X31ZZS 3. PŘEDNÁŠKA 6. října Periodické průběhy Fourierovy řady Spektrum Barva zvuku Aplikace
|
|
- Simona Brožová
- před 6 lety
- Počet zobrazení:
Transkript
1 X31ZZS 3. PŘEDNÁŠKA 6. října 214 Periodické průběhy Fourierovy řady Spektrum Barva zvuku Aplikace
2 Fourierovy řady Jean Baptiste Fourier (francouzský matematik ) Harmonická analýza Libovolný periodický signál lze rozložit na jednotlivé harmonické složky.
3 Fourierovy řady Jean Baptiste Fourier (francouzský matematik ) Harmonická analýza Libovolný periodický signál lze rozložit na jednotlivé harmonické složky. Harmonická syntéza Kombinací harmonických složek lze vytvořit prakticky libovolný periodický signál.
4 Fourierovy řady Trigonometrický tvar Fourierových řad x( t) a [ a cos( k t) b sin( k t k k 2 )] k1 a /2 a k, b k k stejnosměrná složka koeficienty Fourierovy řady pořadí harmonické složky b k 2 T T x ( t )sin( k t ) dt a k 2 T T x( t)cos( k t) dt
5 Fourierovy řady Spektrální (polární) tvar Fourierových řad x( t) k c k sin( k t ) k c k k amplituda k-té spektrální složky fáze k-té spektrální složky c k a 2 k b 2 k k arctan a b k k
6 Fourierovy řady Komplexní (exponenciální) tvar Fourierových řad X k k jk t x( t) e X k komplexní koeficient X k 1 2 ( a k jb k ) c 2 X k k
7 Obdélníkový průběh Fourierovy řady
8 Fourierovy řady Obdélníkový průběh 4 1 f ( t) = bn sin n t = [ sin t sin 3 t + 5 n=1 sin 5 t +... ]
9 Fourierovy řady Trojúhelníkový průběh f ( t) (cos( t) cos(3 t) cos(5 t) cos(7t )...)
10 Fourierovy řady Pilový průběh f ( t) (sin( t) sin(2t ) sin(3 t) sin(4t )
11 Harmonická analýza v MATLABu function analyza(soubor) % funkce analyza(soubor) vykresli amplitudove % spektrum *.wav souboru. [signal,fs] = wavread(soubor); N = length(signal); c = fft(signal)/n; A = 2*abs(c(2:floor(N/2))); f = (1:floor(N/2)-1)*fs/N; plot(f,a,'r')
12 Aditivní syntéza I Spektrální tvar Fourierovy řady
13 Aditivní syntéza II Periodický sled impulsů 1 8 Synteza periodickeho sledu impulzu f=44 Hz, T=23ms definovana faze x( t) k1 cos( k t) nahodna faze x( t) k1 cos( k t 2 rand( k)) > cas [s] >> priklad7
14 Aditivní syntéza III Periodický sled impulsů f=44; fs=16; doba=.5; t=:1/fs:doba; zvuk_1a(1,:)=cos(2*pi*f*t); zvuk_1b(1,:)=cos(2*pi*f*t+2*pi*rand); for k=2:1 zvuk_1a(k,:)=cos(k*2*pi*f*t); zvuk_1b(k,:)=cos(k*2*pi*f*t+2*pi*rand); subplot(211), plot(t(1:2),sum(zvuk_1a(:,1:2))), subplot(212), plot(t(1:2),sum(zvuk_1b(:,1:2))), soundsc(sum(zvuk_1a),fs), pause(1.5*doba) soundsc(sum(zvuk_1b),fs), pause(1.5*doba) end;
15 Aditivní syntéza IV Obdélníkový průběh Synteza periodickeho obdel. prubehu f=44 Hz, T=23ms x( t) 1 2k 1 k sin((2 k 1) t ) definovana faze nahodna faze x( t) 1 2k 1 k sin((2k 1) t 2 rand( k)) > cas [s] >> priklad8
16 Aditivní syntéza V Obdélníkový průběh zvuk_2a(1,:)=sin(2*pi*f*t); zvuk_2b(1,:)=sin(2*pi*f*t+2*pi*rand); for k=3:2:18 zvuk_2a(k,:)=(1/k)*sin(k*2*pi*f*t); zvuk_2b(k,:)=(1/k)*sin(k*2*pi*f*t+2*pi*rand); subplot(211), plot(t(1:2),sum(zvuk_2a(:,1:2))) subplot(212), plot(t(1:2),sum(zvuk_2b(:,1:2))) soundsc(sum(zvuk_2a),fs),pause(1.2*doba) soundsc(sum(zvuk_2b),fs),pause(1.2*doba) end;
17 Aditivní syntéza VI Pilový průběh Synteza periodickeho piloveho prubehu f=44 Hz, T=23ms x( t) 1 k k1 sin( k t ) 1-1 definovana faze x( t) 1 k k1 sin( k t 2 rand( k)) nahodna faze > cas [s] >> priklad9
18 Pilový průběh Aditivní syntéza VII zvuk_3a(1,:)=sin(2*pi*f*t); zvuk_3b(1,:)=sin(2*pi*f*t+2*pi*rand); for k=2:18 zvuk_3a(k,:)=(1/k)*sin(k*2*pi*f*t); zvuk_3b(k,:)=(1/k)*sin(k*2*pi*f*t+2*pi*rand); subplot(211), plot(t(1:2),sum(zvuk_3a(:,1:2))) subplot(212), plot(t(1:2),sum(zvuk_3b(:,1:2))), soundsc(sum(zvuk_3a),fs),pause(1.2*doba) soundsc(sum(zvuk_3b),fs),,pause(1.2*doba) end;
19 Hudební nástroje barva zvuku = obsah spektrálních složek
20 Hudební nástroje barva zvuku = obsah spektrálních složek jasné zvuky - zdůrazněné sudé harmonické ),4sin(5 ),6sin(4 ),4sin(3 ),6sin(2 ),2sin( ) ( t t t t t t x
21 Hudební nástroje barva zvuku = obsah spektrálních složek housle - pila jasné zvuky - zdůrazněné sudé harmonické x( t),2sin( t),6sin(2 t),4sin(3 t),6sin(4 t),4sin(5 t) duté zvuky - pouze liché harmonické x( t),8sin( t),4sin(3 t),2sin(5 t ) >> priklad11
