Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
|
|
- Renáta Vlčková
- před 6 lety
- Počet zobrazení:
Transkript
1 Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
2 Pravděpodobnost a matematická statistika týden ( ) Data, typy dat, variabilita, frekvenční analýza (histogramy, četnosti absolutní, relativní, prosté, kumulativní), základní statistické charakteristiky (průměr, výběr.rozptyl, minimum, maximum, medián, kvartily, boxplot), sešikmenná rozdělení (vzájemná poloha mediánu a střední hodnoty), chvosty, kvantily 2. týden ( ) Princip statistické indukce, výběr, vlastnosti výběru, experiment. Náhodná veličina, rozdělení pravděpodobnosti a jeho souvislost s histogramem. Pravděpodobnost, pravidla pro počítání s pravděpodobností, podmíněná pravděpodobnost, závislost náhodných veličin. 3.týden ( ) Využití závislosti při stanovení pravděpodobnosti - věta o úplné pravděpodobnosti a Bayesova věta 4.týden ( ) Rozdělení chyb měření - normální rozdělení a počítání s ním. Odhady parametrů normálního rozdělení. Intervaly spolehlivosti pro normální data. Jednovýběrové testy o střední hodnotě 5.týden ( ) Výběrový poměr jako odhad pravděpodobnosti sledovaného jevu. Alternativní rozdělení, binomické rozdělení. Intervalový odhad výběrového poměru. Výběry s vracením a bez vracení (binomické a hypergeometrické rozdělení) 6.týden ( ) odpadá 7.týden ( ) Poruchy v čase (Poissonův proces). Poissonovo rozdělení, exponenciální rozdělení, jeho výhody a nevýhody, modelování doby do poruchy pomocí Weibullova rozdělení, lognormálního rozdělení, případně useknuté normální rozdělení. 8.týden ( ) Testy dobré shody, Q-Q graf (pouze vysvětlení), testy normality. Některé neparametrické testy 9.týden ( ) Dvě náhodné veličiny - srovnání dvou výběrů (dvouvýběrové testy) 10. týden ( ) Dvě náhodné veličiny. Dvourozměrné četnosti jako odhad dvourozměrného rozdělení, frekvenční tabulka. Marginální rozdělení (vše pouze diskrétně s tabulkou) 11. týden ( ) Závislost náhodných veličin, míry závislosti (kovariance, korelace), test významnosti korelačního koeficientu 12. týden ( ) Regrese, lineární regresní model (přímková, kvadratická, polynomická regrese), analýza reziduí, pásy spolehlivosti 13. týden ( ) Více výběrů, jednoduché třídění, ANOVA. 14. týden ( ) Rezerva, opakování, testy normality (náhrada za )
3 Od hazardu ke hvězdám : Abraham de Moivre pokusy s mincemi spojitá křivka Galtonova deska
4 Od hazardu ke hvězdám : Abraham de Moivre pokusy s mincemi Galtonova deska spojitá křivka Pascalův trojúhelník N N! n k = = k k!(n k)! Moivre navrhl rovnici: y = e x2 2 y = Ke (x a) 2 2b 2
5 Rozdělení chyb měření přelom 18. a 19. století: rozdíly v astronomických měřeních - která hodnota je správná? Karl Friedrich Gauss a Piere Laplace: křivka chyb měření gaussova křivka počátek 19. století: Adolphe Qételet - antropometrická měření anglických vojáků Obvod hrudi skotských vojáků v palcích, naměřený Quételetem ve dvacátých letech 19. století
6 Normální rozdělení přelom 18. a 19. století: rozdíly v astronomických měřeních - která hodnota je správná? Karl Friedrich Gauss a Piere Laplace: křivka chyb měření gaussova křivka počátek 19. století: Adolphe Qételet - antropometrická měření anglických vojáků Obvod hrudi skotských vojáků v palcích, naměřený Quételetem ve dvacátých letech 19. století normální rozdělení
