A2B31SMS 3. PŘEDNÁŠKA 15. října 2015
|
|
- Marta Hájková
- před 6 lety
- Počet zobrazení:
Transkript
1 A2B31SMS 3. PŘEDNÁŠKA 15. října 215 ADITIVNÍ SYNTÉZA Harmonická analýza Harmonická syntéza Fourierovy řady Spektrum Barva zvuku Aditivní syntéza a spektrální modelování Parciály
2 Fourierovy řady Jean Baptiste Fourier (francouzský matematik ) Harmonická analýza Libovolný periodický signál lze rozložit na jednotlivé harmonické složky. Harmonická syntéza Kombinací harmonických složek lze vytvořit prakticky libovolný periodický signál.
3 Fourierovy řady Trigonometrický tvar Fourierových řad x( t ) k 1 a [ a cos( k t) b sin( k t)] k k a a k, b k k stejnosměrná složka koeficienty Fourierovy řady pořadí harmonické složky T 1 a x( t) dt T b k 2 T T x( t)sin( k t) dt a k 2 T T x( t)cos( k t) dt
4 Fourierovy řady Spektrální (polární) tvar Fourierových řad x( t) k c k sin( k t ) k c k k amplituda k-té spektrální složky fáze k-té spektrální složky c k a 2 k b 2 k k arctan a b k k
5 Fourierovy řady Komplexní (exponenciální) tvar Fourierových řad X k k jk t x( t) e X k komplexní koeficient X k 1 2 ( a k jb k ) c 2 X k k
6 Fourierovy řady Obdélníkový průběh 4 1 f ( t) = bn sin n t = [ sin t sin 3 t + 5 n=1 sin 5 t +... ]
7 Fourierovy řady Trojúhelníkový průběh f ( t) (cos( t) cos(3 t) cos(5 t) cos(7 t )...)
8 Fourierovy řady Pilový průběh f ( t) (sin( t) sin(2 t ) sin(3 t) sin(4 t )
9 Harmonická analýza v MATLABu function analyza(soubor) % funkce analyza(soubor) vykresli amplitudove % spektrum *.wav souboru. [signal,fs] = wavread(soubor); N = length(signal); c = fft(signal)/n; A = 2*abs(c(2:floor(N/2))); f = (1:floor(N/2)-1)*fs/N; plot(f,a,'r')
10 Aditivní syntéza II Periodický sled impulsů x ( t ) k 1 cos( k t ) Synteza periodickeho sledu impulzu f=44 Hz, T=23ms 1 8 definovana faze nahodna faze x( t) k 1 cos( k t 2 rand( k)) > cas [s] >> priklad7
11 Aditivní syntéza III Periodický sled impulsů f=44; fs=16; doba=.5; t=:1/fs:doba; zvuk_1a(1,:)=cos(2*pi*f*t); zvuk_1b(1,:)=cos(2*pi*f*t+2*pi*rand); for k=2:1 zvuk_1a(k,:)=cos(k*2*pi*f*t); zvuk_1b(k,:)=cos(k*2*pi*f*t+2*pi*rand); subplot(211), plot(t(1:2),sum(zvuk_1a(:,1:2))), subplot(212), plot(t(1:2),sum(zvuk_1b(:,1:2))), soundsc(sum(zvuk_1a),fs), pause(1.5*doba) soundsc(sum(zvuk_1b),fs), pause(1.5*doba) end;
12 Aditivní syntéza IV Obdélníkový průběh Synteza periodickeho obdel. prubehu f=44 Hz, T=23ms x( t) 1 2k 1 k sin((2 k 1) t ) definovana faze nahodna faze x( t) 1 2k 1 k sin((2k 1) t 2 rand( k)) > cas [s] >> priklad8
13 Aditivní syntéza V Obdélníkový průběh zvuk_2a(1,:)=sin(2*pi*f*t); zvuk_2b(1,:)=sin(2*pi*f*t+2*pi*rand); for k=3:2:18 zvuk_2a(k,:)=(1/k)*sin(k*2*pi*f*t); zvuk_2b(k,:)=(1/k)*sin(k*2*pi*f*t+2*pi*rand); subplot(211), plot(t(1:2),sum(zvuk_2a(:,1:2))) subplot(212), plot(t(1:2),sum(zvuk_2b(:,1:2))) soundsc(sum(zvuk_2a),fs),pause(1.2*doba) soundsc(sum(zvuk_2b),fs),pause(1.2*doba) end;
14 Aditivní syntéza VI Pilový průběh Synteza periodickeho piloveho prubehu f=44 Hz, T=23ms x( t) 1 k k 1 sin( k t ) 1-1 definovana faze x( t) 1 k k 1 sin( k t 2 rand( k)) nahodna faze > cas [s] >> priklad9
15 Pilový průběh Aditivní syntéza VII zvuk_3a(1,:)=sin(2*pi*f*t); zvuk_3b(1,:)=sin(2*pi*f*t+2*pi*rand); for k=2:18 zvuk_3a(k,:)=(1/k)*sin(k*2*pi*f*t); zvuk_3b(k,:)=(1/k)*sin(k*2*pi*f*t+2*pi*rand); subplot(211), plot(t(1:2),sum(zvuk_3a(:,1:2))) subplot(212), plot(t(1:2),sum(zvuk_3b(:,1:2))), soundsc(sum(zvuk_3a),fs),pause(1.2*doba) soundsc(sum(zvuk_3b),fs),,pause(1.2*doba) end;
16 Hudební nástroje barva zvuku = obsah spektrálních složek housle - pila jasné zvuky - zdůrazněné sudé harmonické x( t),2sin( t),6sin(2 t),4sin(3 t),6sin(4 t),4sin(5 t) duté zvuky - pouze liché harmonické x( t),8sin( t),4sin(3 t ),2sin(5 t ) >> priklad11
17 Harmonická analýza v MATLABu >> analyza('banjo') >> [X,Y]=ginput(1)