22 Harmonická analýza v MATLABu >> analyza('banjo') >> [X,Y]=ginput(1)
23 Implementace aditivní syntézy v MATLABu % BANJO % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fs = 16; doba =.5; tau =.1; f = 4; nt = :1/fs:doba-1/fs; ampl = [ ]; o=exp(-nt./tau); x=o.*[ampl*sin(2*pi*[1:length(ampl)]'*f*nt)]; soundsc(x,fs) plot(nt,x), title('banjo'), axis tight, xlabel('---> cas [s]')
24 Aditivní syntéza
25 Časově proměnná aditivní syntéza parciál Time Varying Partial Additive Synthesis (TVPAS) - přirozené zvuky jsou složeny z parciál Řídící informace - parciály mají časově proměnné frekvence i časově proměnné amplitudy Amplitudové obálky Frekvenční trajektorie
26 Aditivní syntéza I Spektrální tvar Fourierovy řady
27 Aditivní syntéza Barva zvuku - attack je pro určení barvy důležitější než sustain
28 Aditivní syntéza Barva zvuku - attack je pro určení barvy důležitější než sustain - vyšší harmonické (parciály) vstupují později a končí dříve
29 Aditivní syntéza Barva zvuku - attack je pro určení barvy důležitější než sustain - vyšší harmonické (parciály) vstupují později a končí dříve - hraje-li nástroj hlasitěji, používá se více harmonických (parciál)
30 Aditivní syntéza Nevýhodu představuje velké množství dat (řídící funkce parametrů) a velké množství oscilátorů
31 Aditivní syntéza Nevýhodu představuje velké množství dat (řídící funkce parametrů) a velké množství oscilátorů Hlavní význam aditivní syntézy dnes je v resyntéze (vytváření různých zvuků podle spektrogramu)
32 Aditivní syntéza Při spektrálním se aditivní syntéza doplňuje vhodnými šumovými složkami
33 Aditivní syntéza Při spektrálním se aditivní syntéza doplňuje vhodnými šumovými složkami Pro vytvoření neharmonických průběhů, např. které dávají kovový zvuk, se používají techniky, při nichž se sčítají harmonické průběhy (dva i více), které jsou vůči sobě relativně rozladěny (frekvenkční složky nejsou celistvým násobkem základní frekvence).
34 Harmonická analýza programem Cool Edit >> db =[ ]; >> f =[ ]; % prevod db do linearniho mer. >> amp=1.^(db./2) >> db =2.*log1(amp)
35 Zvonek I clear fs =441; T1 =.6; T2 =.48; f1=18; f2=181; A=[ ]; K=[ ]; M=2; N=4; % vzorkovaci frekvence % doba mezi udery % delka posledniho uderu % zakladni frekvence 1.zvonku % zakladni frekvence 2.zvonku % amplitudy ctyr oscilatoru % nasobky zakl.frekvence % jednotlivych oscilatoru % pocet serii zvoneni % celkovy pocet uderu = 2*N+1
36 t=:1/fs:t2-1/fs; x=[]; for m=1:m for n=1:n Zvonek II x1=a*sin(2*pi*k'*(f1.*t)); % uder 1.zv. x1=x1.*exp(-t/t1); % 1.zvonek s obalkou x2=a*sin(2*pi*k'*(f2.*t));% uder 2.zv. x2=x2.*exp(-t/t1); % 2.zvonek s obalkou x=[x x1(1:t1*fs) x2(1:t1*fs)]; end; x=[x x1]; % pripojeni posl.uderu prvniho zvonku end;
37 Zvonek
38 Syntézy ve cvičení
39 ---> PSD [db] ---> PSD [db] ---> PSD [db] signal signal signal ---> PSD [db] signal ---> PSD [db] ---> PSD [db] signal signal 5 TRUBKA KLARINET > cas [s] > normovana frekvence Náměty > cas [s] > normovana frekvence Poř.harmonické Trubka,17,63,57,98,56,68,2, Harmonika 8,6,45 3,4,5,42,13,13,16,4,35,2 Flétna 2,54,25, FLETNA Klarinet 1,,,75,,5,,14,5,,12,17 Hoboj,2,2 1,,37,36,46,1,6,3,2 - Piano,32,2,8,7, Housle,39,3,17,1, Hlas,43,8, > cas [s] > normovana frekvence HOBOJ PIANO.5 HARMONIKA > cas [s] > cas [s] > cas [s] > normovana frekvence > normovana frekvence > normovana frekvence
40 Aditivní syntéza samohlásek Hemholtz 1877 f = 22 Hz; doba = 3 s ff=1; f =,7; mf =,3; p =,1; pp =,7; harm U ff mf pp O mf f mf p A p p p mf mf p p E mf mf ff I mf p p mf
41 Aditivní syntéza ptáků I Lesňáček žlutý - Dendroica petechia Bob L. Sturm - University of California, Santa Barbara
42 Aditivní syntéza ptáků II Vlhovec západní - Sturnella neglecta
43 Aditivní syntéza ptáků III Strnad kobylčí - Spizella passerina
44 Aditivní syntéza ptáků IV Tyran vidloocasý - Tyrannus forficatus
45 Aditivní syntéza ptáků V Pisila karibská - Himantopus Mexicanus
46 Aditivní syntéza ptáků VI Lesňáček žlutotemenný - Dendroica pensylvanica