7 Normální rozdělení f(x) = 1 p 2 e x2 2, x 2 R f(x) = 1 p 2 e x2 2 2 f(x) = 1 p 2 e (x µ) hustota pravděpodobnosti > 0 µ 2 R - parametr měřítka, - parametr polohy Normální rozdělení N(µ, 2 )
8 Normální rozdělení f(x) = 1 p 2 e x2 2, x 2 R Standardní normální rozdělení N(0,1) X s N(0, 1) 1.0 X 2 ( 1, +1) P (a apple X apple b) = Z b a f(x)dx {z } ha, bi
9 Normální rozdělení f(x) = 1 p 2 e x2 2, X s N(0, 1) x 2 R P ( 1 apple X apple 1) = P ( 2 apple X apple 2) = P ( 3 apple X apple 3) = Y s N(µ, 2 ) P (µ apple Y apple µ + )= P (µ 2 apple Y apple µ +2 )= P (µ 3 apple Y apple µ +3 )= {z } hµ,µ+ i 68,26% {z } hµ 2,µ+2 i 95% {z } hµ 3,µ+3 i 99.7%
10 Normální rozdělení X s N(0, 1) Y s N(µ, 2 ) P ( 1 apple X apple 1) = P ( 2 apple X apple 2) = P ( 3 apple X apple 3) = P (µ apple Y apple µ + )= P (µ 2 apple Y apple µ +2 )= P (µ 3 apple Y apple µ +3 )= P (µ k apple Y apple µ + k ) = P ( k apple Y µ apple k ) = P ( k apple Y µ apple k) = P ( k apple X apple k) Y s N(µ, 2 ) ) X = Y µ s N(0, 1)
11 Normální rozdělení Symetrie: X s N(0, 1) f(x) =f( x) X s N(µ, 2 ) f(µ + x) =f(µ x)
12 Normální rozdělení f(x) = 1 p 2 e x2 2, x 2 R F(x) X s N(0, 1) P (X apple x) = Z x 1 f(u)du (x) =P (X apple x) distribuční funkce x S jakou pravděpodobností bude hodnota náhodné veličiny X menší než x? S jakou pravděpodobností nebude hodnota náhodné veličiny X větší než x? S jakou pravděpodobností bude hodnota náhodné veličiny X větší než x? P (X >x)=1 P (X apple x) =1 (x)
13 Normální rozdělení f(x) = 1 p 2 e x2 2, x 2 R p X s N(0, 1) P (X apple x) = Z x 1 f(u)du (x) =P (X apple x) distribuční funkce F -1 (p) Jakou hodnotu náhodná veličina X nepřekročí s pravděpodobností p? x p = 1 (p) kvantilová funkce Jakých hodnot bude náhodná veličina X nabývat s předem danou pravděpodobností p?
14 Normální rozdělení f(x) = 1 p 2 e (x µ) 2 2 2, x 2 R X s N(µ, P (X apple x) = 2 ) Z x 1 f(u)du F (x) =P (X apple x) distribuční funkce F (x) = Z x 1 f(u)du f(x) = df (x) dx, x 2 R
15 Normální rozdělení = S jakou pravděpodobností bude budoucí hodnota náhodné veličiny X v intervalu? P (a apple X apple b) = Z b 1 f(x)dx ha, bi Z b a Z a 1 f(x)dx f(x)dx }F(b)-F(a) P (a apple X apple b) = F (b) F (a) {z } ha, bi
16 Normální rozdělení Symetrie: X s N(0, 1) f(x) =f( x) (x) =1 ( x) X s N(µ, 2 ) f(µ + x) =f(µ x) F (µ + x) =1 F (µ x) P ( X apple x) = (x) ( x) = (x) (1 (x)) = 2 (x) 1 P ( X µ apple x) =F (µ + x) F (µ x) = F (µ + x) (1 F (µ + x)) = 2F (µ + x) 1
17 Normální rozdělení Jakých hodnot kolem střední hodnoty bude náhodná veličina X nabývat s předem danou pravděpodobností 1-p? P (a apple X apple b) =1 a = F 1 (p/2), b = F 1 (1 p/2) (p/2)-kvantil normálního rozdělení a (1-p/2)-kvantil normálního rozdělení Ze symetrie plyne: X s N(0, 1) : x p/2 = p p/2 1 p p/ F -1 (p/2) F -1 (1-p/2) 1 (p/2) = x 1 p/2 = 1 (1 p/2) Y s N(µ, 2 ): y p/2 = F 1 (p/2) = 2µ y 1 p/2 = 2µ F 1 (1 p/2)
18 Normální rozdělení Jaký je vztah mezi xp/2 a yp/2? X s N(0, 1),Y s N(µ, ) X = Y µ ) Y = X + µ F (y) =P (Y apple y) = P ( Y µ apple y µ )= 2 ) p/2 1 p p/2 P (X apple y µ )= ( y µ ) F -1 (p/2) F -1 (1-p/2) Tedy je: F (y) = y µ... a odtud: F 1 (p) = 1 (p)+µ Vše se prakticky vyjadřuje pouze v tzv. kritických hodnotách: u p = 1 (1 p/2)
19 Normální rozdělení Jaký je vztah mezi xp/2 a yp/2? p/2... označme tedy 1 (1 p/2) = u p... potom 1 p 1 (p/2) = u p F 1 (1 p/2) = µ + u p F 1 (p/2) = µ u p p/ F -1 (p/2) F -1 (1-p/2) Tedy je: F (y) = y µ... a odtud: F 1 (p) = 1 (p)+µ Vše se prakticky vyjadřuje pouze v tzv. kritických hodnotách: u p = 1 (1 p/2)