18 Implementace aditivní syntézy v MATLABu % BANJO % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fs = 16; doba =.5; tau =.1; f = 4; nt = :1/fs:doba-1/fs; ampl = [ ]; o=exp(-nt./tau); x=o.*[ampl*sin(2*pi*[1:length(ampl)]'*f*nt)]; soundsc(x,fs) plot(nt,x), title('banjo'), axis tight, xlabel('---> cas [s]')
19 Aditivní syntéza
20 Aditivní syntéza I Spektrální tvar Fourierovy řady
21 Aditivní syntéza - příklady Varhany Hammondovy varhany
22 Časově proměnná aditivní syntéza parciál Time Varying Partial Additive Synthesis (TVPAS) - přirozené zvuky jsou složeny z parciál Řídící informace - parciály mají časově proměnné frekvence i časově proměnné amplitudy Amplitudové obálky Frekvenční trajektorie
23 Aditivní syntéza Barva zvuku - attack je pro určení barvy důležitější než sustain - vyšší harmonické (parciály) vstupují později a končí dříve - hraje-li nástroj hlasitěji, používá se více harmonických (parciál)
24 Aditivní syntéza Nevýhodu představuje velké množství dat (řídící funkce parametrů) a velké množství oscilátorů Hlavní význam aditivní syntézy dnes je v resyntéze (vytváření různých zvuků podle spektrogramu)
25 Aditivní syntéza Při spektrálním modelování se aditivní syntéza doplňuje vhodnými šumovými složkami Pro vytvoření neharmonických průběhů, např. které dávají kovový zvuk, se používají techniky, při nichž se sčítají harmonické průběhy (dva i více), které jsou vůči sobě relativně rozladěny (frekvenkční složky nejsou celistvým násobkem základní frekvence).
26 Harmonická analýza programem Cool Edit >> db =[ ]; >> f =[ ]; % prevod db do linearniho mer. >> amp=1.^(db./2) >> db =2.*log1(amp)
27 Zvonek I clear fs =441; T1 =.6; T2 =.48; f1=18; f2=181; A=[ ]; K=[ ]; M=2; N=4; % vzorkovaci frekvence % doba mezi udery % delka posledniho uderu % zakladni frekvence 1.zvonku % zakladni frekvence 2.zvonku % amplitudy ctyr oscilatoru % nasobky zakl.frekvence % jednotlivych oscilatoru % pocet serii zvoneni % celkovy pocet uderu = 2*N+1
28 t=:1/fs:t2-1/fs; x=[]; for m=1:m for n=1:n Zvonek II x1=a*sin(2*pi*k'*(f1.*t)); % uder 1.zv. x1=x1.*exp(-t/t1); % 1.zvonek s obalkou x2=a*sin(2*pi*k'*(f2.*t));% uder 2.zv. x2=x2.*exp(-t/t1); % 2.zvonek s obalkou x=[x x1(1:t1*fs) x2(1:t1*fs)]; end; x=[x x1]; % pripojeni posl.uderu prvniho zvonku end;
29 Zvonek
30 ---> PSD [db] ---> PSD [db] ---> PSD [db] signal signal signal ---> PSD [db] signal ---> PSD [db] ---> PSD [db] signal signal 5 TRUBKA KLARINET > cas [s] > normovana frekvence Další náměty > cas [s] > normovana frekvence Poř.harmonické Trubka,17,63,57,98,56,68,2, Harmonika 8,6,45 3,4,5,42,13,13,16,4,35,2 Flétna 2,54,25, FLETNA Klarinet 1,,,75,,5,,14,5,,12,17 Hoboj,2,2 1,,37,36,46,1,6,3,2 - Piano,32,2,8,7, Housle,39,3,17,1, Hlas,43,8, > cas [s] > normovana frekvence HOBOJ PIANO.5 HARMONIKA > cas [s] > cas [s] > cas [s] > normovana frekvence > normovana frekvence > normovana frekvence
31 Aditivní syntéza samohlásek Hemholtz 1877 f = 22 Hz; doba = 3 s ff=1; f =,7; mf =,3; p =,1; pp =,7; harm U ff mf pp O mf f mf p A p p p mf mf p p E mf mf ff I mf p p mf
32 Aditivní syntéza ptáků I Lesňáček žlutý - Dendroica petechia Bob L. Sturm - University of California, Santa Barbara
33 Aditivní syntéza ptáků II Vlhovec západní - Sturnella neglecta
34 Aditivní syntéza ptáků III Strnad kobylčí - Spizella passerina
35 Aditivní syntéza ptáků IV Tyran vidloocasý - Tyrannus forficatus
36 Aditivní syntéza ptáků V Pisila karibská - Himantopus Mexicanus
37 Aditivní syntéza ptáků VI Lesňáček žlutotemenný - Dendroica pensylvanica
38 Aditivní syntéza ptáků VII Výr virginský- Bubo virginianus
39 Aditivní syntéza ptáků VIII Strnad pustinný - Ammodramus savannarum
40 Aditivní syntéza ptáků IX Strnadec zlatotemenný - Zonotrichia atricapilla
41 Aditivní syntéza ptáků X Papažík indigový - Passerina cyanea
42 Aditivní syntéza ptáků XI Drozd stěhovavý - Turdus migratorius
43 Aditivní syntéza ptáků XII Lesňáček čevenoskvrnný - Vermivora ruficapilla