47 Aditivní syntéza ptáků VII Výr virginský- Bubo virginianus
48 Aditivní syntéza ptáků VIII Strnad pustinný - Ammodramus savannarum
49 Aditivní syntéza ptáků IX Strnadec zlatotemenný - Zonotrichia atricapilla
50 Aditivní syntéza ptáků X Papažík indigový - Passerina cyanea
51 Aditivní syntéza ptáků XI Drozd stěhovavý - Turdus migratorius
52 Aditivní syntéza ptáků XII Lesňáček čevenoskvrnný - Vermivora ruficapilla
53 Aditivní syntéza ptáků XIII Pipilo rudooký - Pipilo erythrophthalmus
A2B31SMS 3. PŘEDNÁŠKA 15. října 2015
A2B31SMS 3. PŘEDNÁŠKA 15. října 215 ADITIVNÍ SYNTÉZA Harmonická analýza Harmonická syntéza Fourierovy řady Spektrum Barva zvuku Aditivní syntéza a spektrální modelování Parciály Fourierovy řady Jean Baptiste
B2M31SYN 3. PŘEDNÁŠKA 17. října 2018
B2M31SYN 3. PŘEDNÁŠKA 17. října 218 ADITIVNÍ SYNTÉZA Harmonická analýza Harmonická syntéza Fourierovy řady Hudební nástroje Barva zvuku Spektrum Aditivní syntéza a spektrální modelování Parciály Fourierovy
31ZZS 9. PŘEDNÁŠKA 24. listopadu 2014
3ZZS 9. PŘEDNÁŠKA 24. listopadu 24 SPEKTRÁLNÍ ANALÝZA Fourierovy řady Diskrétní Fourierovy řady Fourierova transformace Diskrétní Fourierova transformace Spektrální analýza Zobrazení signálu ve frekvenční
A2B31SMS 2. PŘEDNÁŠKA 9. října 2017 Číslicové signály
A2B3SMS 2. PŘEDNÁŠKA 9. října 27 Číslicové signály Aperiodické Periodické Aplikace Zvuky telefonu Hudební stupnice Tónová volba Tabulková (wavetable) syntéza Tabulkový oscilátor Interpolace Pitch posunutí
Zpráva k semestrální práci z B2M31SYN Syntéza audio signálů
Zpráva k semestrální práci z B2M31SYN Syntéza audio signálů Část 1 - Syntéza orchestrálních nástrojů pro symfonickou báseň B.Smetany "Vltava" Cílem této části práce je syntetizovat symfonickou báseň B.Smetany
Signál v čase a jeho spektrum
Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě
Zpráva k semestrální práci
ČVUT FEL Zpráva k semestrální práci A2B31SMS Jan Vimr 2017/2018 1. Postup Zadáním semestrální práce byla syntéza libovolného hudebního nástroje pro skladbu: Let čmeláka Nikolaj Rimskij Korsakov, dále odevzdat
B2M31SYN 2. PŘEDNÁŠKA 10. října 2018 Generování číslicových signálů
B2M31SYN 2. PŘEDNÁŠKA 1. října 218 Generování číslicových signálů Aperiodické signály Periodické signály Zvuky telefonu Tónová volba Hudební stupnice Stupnice s rovnoměrným temperovaným laděním Příklad
Vlastnosti Fourierovy transformace
Vlastnosti Fourierovy transformace Linearita Fourierova transformace je lineární (všechny druhy :-) ), je tedy homogenní a aditivní Homogenita: změna amplitudy v časové oblasti způsobí stejnou změnu amplitudy
Modulační syntéza 8. prosince 2014
ZZS-12 Modulační syntéza 8. prosince 2014 Amplitudová modulace Syntetické zvony Jednoduché syntetické FM nástroje Syntetické zvuky vítr Kruhová modulace t f f t f f t f t f m c m c c m ) ( 2 cos 2 1 )
Syntéza zvuků a hudebních nástrojů v programovém prostředí MATLAB
Syntéza zvuků a hudebních nástrojů v programovém prostředí MATLAB Úvod Cílem této semestrální práce je syntéza orchestrálních nástrojů pro symfonickou báseň Vltava Bedřicha Smetany a libovolná vlastní
A7B31ZZS 10. PŘEDNÁŠKA Návrh filtrů 1. prosince 2014
A7B3ZZS. PŘEDNÁŠKA Návrh filtrů. prosince 24 Návrhy jednoduchých filtrů Návrhy složitějších filtrů Porovnání FIR a IIR Nástroje pro návrh FIR filtrů v MATLABu Nástroje pro návrh IIR filtrů v MATLABu Kvantování
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)
Zvuk. 1. základní kmitání. 2. šíření zvuku
Zvuk 1. základní kmitání - vzduchem se šíří tlakové vzruchy (vzruchová vlna), zvuk je systémem zhuštěnin a zředěnin - podstatou zvuku je kmitání zdroje zvuku a tím způsobené podélné vlnění elastického
SYNTÉZA AUDIO SIGNÁLŮ
SYNTÉZA AUDIO SIGNÁLŮ R. Čmejla Fakulta elektrotechnická, ČVUT v Praze Abstrakt Příspěvek pojednává o technikách číslicové audio syntézy vyučovaných v předmětu Syntéza multimediálních signálů na Elektrotechnické
Synth challange 2016
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Synth challange 2016 Komentář k práci Jan Dvořák OBSAH ÚVOD... 2 1 Syntéza orchestrálních nástrojů pro symfonickou báseň B. Smetany "Vltava"...
