proveďte pomocí počítačového programu LUCIA G měření velikosti zrn (střední délka úseků, Jeffriesova velikost) a. Proveďte kalibraci b. Proložte mřížkou o vhodné mřížkové konstantě c. Určete střední délku úseků L d. Určete Jeffriesovu velikost J e. Porovnejte obě tyto velikosti Požadavky na protokol Protokol ve Wordu bude obsahovat stručný princip, postup měření a závěr. Za součást protokolu je považován i Excel se zdrojovými daty. Výsledky: 1. 4 grafy rozdělení velikosti, vypočtené hodnoty D m, D 10, D 50, D 90, SPAN. 2. Hodnoty pórovitosti a velikostí pórů se směrodatnou odchylkou. Porovnání výsledků s první částí. 3. Hodnoty velikostí pórů. Termín odevzdání je do týdne od laboratorní práce na Tereza.Uhlirova@vscht.cz. V týdnu před laboratorní prací je třeba napsat a domluvit si začátek práce. 8

9 Reference: [1] Uhlířová T., Hostaša J., Pabst W.: Characterization of the microstructure of YAG ceramics via stereology-based image analysis, Ceram. Silik. 58 (3), (2014). [2] Uhlířová T., Gregorová E., Pabst W., Nečina V.: Preparation of cellular alumina ceramics via biological foaming with yeast and its microstructural characterization via stereological relations, J. Eur. Ceram. Soc. 35 (1), (2015). [3] Pabst W., Gregorová E., Uhlířová T.: Microstructure characterization via stereological relations a shortcut for beginners, Mater. Charact. 105 (1), 1 12 (2015). [4] Uhlířová T., Pabst W., Gregorová E., Hostaša J.: Stereology of dense polycrystalline materials from interface density and mean curvature integral density to Rayleigh distributions of grain sizes, J. Eur. Ceram. Soc. 36 (9), (2016). [5] Uhlířová T., Gregorová E., Pabst W.: Direct Foaming Techniques for the Preparation of Cellular Ceramics, their Microstructural Characterization and Property-Porosity Relations A Review. Advances in Porous Ceramics, Chapter 4 (pp ), Nova Publishers ISBN:

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Cvičení z matematiky geometrie (CZMg) Systematizace a prohloubení učiva matematiky Planimetrie, Stereometrie, Analytická geometrie, Kombinatorika, Pravděpodobnost a statistika Třída: 4.

Více

Statistika pro geografy

Statistika pro geografy Statistika pro geografy 2. Popisná statistika Mgr. David Fiedor 23. února 2015 Osnova 1 2 3 Pojmy - Bodové rozdělení četností Absolutní četnost Absolutní četností hodnoty x j znaku x rozumíme počet statistických

Více

10. Analýza částic Velikost částic. Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253

10. Analýza částic Velikost částic. Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 10. Analýza částic Velikost částic Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 Úvod Velkost částic je jedním z nejdůležitějších fyzikálních parametrů. Distribuce velikosti částic

Více

Analýza obrazu II. Jan Macháček Ústav skla a keramiky VŠCHT Praha

Analýza obrazu II. Jan Macháček Ústav skla a keramiky VŠCHT Praha Analýza obrazu II Jan Macháček Ústav skla a keramiky VŠCHT Praha +4- - 44-45 Reference další doporučená literatura Microscopical Examination and Interpretation of Portland Cement and Clinker, Donald H.

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory

Více

1. Měřením na rotačním viskozimetru zjistěte, zda jsou kapaliny připravené pro měření newtonovské.

1. Měřením na rotačním viskozimetru zjistěte, zda jsou kapaliny připravené pro měření newtonovské. 1 Pracovní úkol 1. Měřením na rotačním viskozimetru zjistěte, zda jsou kapaliny připravené pro měření newtonovské. 2. Pomocí rotačního viskozimetru určete viskozitu newtonovské kapaliny. 3. Pro nenewtonovskou

Více

Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora

Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky Systematizace a prohloubení učiva matematiky 4. ročník 2 hodiny Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné

Více

Číselné charakteristiky

Číselné charakteristiky . Číselné charakteristiky statistických dat Průměrný statistik se během svého života ožení s 1,75 ženami, které se ho snaží vytáhnout večer do společnosti,5 x týdně, ale pouze s 50% úspěchem. W. F. Miksch