44 Aditivní syntéza ptáků XIII Pipilo rudooký - Pipilo erythrophthalmus
45 Syntézy ve cvičení % PŘÍKLAD 6: Další příklady z aditivní syntézy: % Syntetizujte následující zvuky % a zobrazte je v časové i frekvenční oblasti Analýza obálky obálka = A * t^n * exp(-t/tau)
46 Syntézy ve cvičení % PŘÍKLAD 6: Další příklady z aditivní syntézy: % Syntetizujte následující zvuky % a zobrazte je v časové i frekvenční oblasti frekvenční složka = k * f obálka = A * t^n * exp(-t/tau) KLARINET f = 262 Hz k A n tau
47 Syntézy ve cvičení % PŘÍKLAD 6: Další příklady z aditivní syntézy: % Syntetizujte následující zvuky % a zobrazte je v časové i frekvenční oblasti frekvenční složka = k * f obálka = A * t^n * exp(-t/tau) DRNKNUTÍ STRUNY f = 262 Hz k A n tau
48 Syntézy ve cvičení % PŘÍKLAD 6: Další příklady z aditivní syntézy: % Syntetizujte následující zvuky % a zobrazte je v časové i frekvenční oblasti frekvenční složka = k * f obálka = A * t^n * exp(-t/tau) BICÍ f = 262 Hz k A n tau
49 Syntézy ve cvičení % PŘÍKLAD 6: Další příklady z aditivní syntézy: % Syntetizujte následující zvuky % a zobrazte je v časové i frekvenční oblasti frekvenční složka = k * f obálka = A * t^n * exp(-t/tau) ZVON f = 262 Hz k A n tau
50 Syntézy ve cvičení % PŘÍKLAD 7: Aditivní syntéza neharmonických signálů (parciály) % Syntetizujte tympány s parametry: TYMPÁNY f = 132 Hz T = 2 s frekvenční složky = k * f obálky = A * exp(-2.8*t) * interp1(x,y,t) X = [.2 T*.99 T] Y = [ 1.9 ]
51 Syntézy ve cvičení % PŘÍKLAD 7: Aditivní syntéza neharmonických signálů (parciály) % Syntetizujte zvon s parametry: ZVON f = 11 Hz T = 2 s frekvenční složky = k * f obálka = A * exp(-.8*t)
52 Syntézy ve cvičení % PŘÍKLAD 8: Další příklady z aditivní syntézy s obálkami typu ADSR FLÉTNY f = 44 Hz T = 1 s f1 = f*2^(3/12) Hz T = 1 s f2 = f*2^(7/12) Hz T = 1 s frekvenční složky = k * f obálky = A * interp1(x,y,t) X = [.2.9 1] Y = [ 1.9 ] k A A
53 Syntézy ve cvičení % PŘÍKLAD 8: Další příklady z aditivní syntézy s obálkami typu ADSR DECHOVÉ NÁSTROJE f = 44 Hz frekvenční složky = k * f obálky = A * interp1(x,y,t) X = [.1 T*.9 T] Y = [ 1.9 ] T = 2 s
54 Syntézy ve cvičení % PŘÍKLAD 9: Příklad z aditivní syntézy s obálkami typu ADSR TRUBKA f = 44 Hz T = 3 s frekvenční složky = k * f obálky = A * interp1(x,y,t) obálka Y = [ 1.8
X31ZZS 3. PŘEDNÁŠKA 6. října Periodické průběhy Fourierovy řady Spektrum Barva zvuku Aplikace
X31ZZS 3. PŘEDNÁŠKA 6. října 214 Periodické průběhy Fourierovy řady Spektrum Barva zvuku Aplikace Fourierovy řady Jean Baptiste Fourier (francouzský matematik 1768-183) Harmonická analýza Libovolný periodický
B2M31SYN 3. PŘEDNÁŠKA 17. října 2018
B2M31SYN 3. PŘEDNÁŠKA 17. října 218 ADITIVNÍ SYNTÉZA Harmonická analýza Harmonická syntéza Fourierovy řady Hudební nástroje Barva zvuku Spektrum Aditivní syntéza a spektrální modelování Parciály Fourierovy
31ZZS 9. PŘEDNÁŠKA 24. listopadu 2014
3ZZS 9. PŘEDNÁŠKA 24. listopadu 24 SPEKTRÁLNÍ ANALÝZA Fourierovy řady Diskrétní Fourierovy řady Fourierova transformace Diskrétní Fourierova transformace Spektrální analýza Zobrazení signálu ve frekvenční
Zpráva k semestrální práci z B2M31SYN Syntéza audio signálů
Zpráva k semestrální práci z B2M31SYN Syntéza audio signálů Část 1 - Syntéza orchestrálních nástrojů pro symfonickou báseň B.Smetany "Vltava" Cílem této části práce je syntetizovat symfonickou báseň B.Smetany
A2B31SMS 2. PŘEDNÁŠKA 9. října 2017 Číslicové signály
A2B3SMS 2. PŘEDNÁŠKA 9. října 27 Číslicové signály Aperiodické Periodické Aplikace Zvuky telefonu Hudební stupnice Tónová volba Tabulková (wavetable) syntéza Tabulkový oscilátor Interpolace Pitch posunutí
Zpráva k semestrální práci
ČVUT FEL Zpráva k semestrální práci A2B31SMS Jan Vimr 2017/2018 1. Postup Zadáním semestrální práce byla syntéza libovolného hudebního nástroje pro skladbu: Let čmeláka Nikolaj Rimskij Korsakov, dále odevzdat
Modulační syntéza 8. prosince 2014