Fourierova transformace
Fourierova transformace EO Přednáška Pavel Máša ÚVODEM Známe Fourierovy řady v komplexním tvaru f(t) = 1X k= 1 A k e jk! t Spektrum této řady je diskrétní A k = 1 T Obvody tedy musíme řešit v HUS člen
A7B31ZZS 4. PŘEDNÁŠKA 13. října 2014
A7B31ZZS 4. PŘEDNÁŠKA 13. října 214 A-D převod Vzorkování aliasing vzorkovací teorém Kvantování Analýza reálných signálů v časové oblasti řečové signály biologické signály ---> x[n] Analogově-číslicový
A7B31ZZS 6. PŘEDNÁŠKA 27. října 2014
A7B3ZZS 6. PŘEDNÁŠKA 7. řína 4 Číslicové IIR filtry vyšších řádu filtry se dvěma póly (filtry s více póly) řaení filtrů Aplikace banka filtrů (reonátorů) filtrační syntéy s časově prom. filtry formantové
ANALÝZA PNUS, EFEKTIVNÍ HODNOTA, ČINITEL ZKRESLENÍ, VÝKON NEHARMONICKÉHO PROUDU
ANALÝZA PNUS, EFEKIVNÍ HODNOA, ČINIEL ZKRESLENÍ, VÝKON NEHARMONICKÉHO PROUDU EO Přednáška 4 Pavel Máša X3EO - Pavel Máša X3EO - Pavel Máša - PNUS ÚVODEM Při analýze stejnosměrných obvodů jsme vystačili
Zpráva k semestrální práci z předmětu Syntéza audio signálů. Vypracoval: Jakub Krista Zimní semestr 2016/2017 Datum odevzdání:
Zpráva k semestrální práci z předmětu Syntéza audio signálů Vypracoval: Jakub Krista Zimní semestr 2016/2017 Datum odevzdání: 31.12.2016 Obsah 1. Úvod... 2 2. Použité druhy syntéz... 3 2.1 Aditivní syntéza...
Fyzikální podstata zvuku
Fyzikální podstata zvuku 1. základní kmitání vzduchem se šíří tlakové vzruchy (vzruchová vlna), zvuk je systémem zhuštěnin a zředěnin podstatou zvuku je kmitání zdroje zvuku a tím způsobené podélné vlnění
Akustika. 3.1 Teorie - spektrum
Akustika 3.1 Teorie - spektrum Rozklad kmitů do nejjednodušších harmonických Spektrum Spektrum Jedna harmonická vlna = 1 frekvence Dvě vlny = 2 frekvence Spektrum 3 vlny = 3 frekvence Spektrum Další vlny
Funkce komplexní proměnné a integrální transformace
Funkce komplexní proměnné a integrální transformace Fourierovy řady I. Marek Lampart Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na
Semestrální práce z předmětu Syntéza audio signálů
Semestrální práce z předmětu Syntéza audio signálů Téma: Syntéza orchestrálních nástojů ve skladbě Vltava od Bedřicha Smetany a syntéza zvuku mouchy Dominik Šmíd zimní semestr 2016/17 Obsah: 1. Úvod 2.
Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy
2 Teoretický úvod Základní princip harmonické analýzy Podmínky harmonické analýzy signálů Obdelník Trojúhelník...
Obsah 1 Zadání 1 2 Teoretický úvod 1 2.1 Základní princip harmonické analýzy.................. 1 2.2 Podmínky harmonické analýzy signálů................. 1 3 Obecné matematické vyjádření 2 4 Konkrétní
Úkol 1 Zpráva k semestrální práci k předmětu B2M31SYN Syntéza audio signálů Lukáš Krauz krauzluk@fel.cvut.cz Hlavním cílem této úlohy bylo vytvořit za pomoci MIDI souboru, obsahující noty a stopy k jednotlivým
Osnova. Idea ASK/FSK/PSK ASK Amplitudové... Strana 1 z 16. Celá obrazovka. Konec Základy radiotechniky
Pulsní kódová modulace, amplitudové, frekvenční a fázové kĺıčování Josef Dobeš 24. října 2006 Strana 1 z 16 Základy radiotechniky 1. Pulsní modulace Strana 2 z 16 Pulsní šířková modulace (PWM) PAM, PPM,
Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti
Lineární a adaptivní zpracování dat 3. SYSTÉMY a jejich popis ve frekvenční oblasti Daniel Schwarz Osnova Opakování: systémy a jejich popis v časové oblasti Fourierovy řady Frekvenční charakteristika systémů
ANALÝZA LIDSKÉHO HLASU
ANALÝZA LIDSKÉHO HLASU Pomůcky mikrofon MCA-BTA, LabQuest, program LoggerPro (nebo LoggerLite), tabulkový editor Excel, program Mathematica Postup Z každodenní zkušenosti víme, že každý lidský hlas je
Fourierova transformace
Fourierova transformace Jean Baptiste Joseph Fourier (768-83) Jeho obdivovatel (nedatováno) Opáčko harmonických signálů Spojitý harmonický signál ( ) = cos( ω + ϕ ) x t C t C amplituda ω úhlová frekvence
KTE/TEVS - Rychlá Fourierova transformace. Pavel Karban. Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni
KTE/TEVS - Rychlá Fourierova transformace Pavel Karban Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni 10.11.011 Outline 1 Motivace FT Fourierova transformace
Syntéza audio signálů Aditivní syntéza symfonického orchestru a akordeonu
Syntéza audio signálů Aditivní syntéza symfonického orchestru a akordeonu Bedřich Smetana - Vltava 3 oktávy durové stupnice Johann C. F. Fischer - Preludium a fuga G dur Bedřich Smetana - Jiřinková polka
Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy
Spektrální analýza a diskrétní Fourierova transformace. Honza Černocký, ÚPGM
Spektrální analýza a diskrétní Fourierova transformace Honza Černocký, ÚPGM Povídání o cosinusovce 2 Argument cosinusovky 0 2p a pak každé 2p perioda 3 Cosinusovka s diskrétním časem Úkol č. 1: vyrobit
9. cvičení z Matematické analýzy 2
9. cvičení z Matematické analýzy 7. listopadu -. prosince 7 9. Určete Fourierovu řadu periodického rozšíření funkce ft = t na, a její součet. Definice: Necht f je -periodická funkce, která je integrabilní
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz, Kamenice 3, 4. patro, dv.č.424 INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz IV. FREKVENČNÍ TRASFORMACE SPOJITÉ
Úvod do zpracování signálů
1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování
Střední průmyslová škola elektrotechnická a informačních technologií Brno
Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu: CZ.1.07/1.5.00/34.0521 Investice do vzdělání nesou nejvyšší úrok Autor: Ing. Bohumír Jánoš Tématická sada:
1 Zpracování a analýza tlakové vlny
1 Zpracování a analýza tlakové vlny 1.1 Cíl úlohy Prostřednictvím této úlohy se naučíte a zopakujete: analýzu biologických signálů v časové oblasti, analýzu biologických signálů ve frekvenční oblasti,
3. AMPLITUDOVĚ MODULOVANÉ SIGNÁLY
3. AMPLITUDOVĚ MODULOVANÉ SIGNÁLY Modulací nazýváme proces při kterém je jedním signálem přetvář en jiný signál za účelem př enosu informace. Př i amplitudové modulaci dochází k ovlivňování amplitudy nosného
7. listopadu 2018 Hlas a řeč. Hudební nástroje. Formantové syntézy. Číslicové pásmové propusti. Aplikace
B2M3SYN 6. PŘEDNÁŠKA 7. listopadu 28 Hlas a řeč fonace, prosodie, artikulace hlasivkový tón, formanty Hudební nástroje rozdělení podle vzniku tónu rozsahy, spektra, formanty Formantové syntézy Klattův
DSY-4. Analogové a číslicové modulace. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
DSY-4 Analogové a číslicové modulace Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti DSY-4 analogové modulace základní číslicové modulace vícestavové modulace modulace s rozprostřeným
4B Analýza neharmonických signálů
4B Analýza neharmonických signálů Cíl úlohy Úloha má doplnit teoretické znalosti získané v předmětu BEL1, zejména demonstrovat souvislost mezi časovým průběhem signálu a jeho spektrem. Ukázat možnost výpočtu
B2M31SYN SYNTÉZA AUDIO SIGNÁLŮ
B2M31SYN SYNTÉZA AUDIO SIGNÁLŮ zima 2016-2017 Roman Čmejla cmejla@fel.cvut.cz B2, místn.525 tel. 224 3522 36 http://sami.fel.cvut.cz/sms/ A2B31SMS - SYNTÉZA MULTIMEDIÁLNÍCH SIGNÁLŮ zima 2015-2016 http://sami.fel.cvut.cz/sms/
A/D převodníky - parametry
A/D převodníky - parametry lineární kvantování -(kritériem je jednoduchost kvantovacího obvodu), parametry ADC : statické odstup signálu od kvantizačního šumu SQNR, efektivní počet bitů n ef, dynamický
Číslicové zpracování signálů a Fourierova analýza.