20 Normální rozdělení Jaký je vztah mezi xp/2 a yp/2? p/2... označme tedy 1 (1 p/2) = u p... potom 1 p 1 (p/2) = u p F 1 (1 p/2) = µ + u p F 1 (p/2) = µ u p p/2 Tedy pro 2 (0, 1) F -1 (p/2) F -1 (1-p/2) X s N(0, 1) ) P ( u apple X apple u )=1 Y s N(µ, 2 ) ) P (µ u apple Y apple µ + u )=1 P ( u apple Y µ apple u )=1
21 Parametry normálního rozdělení Střední hodnota náhodné veličiny X: Z 1 E(X) = 1 xf(x)dx Rozptyl náhodné veličiny X: var(x) =E(X E(X)) 2 = E(X 2 ) E(X) 2 X s N(µ, 2 ) ) E(X) =µ var(x) = 2 Jak tyto parametry najít, když máme k dispozici pouze několik měření veličiny X? x 1,x 2,x 3,...,x n X 1,X 2,X 3,...,X n
22 Bodové odhady parametrů N(µ, 2 ) x 1,x 2,x 3,...,x n Bodový odhad střední hodnoty náhodné veličiny X: \E(X) = 1 n nx i 1 X i = X =ˆµ X 1,X 2,X 3,...,X n Bodové odhady rozptylu náhodné veličiny X: var(x) =E(X E(X)) 2 = E(X 2 ) E(X) 2 var(x) \ = 1 nx (X X) 2 i = 1 n X X 2 n n i ( X) 2 =ˆ2 i 1 var(x) ^ = 1 n 1 nx (X X) 2 i = i 1 1 n 1 n X i 1 i 1 X 2 i výběrový průměr rozptyl základního souboru n n 1 ( X) 2 = s 2 výběrový rozptyl
23 Bodové odhady parametrů N(µ, 2 ) Kdy použít který odhad rozptylu náhodné veličiny X? var(x) \ = 1 n nx (X X) 2 i = 1 X n n i 1 i 1 X 2 i rozptyl základního souboru použijeme pro velká n (řádově stovky) ( X) 2 =ˆ2 var(x) ^ = 1 n 1 nx (X X) 2 i = i 1 1 n 1 n X i 1 X 2 i výběrový rozptyl použijeme pro malé rozsahy výběru n n n 1 ( X) 2 = s 2
24 Intervalový odhad střední hodnoty Výběrový průměr i výběrový rozptyl jsou opět náhodné veličiny E( X) =µ var( X) = Odtud: 2 n ) X s N µ, 2 n ) X µ P ( u apple X µ p n apple u )=1 P ( p n u apple X µ apple p n u )=1 p n s N(0, 1) P ( X pn u apple µ apple X + p n u )=1 P ( X p n u apple µ apple X + p n u )=1 P (µ 2h X p n u, X + p n u i)=1
25 Intervalový odhad střední hodnoty Výběrový průměr i výběrový rozptyl jsou opět náhodné veličiny E( X) =µ var( X) = 2 n ) X s N µ, 2 n ) X µ p n s N(0, 1) Odtud (1 ) -intervalový odhad střední hodnoty při známém parametru je h X p n u, X + p n u i P (µ 2h X p n u, X + p n u i)=1
26 Intervalový odhad střední hodnoty Výběrový průměr i výběrový rozptyl jsou opět náhodné veličiny E( X) =µ var( X) = 2 n ) X s N µ, 2 ) n X µ s N(0, 1) p n Odtud (1 ) -intervalový odhad střední hodnoty při známém parametru je h X p n u, X + p n u i (1 )-intervalový odhad střední hodnoty při neznámém parametru je h X s p t (n 1), X + p s t (n 1)i n n t (n 1) (1 /2)- kvantil kde je kritická hodnota Studentova t-rozdělení s parametrem (n -1) takzvané stupně volnosti
27 Interval spolehlivosti pro průměr P (L apple X apple U) =1 (1 ) -interval spolehlivosti pro průměr dat z normálního rozdělení N(µ, 2 ) 2 v případě, že známe rozptyl, nebo též hµ hµ p n u,µ+ p n u i s p t (n 1),µ+ p s t (n 1)i n n pokud rozptyl odhadujeme z dat pomocí výběrového rozptylu s 2. Všimněte si, že oba intervaly jsou ve tvaru (µ SE,µ + SE) SE je tzv. standardní chyba (Standard Error)
28 Hmotnosti obsahu balení, dávkovaného automatem: Lze považovat automat za správně seřízený (m0=25,0g)? X = 24.55, s 2 (X) =0.21, s(x) =0.46, n= 50 hm 0 SE,m 0 + SEi SE = p s t (n 1) n Chceme ověřit, zda měření odpovídají rozdělení N(m 0,s 2 ) =0.05 ) t 0.05 (49) = 2.01 SE =0.132 X /2h24.868, i