ZZS-12 Modulační syntéza 8. prosince 2014 Amplitudová modulace Syntetické zvony Jednoduché syntetické FM nástroje Syntetické zvuky vítr Kruhová modulace t f f t f f t f t f m c m c c m ) ( 2 cos 2 1 )
Syntéza zvuků a hudebních nástrojů v programovém prostředí MATLAB
Syntéza zvuků a hudebních nástrojů v programovém prostředí MATLAB Úvod Cílem této semestrální práce je syntéza orchestrálních nástrojů pro symfonickou báseň Vltava Bedřicha Smetany a libovolná vlastní
Signál v čase a jeho spektrum
Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě
B2M31SYN 2. PŘEDNÁŠKA 10. října 2018 Generování číslicových signálů
B2M31SYN 2. PŘEDNÁŠKA 1. října 218 Generování číslicových signálů Aperiodické signály Periodické signály Zvuky telefonu Tónová volba Hudební stupnice Stupnice s rovnoměrným temperovaným laděním Příklad
Vlastnosti Fourierovy transformace
Vlastnosti Fourierovy transformace Linearita Fourierova transformace je lineární (všechny druhy :-) ), je tedy homogenní a aditivní Homogenita: změna amplitudy v časové oblasti způsobí stejnou změnu amplitudy
Semestrální práce z předmětu Syntéza audio signálů
Semestrální práce z předmětu Syntéza audio signálů Téma: Syntéza orchestrálních nástojů ve skladbě Vltava od Bedřicha Smetany a syntéza zvuku mouchy Dominik Šmíd zimní semestr 2016/17 Obsah: 1. Úvod 2.
Úkol 1 Zpráva k semestrální práci k předmětu B2M31SYN Syntéza audio signálů Lukáš Krauz krauzluk@fel.cvut.cz Hlavním cílem této úlohy bylo vytvořit za pomoci MIDI souboru, obsahující noty a stopy k jednotlivým
SYNTÉZA AUDIO SIGNÁLŮ
SYNTÉZA AUDIO SIGNÁLŮ R. Čmejla Fakulta elektrotechnická, ČVUT v Praze Abstrakt Příspěvek pojednává o technikách číslicové audio syntézy vyučovaných v předmětu Syntéza multimediálních signálů na Elektrotechnické
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)
A7B31ZZS 10. PŘEDNÁŠKA Návrh filtrů 1. prosince 2014
A7B3ZZS. PŘEDNÁŠKA Návrh filtrů. prosince 24 Návrhy jednoduchých filtrů Návrhy složitějších filtrů Porovnání FIR a IIR Nástroje pro návrh FIR filtrů v MATLABu Nástroje pro návrh IIR filtrů v MATLABu Kvantování
Zvuk. 1. základní kmitání. 2. šíření zvuku
Zvuk 1. základní kmitání - vzduchem se šíří tlakové vzruchy (vzruchová vlna), zvuk je systémem zhuštěnin a zředěnin - podstatou zvuku je kmitání zdroje zvuku a tím způsobené podélné vlnění elastického
Akustika. 3.1 Teorie - spektrum
Akustika 3.1 Teorie - spektrum Rozklad kmitů do nejjednodušších harmonických Spektrum Spektrum Jedna harmonická vlna = 1 frekvence Dvě vlny = 2 frekvence Spektrum 3 vlny = 3 frekvence Spektrum Další vlny
Synth challange 2016
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Synth challange 2016 Komentář k práci Jan Dvořák OBSAH ÚVOD... 2 1 Syntéza orchestrálních nástrojů pro symfonickou báseň B. Smetany "Vltava"...
B2M31SYN SYNTÉZA AUDIO SIGNÁLŮ
B2M31SYN SYNTÉZA AUDIO SIGNÁLŮ zima 2016-2017 Roman Čmejla cmejla@fel.cvut.cz B2, místn.525 tel. 224 3522 36 http://sami.fel.cvut.cz/sms/ A2B31SMS - SYNTÉZA MULTIMEDIÁLNÍCH SIGNÁLŮ zima 2015-2016 http://sami.fel.cvut.cz/sms/
Syntéza audio signálů Aditivní syntéza symfonického orchestru a akordeonu
Syntéza audio signálů Aditivní syntéza symfonického orchestru a akordeonu Bedřich Smetana - Vltava 3 oktávy durové stupnice Johann C. F. Fischer - Preludium a fuga G dur Bedřich Smetana - Jiřinková polka
Fourierova transformace
Fourierova transformace EO Přednáška Pavel Máša ÚVODEM Známe Fourierovy řady v komplexním tvaru f(t) = 1X k= 1 A k e jk! t Spektrum této řady je diskrétní A k = 1 T Obvody tedy musíme řešit v HUS člen
Zpráva k semestrální práci z předmětu Syntéza audio signálů. Vypracoval: Jakub Krista Zimní semestr 2016/2017 Datum odevzdání:
Zpráva k semestrální práci z předmětu Syntéza audio signálů Vypracoval: Jakub Krista Zimní semestr 2016/2017 Datum odevzdání: 31.12.2016 Obsah 1. Úvod... 2 2. Použité druhy syntéz... 3 2.1 Aditivní syntéza...