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

12. VISKOZITA A POVRCHOVÉ NAPĚTÍ

12. VISKOZITA A POVRCHOVÉ NAPĚTÍ 12. VISKOZITA A POVRCHOVÉ NAPĚTÍ 12.1 TEORETICKÝ ÚVOD V proudící reálné tekutině se projevuje mezi elementy tekutiny vnitřní tření. Síly tření způsobí, že rychlejší vrstva tekutiny se snaží zrychlit vrstvu

Více

U Úvod do modelování a simulace systémů

U Úvod do modelování a simulace systémů U Úvod do modelování a simulace systémů Vyšetřování rozsáhlých soustav mnohdy nelze provádět analytickým výpočtem.často je nutné zkoumat chování zařízení v mezních situacích, do kterých se skutečné zařízení

Více

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021 Maturitní témata MATEMATIKA 1. Funkce a jejich základní vlastnosti. Definice funkce, def. obor a obor hodnot funkce, funkce sudá, lichá, monotónnost funkce, funkce omezená, lokální a globální extrémy funkce,

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky 1. Lineární rovnice a nerovnice a) Rovnice a nerovnice s absolutní hodnotou absolutní hodnota reálného čísla definice, geometrický význam, srovnání řešení rovnic s abs. hodnotou

Více

Některé poznatky z charakterizace nano železa. Marek Šváb Tereza Nováková Martina Müllerová Jan Šubrt Karel Závěta Eva Gregorová

Některé poznatky z charakterizace nano železa. Marek Šváb Tereza Nováková Martina Müllerová Jan Šubrt Karel Závěta Eva Gregorová Některé poznatky z charakterizace nano železa Marek Šváb Tereza Nováková Martina Müllerová Jan Šubrt Karel Závěta Eva Gregorová Nanotechnologie 60. a 70. léta 20. st.: období miniaturizace 90. léta 20.

Více

9 Charakter proudění v zařízeních

9 Charakter proudění v zařízeních 9 Charakter proudění v zařízeních Egon Eckert, Miloš Marek, Lubomír Neužil, Jiří Vlček A Výpočtové vztahy Jedním ze způsobů, který nám v praxi umožňuje získat alespoň omezené informace o charakteru proudění

Více

Charakterizace pevné fáze rtuťová porozimetrie, distribuce velikosti částic, optická mikroskopie

Charakterizace pevné fáze rtuťová porozimetrie, distribuce velikosti částic, optická mikroskopie Laboratoř oboru Charakterizace pevné fáze rtuťová porozimetrie, distribuce velikosti částic, optická mikroskopie Laboratorní práce slouží k úvodnímu seznámení s metodami, které jsou na Ústavu anorganické

Více

Matematický seminář. OVO ŠVP Tématický celek Učivo ŠVP Integrace Mezipředmětové vztahy. jejich soustavy. Spojitost funkce v bodě. Limita funkce v bodě

Matematický seminář. OVO ŠVP Tématický celek Učivo ŠVP Integrace Mezipředmětové vztahy. jejich soustavy. Spojitost funkce v bodě. Limita funkce v bodě Řeší s porozumněním rovnice s parametrem Rovnice, nerovnice a jejich soustavy Řovnice, nerovnice a jejich soustavy Třetí, 24 hodin Zvolí vhodnou metodu řešení rovnice nebo nerovnice Vysvětlí zvolený způsob

Více

Úloha 3: Mřížkový spektrometr

Úloha 3: Mřížkový spektrometr Petra Suková, 2.ročník, F-14 1 Úloha 3: Mřížkový spektrometr 1 Zadání 1. Seřiďte spektrometr pro kolmý dopad světla(rovina optické mřížky je kolmá k ose kolimátoru) pomocí bočního osvětlení nitkového kříže.

Více

Úvod do teorie měření. Eva Hejnová

Úvod do teorie měření. Eva Hejnová Úvod do teorie měření Eva Hejnová Podmínky získání zápočtu: Podmínkou pro získání zápočtu je účast na cvičeních (maximálně tři absence) a úspěšné splnění jednoho písemného testu alespoň na 50 % max. počtu

Více

Úvod do teorie měření. Eva Hejnová

Úvod do teorie měření. Eva Hejnová Úvod do teorie měření Eva Hejnová Literatura: Novák, R. Úvod do teorie měření. Ústí nad Labem: UJEP, 2003 Sprušil, B., Zieleniecová, P.: Úvod do teorie fyzikálních měření. Praha: SPN, 1985 Brož, J. a kol.