Číslicové zpracování signálů a Fourierova analýza www.kme.zcu.cz/kmet/exm 1 Obsah prezentace 1. Úvod a motivace 2. Data v časové a frekvenční oblasti 3. Fourierova analýza teoreticky 4. Fourierova analýza
Transformace obrazu Josef Pelikán KSVI MFF UK Praha
Transformace obrazu 99725 Josef Pelikán KSVI MFF UK Praha email: Josef.Pelikan@mff.cuni.cz WWW: http://cgg.ms.mff.cuni.cz/~pepca/ Transformace 2D obrazu dekorelace dat potlačení závislosti jednotlivých
doc. Dr. Ing. Elias TOMEH Elias Tomeh / Snímek 1
doc. Dr. Ing. Elias TOMEH e-mail: elias.tomeh@tul.cz Elias Tomeh / Snímek 1 Frekvenční spektrum Dělení frekvenčního pásma (počet čar) Průměrování Časovou váhovou funkci Elias Tomeh / Snímek 2 Vzorkovací
2. GENERÁTORY MĚŘICÍCH SIGNÁLŮ II
. GENERÁTORY MĚŘICÍCH SIGNÁLŮ II Generátory s nízkým zkreslením VF generátory harmonického signálu Pulsní generátory X38SMP P 1 Generátory s nízkým zkreslením Parametry, které se udávají zkreslení: a)
Lineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita
Lineární a adpativní zpracování dat 3. Lineární filtrace I: Z-transformace, stabilita Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály, systémy, jejich vlastnosti a popis v časové
Při návrhu FIR filtru řešíme obvykle následující problémy:
Návrh FIR filtrů Při návrhu FIR filtru řešíme obvykle následující problémy: volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř.
AKUSTIKA. Barva tónu
AKUSTIKA Barva tónu Tón můžeme objektivně popsat pomocí těchto čtyř vlastností: 1. Výška 2. Délka 3. Barva 4. Hlasitost, hladina intenzity Nyní se budeme zabývat barvou tónu. Barva tónu Barva tónu nám
Filtrace obrazu ve frekvenční oblasti
Filtrace obrazu ve frekvenční oblasti Václav Hlaváč České vysoké učení technické v Praze Český institut informatiky, robotiky a kybernetiky 166 36 Praha 6, Jugoslávských partyzánů 1580/3 http://people.ciirc.cvut.cz/hlavac,
FILTRACE VE FOURIEROVSKÉM SPEKTRU
1/18 FILTRACE VE FOURIEROVSKÉM SPEKTRU (patří do lineárních integrálních transformací) Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz
Zvuková karta. Zvuk a zvuková zařízení. Vývoj, typy, vlastnosti
Zvuk a zvuková zařízení. Vývoj, typy, vlastnosti Zvuková karta Počítač řady PC je ve své standardní konfiguraci vybaven malým reproduktorem označovaným jako PC speaker. Tento reproduktor je součástí skříně
Výpis m-souboru: Výsledný průběh:
Příklad č. 1 Generujte a nakreslete náhodný šumový signál s normálním rozdělením o délce 100 vzorků a vzorkovací frekvencí 8kHz, rozsah amplitudy od 1 do 1 (funkce randn). N=100; % Počet vzorků Tv=1/fv;
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cziba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické
UNIVERZITA PARDUBICE. Fakulta elektrotechniky a informatiky. Fourierovy Řady Jakub Jeřábek
UNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky Fourierovy Řady Jakub Jeřábek Bakalářská práce 2012 Prohlášení autora Prohlašuji, že jsem tuto práci vypracoval samostatně. Veškeré literární
Měřící přístroje a měření veličin
Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT Měřící přístroje a měření veličin Číslo projektu
Opakování z předmětu TES
Opakování z předmětu TES A3B35ARI 6..6 Vážení studenti, v následujících měsících budete každý týden z předmětu Automatické řízení dostávat domácí úkol z látky probrané v daném týdnu na přednáškách. Jsme
Laboratorní úloha č. 8: Elektroencefalogram
Laboratorní úloha č. 8: Elektroencefalogram Cíle úlohy: Rozložení elektrod při snímání EEG signálu Filtrace EEG v časové oblasti o Potlačení nf a vf rušení o Alfa aktivita o Artefakty Spektrální a korelační
Periodicita v časové řadě, její popis a identifikace, exponenciální vyrovnáván
Periodicita v časové řadě, její popis a identifikace, exponenciální vyrovnávání Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Periodicita v časových
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické či jiné
Direct Digital Synthesis (DDS)
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Ing. Radek Sedláček, Ph.D., katedra měření K13138 Direct Digital Synthesis (DDS) Přímá číslicová syntéza Tyto materiály vznikly za podpory
Úloha č. 7 - Disperze v optických vláknech
Úloha č. 7 - Disperze v optických vláknech 1 Teoretický úvod Optické vláknové vlnovody jsou důležitou komponentou optických komunikačních sítí. Jejich nejvýznamnějšími parametry jsou měrný útlum a přenosová
Při návrhu FIR filtru řešíme obvykle následující problémy:
Návrh FIR filtrů Při návrhu FIR filtru řešíme obvykle následující problémy: volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř.