A7B31ZZS 4. PŘEDNÁŠKA 13. října 2014
A7B31ZZS 4. PŘEDNÁŠKA 13. října 214 A-D převod Vzorkování aliasing vzorkovací teorém Kvantování Analýza reálných signálů v časové oblasti řečové signály biologické signály ---> x[n] Analogově-číslicový
A7B31ZZS 6. PŘEDNÁŠKA 27. října 2014
A7B3ZZS 6. PŘEDNÁŠKA 7. řína 4 Číslicové IIR filtry vyšších řádu filtry se dvěma póly (filtry s více póly) řaení filtrů Aplikace banka filtrů (reonátorů) filtrační syntéy s časově prom. filtry formantové
Fyzikální podstata zvuku
Fyzikální podstata zvuku 1. základní kmitání vzduchem se šíří tlakové vzruchy (vzruchová vlna), zvuk je systémem zhuštěnin a zředěnin podstatou zvuku je kmitání zdroje zvuku a tím způsobené podélné vlnění
ANALÝZA LIDSKÉHO HLASU
ANALÝZA LIDSKÉHO HLASU Pomůcky mikrofon MCA-BTA, LabQuest, program LoggerPro (nebo LoggerLite), tabulkový editor Excel, program Mathematica Postup Z každodenní zkušenosti víme, že každý lidský hlas je
Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy
2 Teoretický úvod Základní princip harmonické analýzy Podmínky harmonické analýzy signálů Obdelník Trojúhelník...
Obsah 1 Zadání 1 2 Teoretický úvod 1 2.1 Základní princip harmonické analýzy.................. 1 2.2 Podmínky harmonické analýzy signálů................. 1 3 Obecné matematické vyjádření 2 4 Konkrétní
7. listopadu 2018 Hlas a řeč. Hudební nástroje. Formantové syntézy. Číslicové pásmové propusti. Aplikace
B2M3SYN 6. PŘEDNÁŠKA 7. listopadu 28 Hlas a řeč fonace, prosodie, artikulace hlasivkový tón, formanty Hudební nástroje rozdělení podle vzniku tónu rozsahy, spektra, formanty Formantové syntézy Klattův
Osnova. Idea ASK/FSK/PSK ASK Amplitudové... Strana 1 z 16. Celá obrazovka. Konec Základy radiotechniky
Pulsní kódová modulace, amplitudové, frekvenční a fázové kĺıčování Josef Dobeš 24. října 2006 Strana 1 z 16 Základy radiotechniky 1. Pulsní modulace Strana 2 z 16 Pulsní šířková modulace (PWM) PAM, PPM,
ANALÝZA PNUS, EFEKTIVNÍ HODNOTA, ČINITEL ZKRESLENÍ, VÝKON NEHARMONICKÉHO PROUDU
ANALÝZA PNUS, EFEKIVNÍ HODNOA, ČINIEL ZKRESLENÍ, VÝKON NEHARMONICKÉHO PROUDU EO Přednáška 4 Pavel Máša X3EO - Pavel Máša X3EO - Pavel Máša - PNUS ÚVODEM Při analýze stejnosměrných obvodů jsme vystačili
Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti
Lineární a adaptivní zpracování dat 3. SYSTÉMY a jejich popis ve frekvenční oblasti Daniel Schwarz Osnova Opakování: systémy a jejich popis v časové oblasti Fourierovy řady Frekvenční charakteristika systémů
Fourierova transformace
Fourierova transformace Jean Baptiste Joseph Fourier (768-83) Jeho obdivovatel (nedatováno) Opáčko harmonických signálů Spojitý harmonický signál ( ) = cos( ω + ϕ ) x t C t C amplituda ω úhlová frekvence
Střední průmyslová škola elektrotechnická a informačních technologií Brno
Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu: CZ.1.07/1.5.00/34.0521 Investice do vzdělání nesou nejvyšší úrok Autor: Ing. Bohumír Jánoš Tématická sada:
KTE/TEVS - Rychlá Fourierova transformace. Pavel Karban. Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni
KTE/TEVS - Rychlá Fourierova transformace Pavel Karban Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni 10.11.011 Outline 1 Motivace FT Fourierova transformace
AKUSTIKA. Barva tónu
AKUSTIKA Barva tónu Tón můžeme objektivně popsat pomocí těchto čtyř vlastností: 1. Výška 2. Délka 3. Barva 4. Hlasitost, hladina intenzity Nyní se budeme zabývat barvou tónu. Barva tónu Barva tónu nám
1 Zpracování a analýza tlakové vlny
1 Zpracování a analýza tlakové vlny 1.1 Cíl úlohy Prostřednictvím této úlohy se naučíte a zopakujete: analýzu biologických signálů v časové oblasti, analýzu biologických signálů ve frekvenční oblasti,
Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy
A2B31SMS 11. PŘEDNÁŠKA 4. prosince 2014
A2B31SMS 11. PŘEDNÁŠKA 4. prosince 214 Číslicové audio efekty Hřebenové filtry Fázovací filtry Dozvuky Konvoluční reverb Schroederův algoritmus modelování dozvuku Číslicové audio efekty Filtrace - DP,
Spektrální analýza a diskrétní Fourierova transformace. Honza Černocký, ÚPGM
Spektrální analýza a diskrétní Fourierova transformace Honza Černocký, ÚPGM Povídání o cosinusovce 2 Argument cosinusovky 0 2p a pak každé 2p perioda 3 Cosinusovka s diskrétním časem Úkol č. 1: vyrobit
4B Analýza neharmonických signálů
4B Analýza neharmonických signálů Cíl úlohy Úloha má doplnit teoretické znalosti získané v předmětu BEL1, zejména demonstrovat souvislost mezi časovým průběhem signálu a jeho spektrem. Ukázat možnost výpočtu
Výpis m-souboru: Výsledný průběh:
Příklad č. 1 Generujte a nakreslete náhodný šumový signál s normálním rozdělením o délce 100 vzorků a vzorkovací frekvencí 8kHz, rozsah amplitudy od 1 do 1 (funkce randn). N=100; % Počet vzorků Tv=1/fv;
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz, Kamenice 3, 4. patro, dv.č.424 INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz IV. FREKVENČNÍ TRASFORMACE SPOJITÉ
Úvod do zpracování signálů
1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování
Transformace obrazu Josef Pelikán KSVI MFF UK Praha
Transformace obrazu 99725 Josef Pelikán KSVI MFF UK Praha email: Josef.Pelikan@mff.cuni.cz WWW: http://cgg.ms.mff.cuni.cz/~pepca/ Transformace 2D obrazu dekorelace dat potlačení závislosti jednotlivých
Hudební nástroje. Hudební nástroje jsou zařízení k vydávání tónů a zvuků. Používají se v hudbě. Hudební nástroje mají svou barvu tónu.