Více

Úloha 1: Kondenzátor, mapování elektrostatického pole

Úloha 1: Kondenzátor, mapování elektrostatického pole Úloha 1: Kondenzátor, mapování elektrostatického pole FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 19.4.2010 Jméno: František Batysta Pracovní skupina: 5 Ročník a kroužek: 2. ročník, pond. odp.

Více

Střední průmyslová škola v Teplicích Předmět: Kontrola a měření ve strojírenství

Střední průmyslová škola v Teplicích Předmět: Kontrola a měření ve strojírenství Střední průmyslová škola v Teplicích Předmět: Kontrola a měření ve strojírenství MĚŘENÍ DRSNOSTI POVRCHU Metody kontroly povrchu rozdělujeme na metody kvalitativní a kvantitativní. Metody kvalitativní

Více

Posouzení přesnosti měření

Posouzení přesnosti měření Přesnost měření Posouzení přesnosti měření Hodnotu kvantitativně popsaného parametru jakéhokoliv objektu zjistíme jedině měřením. Reálné měření má vždy omezenou přesnost V minulosti sloužila k posouzení

Více

VEKTOROVÁ POLE Otázky

VEKTOROVÁ POLE Otázky VEKTOROVÁ POLE VEKTOROVÁ POLE Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x,

Více

Úvod do teorie měření. Eva Hejnová

Úvod do teorie měření. Eva Hejnová Úvod do teorie měření Eva Hejnová Program semináře 1. Základní pojmy - metody měření, druhy chyb, počítání s neúplnými čísly, zaokrouhlování 2. Chyby přímých měření - aritmetický průměr a směrodatná odchylka,

Více

VISKOZITA A POVRCHOVÉ NAPĚTÍ

VISKOZITA A POVRCHOVÉ NAPĚTÍ VISKOZITA A POVRCHOVÉ NAPĚTÍ TEORETICKÝ ÚVOD V proudící reálné tekutině se projevuje mezi elementy tekutiny vnitřní tření. Síly tření způsobí, že rychlejší vrstva tekutiny se snaží zrychlit vrstvu pomalejší

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

Světlo jako elektromagnetické záření

Světlo jako elektromagnetické záření Světlo jako elektromagnetické záření Základní pojmy: Homogenní prostředí prostředí, jehož dané vlastnosti jsou ve všech místech v prostředí stejné. Izotropní prostředí prostředí, jehož dané vlastnosti

Více

Měření permitivity a permeability vakua

Měření permitivity a permeability vakua Měření permitivity a permeability vakua Online: http://www.sclpx.eu/lab3r.php?exp=2 Permitivita i permeabilita vakua patří svojí hodnotou měřenou v základních jednotkách SI mezi poměrně malé fyzikální

Více

Zápočtová práce STATISTIKA I

Zápočtová práce STATISTIKA I Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123MAIN - Základní materiálové parametry

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123MAIN - Základní materiálové parametry KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123MAIN - Základní materiálové parametry Hustota vs. objemová hmotnost - V případě neporézních materiálů (kovy, ) je hustota rovná objemové hmotnosti - V případě

Více

Výrobní produkce divizí Ice Cream Po lo ha plane t Rozložený výse ový 3D graf Bublinový graf Histogram t s tn e ídy

Výrobní produkce divizí Ice Cream Po lo ha plane t Rozložený výse ový 3D graf Bublinový graf Histogram t s tn e ídy Výrobní produkce divizí Ice Cream Polo ha planet Rozložený výsečový 3D graf Bublinový graf Ice Cream 1 15% Ice Cream 2 12% Ice Cream 3 18% Ice Cream 4 20% Statistika 40 30 20 Ice Cream 6 19% Ice Cream

Více

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Praktikum z pevných látek (F6390)

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Praktikum z pevných látek (F6390) Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Praktikum z pevných látek (F6390) Zpracoval: Michal Truhlář Naměřeno: 13. března 2007 Obor: Fyzika Ročník: III Semestr:

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 5. Odhady parametrů základního souboru Mgr. David Fiedor 16. března 2015 Vztahy mezi výběrovým a základním souborem Osnova 1 Úvod, pojmy Vztahy mezi výběrovým a základním

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího

Více

Matematika III. 27. listopadu Vysoká škola báňská - Technická univerzita Ostrava. Matematika III

Matematika III. 27. listopadu Vysoká škola báňská - Technická univerzita Ostrava. Matematika III Vysoká škola báňská - Technická univerzita Ostrava 27. listopadu 2017 Typy statistických znaků (proměnných) Typy proměnných: Kvalitativní proměnná (kategoriální, slovní,... ) Kvantitativní proměnná (numerická,

Více

Základní topologické pojmy:

Základní topologické pojmy: Křivky Marie Ennemond Camille Jordan (88 9): Křivka je množina bodů, která je surjektivním obrazem nějakého intervalu Giuseppe Peano (858 9): Zobrazení intervalu na čtverec Wacław Franciszek Sierpiński

Více

Mnohorozměrná statistická data

Mnohorozměrná statistická data Mnohorozměrná statistická data Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Mnohorozměrná

Více

Skalární a vektorový popis silového pole

Skalární a vektorový popis silového pole Skalární a vektorový popis silového pole Elektrické pole Elektrický náboj Q [Q] = C Vlastnost materiálových objektů Interakce (vzájemné silové působení) Interakci (vzájemné silové působení) mezi dvěma

Více

Charakteristika datového souboru

Charakteristika datového souboru Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex

Více

Charakteristiky optického záření

Charakteristiky optického záření Fyzika III - Optika Charakteristiky optického záření / 1 Charakteristiky optického záření 1. Spektrální charakteristika vychází se z rovinné harmonické vlny jako elementu elektromagnetického pole : primární

Více

a) [0,4 b] r < R, b) [0,4 b] r R c) [0,2 b] Zakreslete obě závislosti do jednoho grafu a vyznačte na osách důležité hodnoty.

a) [0,4 b] r < R, b) [0,4 b] r R c) [0,2 b] Zakreslete obě závislosti do jednoho grafu a vyznačte na osách důležité hodnoty. Příklady: 24. Gaussův zákon elektrostatiky 1. Na obrázku je řez dlouhou tenkostěnnou kovovou trubkou o poloměru R, která nese na povrchu náboj s plošnou hustotou σ. Vyjádřete velikost intenzity E jako

Více

METODY FARMACEUTICKÉ TECHNOLOGIE ČL 2009, D PharmDr. Zdenka Šklubalová, Ph.D

METODY FARMACEUTICKÉ TECHNOLOGIE ČL 2009, D PharmDr. Zdenka Šklubalová, Ph.D METODY FARMACEUTICKÉ TECHNOLOGIE ČL 2009, D 2010 PharmDr. Zdenka Šklubalová, Ph.D. 10.6.2010 ZMĚNY D 2010 (harmonizace beze změn v textu) 2.9.1 Zkouška rozpadavosti tablet a tobolek 2.9.3 Zkouška disoluce

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce. KŘIVKY Křivka = dráha pohybujícího se bodu = = množina nekonečného počtu bodů, které závisí na parametru (čase). Proto můžeme křivku také nazvat jednoparametrickou množinou bodů. Zavedeme-li souřadnicový

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM - Základní materiálové parametry

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM - Základní materiálové parametry KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123TVVM - Základní materiálové parametry Hustota vs. objemová hmotnost - V případě neporézních materiálů (kovy, ) je hustota rovná objemové hmotnosti - V případě

Více

2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná.

2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná. 1 Pracovní úkoly 1. Změřte tloušťku tenké vrstvy ve dvou různých místech. 2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná. 3. Okalibrujte

Více

VEKTOROVÁ POLE VEKTOROVÁ POLE

VEKTOROVÁ POLE VEKTOROVÁ POLE Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x, y), f 2 (x, y)) jako vektor s

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

PŘECHODOVÝ DĚJ VE STEJNOSMĚRNÉM EL. OBVODU zapnutí a vypnutí sériového RC členu ke zdroji stejnosměrného napětí