AKUSTIKA. Tón a jeho vlastnosti
AKUSTIKA Tón a jeho vlastnosti Zvuky dělíme na dvě základní skupiny: 1. Tóny vznikají pravidelným chvěním zdroje zvuku, průběh závislosti výchylky na čase je periodický, jsou to např. zvuky hudebních nástrojů,
Vold-Kalmanova řádová filtrace. JiříTůma
Vold-Kalmanova řádová filtrace JiříTůma Obsah Základy Kalmanovy filtrace Základy Vold-Kalmanovy filtrace algoritmus Globální řešení Příklady užití Vold-Kalmanovy řádové filtrace Kalmanův filtr ( n ) Process
Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady, vlastnosti Vzorkovací
Laboratorní měření 1. Seznam použitých přístrojů. Popis měřicího přípravku
Laboratorní měření 1 Seznam použitých přístrojů 1. Generátor funkcí 2. Analogový osciloskop 3. Měřící přípravek na RL ČVUT FEL, katedra Teorie obvodů Popis měřicího přípravku Přípravek umožňuje jednoduchá
ochranným obvodem, který chrání útlumové články před vnějším náhodným přetížením.
SG 2000 je vysokofrekvenční generátor s kmitočtovým rozsahem 100 khz - 1 GHz (s option až do 2 GHz), s možností amplitudové i kmitočtové modulace. Velmi užitečnou funkcí je také rozmítání výstupního kmitočtu
Základy a aplikace digitálních. Katedra radioelektroniky (13137), blok B2, místnost 722
Základy a aplikace digitálních modulací Josef Dobeš Katedra radioelektroniky (13137), blok B2, místnost 722 dobes@fel.cvut.cz 6. října 2014 České vysoké učení technické v Praze, Fakulta elektrotechnická
P7: Základy zpracování signálu
P7: Základy zpracování signálu Úvodem - Signál (lat. signum) bychom mohli definovat jako záměrný fyzikální jev, nesoucí informaci o nějaké události. - Signálem je rovněž funkce, která převádí nezávislou
3. Měření efektivní hodnoty, výkonu a spotřeby energie
3. Měření efektivní hodnoty, výkonu a spotřeby energie přednášky A3B38SME Senzory a měření zdroje převzatých obrázků: pokud není uvedeno jinak, zdrojem je monografie Haasz, Sedláček: Elektrická měření
DIPLOMOVÁ PRÁCE Lock-in zesilovač 500 khz 10 MHz
DIPLOMOVÁ PRÁCE Lock-in zesilovač 500 khz 10 MHz Petr Sládek Princip a použití lock-in zesilovače Im koherentní demodulátor f r velmi úzkopásmový Re příjem typ. 0,01 Hz 3 Hz zesilování harmonických měřený
Oscilátory. Oscilátory s pevným kmitočtem Oscilátory s proměnným kmitočtem (laditelné)
Oscilátory Oscilátory Oscilátory s pevným kmitočtem Oscilátory s proměnným kmitočtem (laditelné) mechanicky laditelní elektricky laditelné VCO (Voltage Control Oscillator) Typy oscilátorů RC většinou neharmonické
3 Tvorba zvuku elektronickou cestou
3 Tvorba zvuku elektronickou cestou Přístroje a přístrojové aparatury, které se používají pro vytváření elektronických zvuků, jsou dvojího druhu analogové a digitální. V praxi se můžeme setkat také s kombinací
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P04 MECHANICKÉ KMITÁNÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. Ing. Bohumil Koktavý,CSc. FYZIKA PRŮVODCE GB01-P04 MECHANICKÉ KMITÁNÍ STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 2 OBSAH 1 Úvod...5
VOLBA ČASOVÝCH OKEN A PŘEKRYTÍ PRO VÝPOČET SPEKTER ŠIROKOPÁSMOVÝCH SIGNÁLŮ
VOLBA ČASOVÝCH OKEN A PŘEKRYTÍ PRO VÝPOČET SPEKTER ŠIROKOPÁSOVÝCH SIGNÁLŮ Jiří TŮA, VŠB Technická univerzita Ostrava Petr Czyž, Halla Visteon Autopal Services, sro Nový Jičín 2 Anotace: Referát se zabývá
JAK VZNIKÁ LIDSKÝ HLAS? Univerzita Palackého v Olomouci
JAK VZNIKÁ LIDSKÝ HLAS? JAN ŠVEC Katedra biofyziky, ik Př.F., Univerzita Palackého v Olomouci HLAS: Všichni jej každodenně používáme, ale víme o něm v podstatě jen málo Studium lidského hlasu Je založeno
3 METODY PRO POTLAČENÍ ŠUMU U ŘE- ČOVÉHO SIGNÁLU
3 METODY PRO POTLAČENÍ ŠUMU U ŘE- ČOVÉHO SIGNÁLU V současné době se pro potlačení šumu u řečového signálu používá mnoho různých metod. Jedná se například o metody spektrálního odečítání, Wienerovy filtrace,
Digitalizace převod AS DS (analogový diskrétní signál )
Digitalizace signálu v čase Digitalizace převod AS DS (analogový diskrétní signál ) v amplitudě Obvykle převod spojité předlohy (reality) f 1 (t/x,...), f 2 ()... připomenutí Digitalizace: 1. vzorkování
18 Fourierovy řady Úvod, základní pojmy
M. Rokyta, MFF UK: Aplikovaná matematika III kap. 18: Fourierovy řady 7 18 Fourierovy řady 18.1 Úvod, základní pojmy Otázka J. Fouriera: Lze každou periodickou funkci napsat jako součet nějakých "elementárních"
Amplitudová a frekvenční modulace
Amplitudová a frekvenční modulace POZOR!!! Maximální vstupní napětí spektrálního analyzátoru je U pp = 4 V. Napěťové úrovně signálů, před připojením k analyzátoru, nejprve kontrolujte pomocí osciloskopu!!!