Hudební nástroje Hudební nástroje jsou zařízení k vydávání tónů a zvuků. Používají se v hudbě. Hudební nástroje mají svou barvu tónu. Strunné hudební nástroje Lidé si kdysi všimli, že natažený drát může
DSY-4. Analogové a číslicové modulace. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
DSY-4 Analogové a číslicové modulace Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti DSY-4 analogové modulace základní číslicové modulace vícestavové modulace modulace s rozprostřeným
Funkce komplexní proměnné a integrální transformace
Funkce komplexní proměnné a integrální transformace Fourierovy řady I. Marek Lampart Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na
Filtrace obrazu ve frekvenční oblasti
Filtrace obrazu ve frekvenční oblasti Václav Hlaváč České vysoké učení technické v Praze Český institut informatiky, robotiky a kybernetiky 166 36 Praha 6, Jugoslávských partyzánů 1580/3 http://people.ciirc.cvut.cz/hlavac,
Lineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita
Lineární a adpativní zpracování dat 3. Lineární filtrace I: Z-transformace, stabilita Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály, systémy, jejich vlastnosti a popis v časové
3 Tvorba zvuku elektronickou cestou
3 Tvorba zvuku elektronickou cestou Přístroje a přístrojové aparatury, které se používají pro vytváření elektronických zvuků, jsou dvojího druhu analogové a digitální. V praxi se můžeme setkat také s kombinací
FILTRACE VE FOURIEROVSKÉM SPEKTRU
1/18 FILTRACE VE FOURIEROVSKÉM SPEKTRU (patří do lineárních integrálních transformací) Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz
Číslicové zpracování signálů a Fourierova analýza.
Číslicové zpracování signálů a Fourierova analýza www.kme.zcu.cz/kmet/exm 1 Obsah prezentace 1. Úvod a motivace 2. Data v časové a frekvenční oblasti 3. Fourierova analýza teoreticky 4. Fourierova analýza
A/D převodníky - parametry
A/D převodníky - parametry lineární kvantování -(kritériem je jednoduchost kvantovacího obvodu), parametry ADC : statické odstup signálu od kvantizačního šumu SQNR, efektivní počet bitů n ef, dynamický
Zvuková karta. Zvuk a zvuková zařízení. Vývoj, typy, vlastnosti
Zvuk a zvuková zařízení. Vývoj, typy, vlastnosti Zvuková karta Počítač řady PC je ve své standardní konfiguraci vybaven malým reproduktorem označovaným jako PC speaker. Tento reproduktor je součástí skříně
Laboratorní úloha č. 8: Elektroencefalogram
Laboratorní úloha č. 8: Elektroencefalogram Cíle úlohy: Rozložení elektrod při snímání EEG signálu Filtrace EEG v časové oblasti o Potlačení nf a vf rušení o Alfa aktivita o Artefakty Spektrální a korelační
Cvi ení 2. Cvi ení 2. Modelování systém a proces. Mgr. Lucie Kárná, PhD. March 5, 2018
Modelování systém a proces Mgr. Lucie Kárná, PhD karna@fd.cvut.cz March 5, 2018 1 Gracké moºnosti Matlabu 2 Zobrazení signálu 3 4 Analýza signálu Gracké moºnosti Matlabu Základní gracké p íkazy I Graf
2. GENERÁTORY MĚŘICÍCH SIGNÁLŮ II
. GENERÁTORY MĚŘICÍCH SIGNÁLŮ II Generátory s nízkým zkreslením VF generátory harmonického signálu Pulsní generátory X38SMP P 1 Generátory s nízkým zkreslením Parametry, které se udávají zkreslení: a)
doc. Dr. Ing. Elias TOMEH Elias Tomeh / Snímek 1
doc. Dr. Ing. Elias TOMEH e-mail: elias.tomeh@tul.cz Elias Tomeh / Snímek 1 Frekvenční spektrum Dělení frekvenčního pásma (počet čar) Průměrování Časovou váhovou funkci Elias Tomeh / Snímek 2 Vzorkovací
Amplitudová a frekvenční modulace
Amplitudová a frekvenční modulace POZOR!!! Maximální vstupní napětí spektrálního analyzátoru je U pp = 4 V. Napěťové úrovně signálů, před připojením k analyzátoru, nejprve kontrolujte pomocí osciloskopu!!!