PŘECHODOVÝ DĚJ VE STEJNOSMĚRNÉM EL. OBVODU zapnutí a vypnutí sériového RC členu ke zdroji stejnosměrného napětí Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB -TU Ostrava PŘEHODOVÝ DĚJ VE STEJNOSMĚNÉM EL. OBVODU zapnutí a vypnutí sériového členu ke zdroji stejnosměrného napětí Návod do

Více

4 Viskoelasticita polymerů II - creep

4 Viskoelasticita polymerů II - creep 4 Viskoelasticita polymerů II - creep Teorie Ke zkoumání mechanických vlastností viskoelastických polymerních látek používáme dvě nestacionární metody: relaxační test (podrobně popsaný v úloze Viskoelasticita

Více

Semestrální projekt. Vyhodnocení přesnosti sebelokalizace VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Fakulta elektrotechniky a komunikačních technologií

Semestrální projekt. Vyhodnocení přesnosti sebelokalizace VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Fakulta elektrotechniky a komunikačních technologií VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta elektrotechniky a komunikačních technologií Semestrální projekt Vyhodnocení přesnosti sebelokalizace Vedoucí práce: Ing. Tomáš Jílek Vypracovali: Michaela Homzová,

Více

Mnohorozměrná statistická data

Mnohorozměrná statistická data Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistický znak, statistický soubor Jednotlivé objekty nebo subjekty, které jsou při statistickém

Více

GAUSSŮV ZÁKON ELEKTROSTATIKY

GAUSSŮV ZÁKON ELEKTROSTATIKY GAUSSŮV ZÁKON ELEKTROSTATIKY PLOCHA JAKO VEKTOR Matematický doplněk n n Elementární plocha ΔS ds Ploše přiřadíme vektor, který 1) je k této ploše kolmý 2) má velikost rovnou velikosti (obsahu) plochy Δ

Více

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna Předmět: Matematika Náplň: Stereometrie, Analytická geometrie Třída: 3. ročník a septima Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor, učebnice Stereometrie Volné rovnoběžné promítání Zobrazí

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

ZKUŠEBNÍ PROTOKOLY. B1M15PPE / část elektrické stroje cvičení 1

ZKUŠEBNÍ PROTOKOLY. B1M15PPE / část elektrické stroje cvičení 1 ZKUŠEBNÍ PROTOKOLY B1M15PPE / část elektrické stroje cvičení 1 1) Typy testů 2) Zkušební laboratoře 3) Dokumenty 4) Protokoly o školních měřeních 2/ N TYPY TESTŮ PROTOTYPOVÉ TESTY (TYPOVÁ ZKOUŠKA) KUSOVÉ

Více

Předpokládané znalosti žáka 1. stupeň:

Předpokládané znalosti žáka 1. stupeň: Předpokládané znalosti žáka 1. stupeň: ČÍSLO A POČETNÍ OPERACE používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje

Více

Laboratoř RTG tomografice CET

Laboratoř RTG tomografice CET Výzkumná zpráva Pro projekt NAKI DF12P01OVV020 Komplexní metodika pro výběr a řemeslné opracování náhradního kamene pro opravy kvádrového zdiva historických objektů Laboratoř RTG tomografice CET Vypracovala:

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 1: Kondenzátor, mapování elektrického pole

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 1: Kondenzátor, mapování elektrického pole FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 5.5.2011 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Úloha 1: Kondenzátor, mapování

Více

Fourierovské metody v teorii difrakce a ve strukturní analýze

Fourierovské metody v teorii difrakce a ve strukturní analýze Osnova přednášky na 31 kolokviu Krystalografické společnosti Výpočetní metody v rtg a neutronové strukturní analýze Nové Hrady, 16 20 6 2003 Fourierovské metody v teorii difrakce a ve strukturní analýze

Více

Charakterizace rozdělení

Charakterizace rozdělení Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf

Více

Pythagorova věta Pythagorova věta slovní úlohy. Mocniny s přirozeným mocnitelem mocniny s přirozeným mocnitelem operace s mocninami

Pythagorova věta Pythagorova věta slovní úlohy. Mocniny s přirozeným mocnitelem mocniny s přirozeným mocnitelem operace s mocninami Vyučovací předmět: Matematika Ročník: 8. Vzdělávací obsah Očekávané výstupy z RVP ZV Školní výstupy Učivo užívá různé způsoby kvantitativního vyjádření vztahu celek část (procentem) řeší aplikační úlohy

Více

Měření kinematické a dynamické viskozity kapalin

Měření kinematické a dynamické viskozity kapalin Úloha č. 2 Měření kinematické a dynamické viskozity kapalin Úkoly měření: 1. Určete dynamickou viskozitu z měření doby pádu kuličky v kapalině (glycerinu, roztoku polysacharidu ve vodě) při laboratorní

Více

Úvodní informace. 17. února 2018

Úvodní informace. 17. února 2018 Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní

Více

2. Určete frakční objem dendritických částic v eutektické slitině Mg-Cu-Zn. Použijte specializované programové vybavení pro obrazovou analýzu.