B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ
B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ I. MECHANICKÉ KMITÁNÍ 8.1 Kmitavý pohyb a) mechanické kmitání (kmitavý pohyb) pohyb, při kterém kmitající těleso zůstává stále v okolí určitého bodu tzv. rovnovážné polohy
AKUSTICKÁ MĚŘENÍ Frekvenční spektrum lidského hlasu
AKUSTICKÁ MĚŘENÍ Frekvenční spektrum lidského hlasu Stáhněte si z internetu program Praat a Madde (viz seznam pomůcek) a přineste si vlastní notebook. Bez tohoto nelze praktikum absolvovat (pokud budete
Oscilátory Oscilátory
Oscilátory. Oscilátory Oscilátory dělíme podle několika hledisek (uvedené třídění není zcela jednotné bylo použito vžitých názvů, které vznikaly v různých období vývoje a za zcela odlišných podmínek):
Základní metody číslicového zpracování signálu a obrazu část II.
A4M38AVS Aplikace vestavěných systémů Přednáška č. 8 Základní metody číslicového zpracování signálu a obrazu část II. Radek Sedláček, katedra měření, ČVUT FEL, 2015 Obsah přednášky Převzorkování decimace,
9. PRINCIPY VÍCENÁSOBNÉHO VYUŽITÍ PŘENOSOVÝCH CEST
9. PRINCIPY VÍCENÁSOBNÉHO VYUŽITÍ PŘENOSOVÝCH CEST Modulace tvoří základ bezdrátového přenosu informací na velkou vzdálenost. V minulosti se ji využívalo v telekomunikacích při vícenásobném využití přenosových
KATEDRA ELEKTRICKÝCH MĚŘENÍ
VŠB-TU Ostrava Datum měření: Datum odevzdání/hodnocení: KATEDRA ELEKTRICKÝCH MĚŘENÍ 9. VIRTUÁLNÍ MĚŘICÍ PŘÍSTROJE Fakulta elektrotechniky a informatiky Jména, studijní skupiny: Cíl měření: Seznámit se
ÚPGM FIT VUT Brno,
Systémy s diskrétním časem Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz 1 LTI systémy v tomto kursu budeme pracovat pouze se systémy lineárními a časově invariantními. Úvod k nim jsme viděli již
Dodatky k FT: 1. (2D digitalizace) 2. Více o FT 3. Více k užití filtrů. 7. přednáška předmětu Zpracování obrazů
Dodatky k FT:. (D digitalizace. Více o FT 3. Více k užití filtrů 7. přednáška předmětu Zpracování obrazů Martina Mudrová 4 Pořízení digitálního obrazu Obvykle: Proces transformace spojité předlohy (reality
Vlastnosti a modelování aditivního
Vlastnosti a modelování aditivního bílého šumu s normálním rozdělením kacmarp@fel.cvut.cz verze: 0090913 1 Bílý šum s normálním rozdělením V této kapitole se budeme zabývat reálným gaussovským šumem n(t),
A2B31SMS 11. PŘEDNÁŠKA 4. prosince 2014
A2B31SMS 11. PŘEDNÁŠKA 4. prosince 214 Číslicové audio efekty Hřebenové filtry Fázovací filtry Dozvuky Konvoluční reverb Schroederův algoritmus modelování dozvuku Číslicové audio efekty Filtrace - DP,
Nauka o Kmitání Přednáška č. 4
Nauka o Kmitání Přednáška č. 4 Odezva lineárního systému na obecnou periodickou budící funkci Ing. Antonín Skarolek, Ph.D. Katedra mechaniky, pružnosti a pevnosti Technická Univerzita v Liberci 213 Ustálená
Klasifikace hudebních stylů
Klasifikace hudebních stylů Martin Šimonovský (mys7@seznam.cz) Rozpoznávání hudby úloha z oblasti DSP klasifikace dle hudebních stylů
ÚPGM FIT VUT Brno, periodické a harmonické posloupnosti. konvoluce Fourierova transformace s diskrétním časem
Diskrétní signály a jejich frekvenční analýza. Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz opakování základy o diskrétních signálech. periodické a harmonické posloupnosti operace s diskrétními
Hudební nástroje. Hudební nástroje jsou zařízení k vydávání tónů a zvuků. Používají se v hudbě. Hudební nástroje mají svou barvu tónu.
Hudební nástroje Hudební nástroje jsou zařízení k vydávání tónů a zvuků. Používají se v hudbě. Hudební nástroje mají svou barvu tónu. Strunné hudební nástroje Lidé si kdysi všimli, že natažený drát může