Při návrhu FIR filtru řešíme obvykle následující problémy:
Návrh FIR filtrů Při návrhu FIR filtru řešíme obvykle následující problémy: volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř.
UNIVERZITA PARDUBICE. Fakulta elektrotechniky a informatiky. Fourierovy Řady Jakub Jeřábek
UNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky Fourierovy Řady Jakub Jeřábek Bakalářská práce 2012 Prohlášení autora Prohlašuji, že jsem tuto práci vypracoval samostatně. Veškeré literární
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cziba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické
mel jednotka subjektivní výšky tónu. Výška tónu o frekvenci 1000 Hz a hladině akustického tlaku 40 db se rovná 1000 melům.
m / Hudební akustika 42 mechanická soustava uspořádání mechanických prvků. Např. u hudebního nástroje představuje soustavu 1D struna houslí, 2D membrána bubnu a 3D zvon. Pro zkoumání vlastností těchto
Hudební nástroje se dělí do několika skupin podle způsobu tvoření tónu.
Hudební nástroje Na celém světě existují stovky hudebních nástrojů. My se budeme zabývat především hudebními nástroji, které jsou běžné v Evropě. Některé z těchto nástrojů můžeme vidět a slyšet v symfonickém
Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady, vlastnosti Vzorkovací
Měřící přístroje a měření veličin
Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT Měřící přístroje a měření veličin Číslo projektu
Zuzana Štichová. hudební nástroje. Ročník: 6. Datum vytvoření: červen 2012
Autor: Vzdělávací oblast: Téma: Ročník: 6. Zuzana Štichová Umění a kultura hudební výchova hudební nástroje Datum vytvoření: červen 2012 Materiál: Anotace: Metodické pokyny: Zdroj: VY_32_INOVACE_S2.2_HV.6.05
Opakování z předmětu TES
Opakování z předmětu TES A3B35ARI 6..6 Vážení studenti, v následujících měsících budete každý týden z předmětu Automatické řízení dostávat domácí úkol z látky probrané v daném týdnu na přednáškách. Jsme
Vlastnosti a modelování aditivního
Vlastnosti a modelování aditivního bílého šumu s normálním rozdělením kacmarp@fel.cvut.cz verze: 0090913 1 Bílý šum s normálním rozdělením V této kapitole se budeme zabývat reálným gaussovským šumem n(t),
B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ
B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ I. MECHANICKÉ KMITÁNÍ 8.1 Kmitavý pohyb a) mechanické kmitání (kmitavý pohyb) pohyb, při kterém kmitající těleso zůstává stále v okolí určitého bodu tzv. rovnovážné polohy
3. AMPLITUDOVĚ MODULOVANÉ SIGNÁLY
3. AMPLITUDOVĚ MODULOVANÉ SIGNÁLY Modulací nazýváme proces při kterém je jedním signálem přetvář en jiný signál za účelem př enosu informace. Př i amplitudové modulaci dochází k ovlivňování amplitudy nosného
FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth
FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického
Direct Digital Synthesis (DDS)
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Ing. Radek Sedláček, Ph.D., katedra měření K13138 Direct Digital Synthesis (DDS) Přímá číslicová syntéza Tyto materiály vznikly za podpory
Úloha č. 7 - Disperze v optických vláknech
Úloha č. 7 - Disperze v optických vláknech 1 Teoretický úvod Optické vláknové vlnovody jsou důležitou komponentou optických komunikačních sítí. Jejich nejvýznamnějšími parametry jsou měrný útlum a přenosová
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické či jiné
Periodicita v časové řadě, její popis a identifikace, exponenciální vyrovnáván
Periodicita v časové řadě, její popis a identifikace, exponenciální vyrovnávání Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Periodicita v časových
9. cvičení z Matematické analýzy 2
9. cvičení z Matematické analýzy 7. listopadu -. prosince 7 9. Určete Fourierovu řadu periodického rozšíření funkce ft = t na, a její součet. Definice: Necht f je -periodická funkce, která je integrabilní
Při návrhu FIR filtru řešíme obvykle následující problémy:
Návrh FIR filtrů Při návrhu FIR filtru řešíme obvykle následující problémy: volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř.
Vold-Kalmanova řádová filtrace. JiříTůma
Vold-Kalmanova řádová filtrace JiříTůma Obsah Základy Kalmanovy filtrace Základy Vold-Kalmanovy filtrace algoritmus Globální řešení Příklady užití Vold-Kalmanovy řádové filtrace Kalmanův filtr ( n ) Process
Úvod do MIDI 15. listopadu Co je to MIDI General MIDI MIDI v MATLABu MIDI freeware
Úvod do MIDI 15. listopadu 2017 Co je to MIDI General MIDI MIDI v MATLABu MIDI freeware Co je to MIDI? MIDI je označením pro Musical Instrument Digital Interface komunikační protokol používaný v hudebním
ochranným obvodem, který chrání útlumové články před vnějším náhodným přetížením.