2. Určete frakční objem dendritických částic v eutektické slitině Mg-Cu-Zn. Použijte specializované programové vybavení pro obrazovou analýzu. 1 Pracovní úkoly 1. Změřte střední velikost zrna připraveného výbrusu polykrystalického vzorku. K vyhodnocení snímku ze skenovacího elektronového mikroskopu použijte kruhovou metodu. 2. Určete frakční

Více

MATEMATICKÁ STATISTIKA - XP01MST

MATEMATICKÁ STATISTIKA - XP01MST MATEMATICKÁ STATISTIKA - XP01MST 1. Úvod. Matematická statistika (statistics) se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného

Více

2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat

2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat 2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi,

Více

8. Normální rozdělení

8. Normální rozdělení 8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, 2 ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) 2 e 2 2, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá

Více

Matematika PRŮŘEZOVÁ TÉMATA

Matematika PRŮŘEZOVÁ TÉMATA Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí

Více

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY Komentovaný metodický list č. 1/4 Vytvořil: Ing. Oldřich Ševeček & Ing. Tomáš Profant, Ph.D.

Více

4. Aplikace matematiky v ekonomii

4. Aplikace matematiky v ekonomii 4. Aplikace matematiky v ekonomii 1 Lineární algebra Soustavy 1) Na základě statistických údajů se zjistilo, že závislost množství statku z poptávaného v průběhu jednoho týdne lze popsat vztahem q d =

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Fyzikální geodézie 2/7 Gravitační potenciál a jeho derivace

Více

Optika pro mikroskopii materiálů I

Optika pro mikroskopii materiálů I Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických

Více

Úvod do teorie měření. Eva Hejnová

Úvod do teorie měření. Eva Hejnová Úvod do teorie měření Eva Hejnová Literatura: Novák, R. Úvod do teorie měření. Ústí nad Labem: UJEP, 2003 Sprušil, B., Zieleniecová, P.: Úvod do teorie fyzikálních měření. Praha: SPN, 1985 Brož, J. a kol.

Více

Náhodná proměnná. Náhodná proměnná může mít rozdělení diskrétní (x 1. , x 2. ; x 2. spojité (<x 1

Náhodná proměnná. Náhodná proměnná může mít rozdělení diskrétní (x 1. , x 2. ; x 2. spojité (<x 1 Náhodná proměnná Náhodná proměnná může mít rozdělení diskrétní (x 1, x 2,,x n ) spojité () Poznámky: 1. Fyzikální veličiny jsou zpravidla spojité, ale změřené hodnoty jsou diskrétní. 2. Pokud

Více

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0. Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Zapojení teploměrů. Zadání. Schéma zapojení

Zapojení teploměrů. Zadání. Schéma zapojení Zapojení teploměrů V této úloze je potřeba zapojit elektrickou pícku a zahřát na požadovanou teplotu, dále zapojit dané teploměry dle zadání a porovnávat jejich dynamické vlastnosti, tj. jejich přechodové

Více

Pythagorova věta Pythagorova věta slovní úlohy

Pythagorova věta Pythagorova věta slovní úlohy Vyučovací předmět: Matematika Ročník: 8. Vzdělávací obsah Očekávané výstupy z RVP ZV Školní výstupy Učivo provádí početní operace v oboru celých a racionálních čísel, užívá ve výpočtech druhou mocninu

Více

OBRAZOVÁ ANALÝZA. Speciální technika a měření v oděvní výrobě

OBRAZOVÁ ANALÝZA. Speciální technika a měření v oděvní výrobě OBRAZOVÁ ANALÝZA Speciální technika a měření v oděvní výrobě Prostředky pro snímání obrazu Speciální technika a měření v oděvní výrobě 2 Princip zpracování obrazu matice polovodičových součástek, buňky