29 Hmotnosti obsahu balení, dávkovaného automatem: Lze považovat automat za správně seřízený (m0=25,0g)? X = 24.55, s 2 (X) =0.21, s(x) =0.46, n= 50 Chceme ověřit, zda měření odpovídají rozdělení N(m 0,s 2 ) =0.05 ) t 0.05 (49) = 2.01 SE =0.132 X /2h24.868, i
30 Jednovýběrové testy o střední hodnotě X /2hm 0 X m 0 /2h s p t (n 1),m 0 + p s t (n 1)i n n s p n t (n 1), s p n t (n 1)i X m 0 s p n/2h t (n 1),t (n 1)i, X m 0 s p n t (n 1) H 0 : µ = m 0 H A : µ 6= m 0 Nulová hypotéza Alternativní hypotéza T = X m 0 p n s ) t (n 1) Testová statistika hladina významnosti, kritická hodnota T t (n 1) rozhodovací pravidlo Nulová hypotéza se nepřijímá, pouze zamítá či nezamítá! Statisticky nelze nic dokázat, pouze zamítnout!
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipa.cz Pravděpodobnost a matematická statistika 2010 1.týden 20.09.-24.09. Data, tp dat, variabilita, frekvenční analýza histogram,
VíceUNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@niax.cz Pravděodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, tyy dat, variabilita, frekvenční analýza
VícePravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti
VíceZápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
VíceSTATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a
VíceCharakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
VíceANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní
VíceNáhodná veličina a rozdělení pravděpodobnosti
3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro
VíceVybraná rozdělení náhodné veličiny
3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.
VíceZáklady biostatistiky II. Veřejné zdravotnictví 3.LF UK - II
Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické
VícePravděpodobnost a matematická statistika
Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n
VíceStatistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží
Statistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží Zdeněk Karpíšek Jsou tři druhy lží: lži, odsouzeníhodné lži a statistiky. Statistika je logická a přesná metoda, jak nepřesně
VíceTématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"
Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2010/2011 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.
Více15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
VíceIntervalové Odhady Parametrů
Parametrů Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze
Více5. T e s t o v á n í h y p o t é z
5. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
Více15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
VíceKMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC
Přednáška 03 Přírodovědecká fakulta Katedra matematiky KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC jiri.cihlar@ujep.cz Diskrétní rozdělení Důležitá diskrétní rozdělení pravděpodobnosti
Vícez Matematické statistiky 1 1 Konvergence posloupnosti náhodných veličin
Příklady k procvičení z Matematické statistiky Poslední úprava. listopadu 207. Konvergence posloupnosti náhodných veličin. Necht X, X 2... jsou nezávislé veličiny s rovnoměrným rozdělením na [0, ]. Definujme
VícePRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
VíceTématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"
Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2009/2010 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.
VíceRegresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
VíceCharakterizace rozdělení
Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf
VíceZákladní statistické metody v rizikovém inženýrství
Základní statistické metody v rizikovém inženýrství Petr Misák Ústav stavebního zkušebnictví Fakulta stavební, VUT v Brně misak.p@fce.vutbr.cz Základní pojmy Jev souhrn skutečností zobrazujících ucelenou
VíceTématické okruhy pro státní závěrečné zkoušky. magisterské studium
Tématické okruhy pro státní závěrečné zkoušky magisterské studium studijní obor "Řízení jakosti" školní rok 2009/2010 Management jakosti A 1. Koncepce managementu jakosti, charakteristiky a účel, normy
VíceROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN
ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN Rovnoměrné rozdělení R(a,b) rozdělení s konstantní hustotou pravděpodobnosti v intervalu (a,b) f( x) distribuční funkce 0 x a F( x) a x b b a 1 x b b 1 a x a a x b
VícePorovnání dvou výběrů
Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů
Více1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,
KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce
VíceAVDAT Náhodný vektor, mnohorozměrné rozdělení
AVDAT Náhodný vektor, mnohorozměrné rozdělení Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Opakování, náhodná veličina, rozdělení Náhodná veličina zobrazuje elementární
VíceE(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =
Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní
VíceAplikovaná statistika v R - cvičení 2
Aplikovaná statistika v R - cvičení 2 Filip Děchtěrenko Matematicko-fyzikální fakulta filip.dechterenko@gmail.com 5.6.2014 Filip Děchtěrenko (MFF UK) Aplikovaná statistika v R 5.6.2014 1 / 18 Přehled Rkových
Více8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.
8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované
VíceBakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika. 1 Úvodní poznámky. Verze: 13. června 2013
Bakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika Podrobnější rozpis okruhů otázek pro třetí část SZZ Verze: 13. června 2013 1 Úvodní poznámky 6 Smyslem SZZ by nemělo být toliko
VíceSTATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7
Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru
VíceInovace bakalářského studijního oboru Aplikovaná chemie
http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Základy zpracování dat chemometrie, statistika Doporučenáliteratura
VícePRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]
PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické
VíceII. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal
Základy navrhování průmyslových experimentů DOE II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal! Testování statistických hypotéz kvalitativní odezva kvantitativní chí-kvadrát test homogenity,
VíceUrčujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.
1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový
VíceMATEMATICKÁ STATISTIKA
MATEMATICKÁ STATISTIKA 1. Úvod. Matematická statistika se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného procesu, se snažíme popsat
VíceVšechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a
Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a báli jste se zeptat Jedinečnou funkcí statistiky je, že umožňuje vědci číselně vyjádřit nejistotu v jeho závěrech. (G. W. Snedecor)
VíceTématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"
Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2013/2014 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Úvod do teorie pravděpodobnosti Náhoda a pravděpodobnost, náhodný jev, náhodná veličina rozdělení pravděpodobnosti
VíceTomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
VíceTomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
VícePravděpodobnost a statistika I KMA/K413
Pravděpodobnost a statistika I KMA/K413 Konzultace 3 Přírodovědecká fakulta Katedra matematiky jiri.cihlar@ujep.cz Kovariance, momenty Definice kovariance: Kovariance náhodných veličin Dále můžeme dokázat:,
VíceVYBRANÉ DVOUVÝBĚROVÉ TESTY. Martina Litschmannová
VYBRANÉ DVOUVÝBĚROVÉ TESTY Martina Litschmannová Obsah přednášky Vybrané dvouvýběrové testy par. hypotéz test o shodě rozptylů (F-test), testy o shodě středních hodnot (t-test, Aspinové-Welchův test),
VíceStřední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.
Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která
VíceMÍRY ZÁVISLOSTI (KORELACE A REGRESE)
zhanel@fsps.muni.cz MÍRY ZÁVISLOSTI (KORELACE A REGRESE) 2.5 MÍRY ZÁVISLOSTI 2.5.1 ZÁVISLOST PEVNÁ, VOLNÁ, STATISTICKÁ A KORELAČNÍ Jednorozměrné soubory - charakterizovány jednotlivými statistickými znaky
VíceGrafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan
1 Úvod 1.1 Empirický výzkum a jeho etapy 1.2 Význam teorie pro výzkum 1.2.1 Konstrukty a jejich operacionalizace 1.2.2 Role teorie ve výzkumu 1.2.3 Proces ověření hypotéz a teorií 1.3 Etika vědecké práce
VíceRozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně
Testování hypotéz Nechť,, je náhodný výběr z nějakého rozdělení s neznámými parametry. Máme dvě navzájem si odporující hypotézy o parametrech daného rozdělení: Nulová hypotéza parametry (případně jediný
Vícey = 0, ,19716x.