SG 2000 je vysokofrekvenční generátor s kmitočtovým rozsahem 100 khz - 1 GHz (s option až do 2 GHz), s možností amplitudové i kmitočtové modulace. Velmi užitečnou funkcí je také rozmítání výstupního kmitočtu
AKUSTIKA. Tón a jeho vlastnosti
AKUSTIKA Tón a jeho vlastnosti Zvuky dělíme na dvě základní skupiny: 1. Tóny vznikají pravidelným chvěním zdroje zvuku, průběh závislosti výchylky na čase je periodický, jsou to např. zvuky hudebních nástrojů,
Oscilátory. Oscilátory s pevným kmitočtem Oscilátory s proměnným kmitočtem (laditelné)
Oscilátory Oscilátory Oscilátory s pevným kmitočtem Oscilátory s proměnným kmitočtem (laditelné) mechanicky laditelní elektricky laditelné VCO (Voltage Control Oscillator) Typy oscilátorů RC většinou neharmonické
P7: Základy zpracování signálu
P7: Základy zpracování signálu Úvodem - Signál (lat. signum) bychom mohli definovat jako záměrný fyzikální jev, nesoucí informaci o nějaké události. - Signálem je rovněž funkce, která převádí nezávislou
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P04 MECHANICKÉ KMITÁNÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. Ing. Bohumil Koktavý,CSc. FYZIKA PRŮVODCE GB01-P04 MECHANICKÉ KMITÁNÍ STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 2 OBSAH 1 Úvod...5
Dodatky k FT: 1. (2D digitalizace) 2. Více o FT 3. Více k užití filtrů. 7. přednáška předmětu Zpracování obrazů
Dodatky k FT:. (D digitalizace. Více o FT 3. Více k užití filtrů 7. přednáška předmětu Zpracování obrazů Martina Mudrová 4 Pořízení digitálního obrazu Obvykle: Proces transformace spojité předlohy (reality
Základní experimenty akustiky
Číslo úlohy: 9 Jméno: Vojtěch HORNÝ Spolupracoval: Jaroslav Zeman Datum měření: 19. 10. 2009 Číslo kroužku: pondělí 13:30 Číslo skupiny: 6 Klasifikace: Fyzikální praktikum FJFI ČVUT v Praze Základní experimenty
JAK VZNIKÁ LIDSKÝ HLAS? Univerzita Palackého v Olomouci
JAK VZNIKÁ LIDSKÝ HLAS? JAN ŠVEC Katedra biofyziky, ik Př.F., Univerzita Palackého v Olomouci HLAS: Všichni jej každodenně používáme, ale víme o něm v podstatě jen málo Studium lidského hlasu Je založeno
Základy a aplikace digitálních. Katedra radioelektroniky (13137), blok B2, místnost 722
Základy a aplikace digitálních modulací Josef Dobeš Katedra radioelektroniky (13137), blok B2, místnost 722 dobes@fel.cvut.cz 6. října 2014 České vysoké učení technické v Praze, Fakulta elektrotechnická
DIPLOMOVÁ PRÁCE Lock-in zesilovač 500 khz 10 MHz
DIPLOMOVÁ PRÁCE Lock-in zesilovač 500 khz 10 MHz Petr Sládek Princip a použití lock-in zesilovače Im koherentní demodulátor f r velmi úzkopásmový Re příjem typ. 0,01 Hz 3 Hz zesilování harmonických měřený
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 9: Základní experimenty akustiky. Abstrakt
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 9: Základní experimenty akustiky Datum měření: 27. 11. 29 Jméno: Jiří Slabý Pracovní skupina: 1 Ročník a kroužek: 2. ročník, 1. kroužek, pátek 13:3 Spolupracovala:
VOLBA ČASOVÝCH OKEN A PŘEKRYTÍ PRO VÝPOČET SPEKTER ŠIROKOPÁSMOVÝCH SIGNÁLŮ
VOLBA ČASOVÝCH OKEN A PŘEKRYTÍ PRO VÝPOČET SPEKTER ŠIROKOPÁSOVÝCH SIGNÁLŮ Jiří TŮA, VŠB Technická univerzita Ostrava Petr Czyž, Halla Visteon Autopal Services, sro Nový Jičín 2 Anotace: Referát se zabývá
Hudební signál a jeho syntéza
VÁCLAV SYROVÝ Hudební signál a jeho syntéza Syntéza hudebního signálu je převážně spojována s oblastí elektroakustické hudby, resp. s elektronickou generací signálů tradičního i netradičního charakteru.
Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady,
Komplexní analýza. Fourierovy řady. Martin Bohata. Katedra matematiky FEL ČVUT v Praze
Komplexní analýza Fourierovy řady Martin Bohata Katedra matematiky FEL ČVU v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Fourierovy řady 1 / 20 Úvod Často se setkáváme s periodickými
Digitalizace převod AS DS (analogový diskrétní signál )
Digitalizace signálu v čase Digitalizace převod AS DS (analogový diskrétní signál ) v amplitudě Obvykle převod spojité předlohy (reality) f 1 (t/x,...), f 2 ()... připomenutí Digitalizace: 1. vzorkování
Spektrální analyzátory a analyzátory signálu
Spektrální analyzátory a analyzátory signálu Osciloskopy a zapisovače popsané v předchozí kapitole zobrazují průběh signálu v závislosti na čase x(t), takže umožňují analýzu v tzv. časové oblasti (nebo
AKUSTICKÁ MĚŘENÍ Frekvenční spektrum lidského hlasu
AKUSTICKÁ MĚŘENÍ Frekvenční spektrum lidského hlasu Stáhněte si z internetu program Praat a Madde (viz seznam pomůcek) a přineste si vlastní notebook. Bez tohoto nelze praktikum absolvovat (pokud budete