Více

Měření a analýza mechanických vlastností materiálů a konstrukcí. 1. Určete moduly pružnosti E z ohybu tyče pro 4 různé materiály

Měření a analýza mechanických vlastností materiálů a konstrukcí. 1. Určete moduly pružnosti E z ohybu tyče pro 4 různé materiály FP 1 Měření a analýza mechanických vlastností materiálů a konstrukcí Úkoly : 1. Určete moduly pružnosti E z ohybu tyče pro 4 různé materiály 2. Určete moduly pružnosti vzorků nepřímo pomocí měření rychlosti

Více

Parciální derivace a diferenciál

Parciální derivace a diferenciál Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

2 Hlavní charakteristiky v analýze přežití

2 Hlavní charakteristiky v analýze přežití 2 Hlavní charakteristiky v analýze přežití Předpokládané výstupy z výuky: 1. Student umí definovat funkci přežití, rizikovou funkci a kumulativní rizikovou funkci a zná funkční vazby mezi nimi 2. Student

Více

Vybrané procesy potravinářských a biochemických výrob

Vybrané procesy potravinářských a biochemických výrob Vybrané procesy potravinářských a biochemických výrob Distribuce krystalů GRANULOMETRIE Rozdělení velikosti krystalů Měření distribučních spekter částic Rozdělovací funkce Populační bilance Granulometrie

Více

Výsledky měření emisí tuhých a plynných znečišťujících látek

Výsledky měření emisí tuhých a plynných znečišťujících látek Výsledky měření emisí tuhých a plynných znečišťujících látek Lafarge Cement a.s., výstup z EO rotační pec pro výpal slínku strana číslo:1 1. MĚŘENÍ EMISÍ TZL A PZL DLE VYHL. 205/2009 A NAŘÍZENÍ VLÁDY 354/2002.

Více

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Analýza dat na PC I.

Analýza dat na PC I. CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika

Více

1. Měřením na rotačním viskozimetru zjistěte, zda jsou kapaliny připravené pro

1. Měřením na rotačním viskozimetru zjistěte, zda jsou kapaliny připravené pro Úkoly 1. Měřením na rotačním viskozimetru zjistěte, zda jsou kapaliny připravené pro měření newtonovské. 2. Pomocí rotačního viskozimetru určete viskozitu newtonovské kapaliny. 3. Pro nenewtonovskou kapalinu

Více

STAVEBNÍ HMOTY. Přednáška 2

STAVEBNÍ HMOTY. Přednáška 2 STAVEBNÍ HMOTY Přednáška 2 Zkušebnictví ke zjištění vlastností materiálu je třeba ho vyzkoušet Materiál se zkouší podle zkušebních norem na vhodném vzorku Principy materiálového zkušebnictví zkoušíme za

Více

Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009)

Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009) Střední průmyslová škola Jihlava tř. Legionářů 1572/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Strojírenství (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje

Více

Řešíme tedy soustavu dvou rovnic o dvou neznámých. 2a + b = 3, 6a + b = 27,

Řešíme tedy soustavu dvou rovnic o dvou neznámých. 2a + b = 3, 6a + b = 27, Přijímací řízení 2015/16 Přírodovědecká fakulta Ostravská univerzita v Ostravě Navazující magisterské studium, obor Aplikovaná matematika (1. červen 2016) Příklad 1 Určete taková a, b R, aby funkce f()

Více

Defektoskopie. 1 Teoretický úvod. Cíl cvičení: Detekce měřicího stavu a lokalizace objektu

Defektoskopie. 1 Teoretický úvod. Cíl cvičení: Detekce měřicího stavu a lokalizace objektu Defektoskopie Cíl cvičení: Detekce měřicího stavu a lokalizace objektu 1 Teoretický úvod Defektoskopie tvoří v počítačovém vidění oblast zpracování snímků, jejímž úkolem je lokalizovat výrobky a detekovat

Více

Statistické zpracování výsledků

Statistické zpracování výsledků Statistické zpracování výsledků Výpočet se skládá ze dvou částí. Vztažná hodnota a také hodnota směrodatné odchylky jednotlivých porovnání se určuje z výsledků dodaných účastníky MPZ. V první části je

Více