Grafické ověřování a testování vybraných modelů 1 Grafické ověřování empirického rozdělení Při grafické analýze empirického rozdělení vycházíme z empirické distribuční funkce F n (x) příslušné k náhodnému
Vícepravděpodobnosti, popisné statistiky
8. Modelová rozdělení pravděpodobnosti, popisné statistiky Rozdělení pravděpodobnosti Normální rozdělení jako statistický model Přehled a aplikace modelových rozdělení Popisné statistiky Anotace Klasickým
VíceMATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým
VíceInovace bakalářského studijního oboru Aplikovaná chemie
http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Regrese Závislostproměnných funkční y= f(x) regresní y= f(x)
VíceTéma 22. Ondřej Nývlt
Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené
Více4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2015/16 Cvičení 1: Opakování ze statistiky LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Z čeho studovat 1) Z KNIHY Krkošková,
VíceANALÝZA DAT V R 7. KONTINGENČNÍ TABULKA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK.
ANALÝZA DAT V R 7. KONTINGENČNÍ TABULKA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz PŘEHLED TESTŮ rozdělení normální spojité alternativní / diskrétní
VíceDobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
VíceStatistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
VíceTestování statistických hypotéz
Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné
Víceletní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika
Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 Opakování t- vs. neparametrické Wilcoxonův jednovýběrový test Opakování
VíceKorelace. Komentované řešení pomocí MS Excel
Korelace Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A2:B84 (viz. obrázek) Prvotní představu o tvaru a síle závislosti docházky a počtu bodů nám poskytne
VícePřednáška. Diskrétní náhodná proměnná. Charakteristiky DNP. Základní rozdělení DNP
IV Přednáška Diskrétní náhodná proměnná Charakteristiky DNP Základní rozdělení DNP Diskrétní náhodná veličina Funkce definovaná na Ω, přiřazující každému elementárnímu jevu E prvky X(E) D R kde D je posloupnost
VíceNadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech.
Statistics ToolBox Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech. [manual ST] 1. PROBABILITY DISTRIBUTIONS Statistics
VíceStatistika II. Jiří Neubauer
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Zaměříme se především na popis dvourozměrných náhodných veličin (vektorů). Definice Nechť X a Y jsou
VíceINDUKTIVNÍ STATISTIKA
10. SEMINÁŘ INDUKTIVNÍ STATISTIKA 3. HODNOCENÍ ZÁVISLOSTÍ HODNOCENÍ ZÁVISLOSTÍ KVALITATIVNÍ VELIČINY - Vychází se z kombinační (kontingenční) tabulky, která je výsledkem třídění druhého stupně KVANTITATIVNÍ
VíceÚvodem Dříve les než stromy 3 Operace s maticemi
Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová
Více8. Normální rozdělení
8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, 2 ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) 2 e 2 2, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá
VícePraktická statistika. Petr Ponížil Eva Kutálková
Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo
VíceNormální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
VíceLINEÁRNÍ REGRESE. Lineární regresní model
LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)
VíceTomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
VíceKatedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci
Zpracování dat v edukačních vědách - Testování hypotéz Kamila Fačevicová Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Obsah seminářů 5.11. Úvod do matematické
Více5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně
VíceMĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ
MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ v praxi u jednoho prvku souboru se často zkoumá více veličin, které mohou na sobě různě záviset jednorozměrný výběrový soubor VSS X vícerozměrným výběrovým souborem VSS
VíceNávrh a vyhodnocení experimentu
Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentů v procesech vývoje a řízení kvality vozidel Ing. Bohumil Kovář, Ph.D. FD ČVUT Ústav aplikované matematiky kovar@utia.cas.cz Mladá Boleslav
VícePřednáška X. Testování hypotéz o kvantitativních proměnných
Přednáška X. Testování hypotéz o kvantitativních proměnných Testování hypotéz o podílech Kontingenční tabulka, čtyřpolní tabulka Testy nezávislosti, Fisherůvexaktní test, McNemarůvtest Testy dobré shody
VíceTestování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času
Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek
Více31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty
Vícesprávně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B.
Zkouška z předmětu KMA/PST. Anotace předmětu Náhodné jevy, pravděpodobnost, podmíněná pravděpodobnost. Nezávislé náhodné jevy. Náhodná veličina, distribuční funkce. Diskrétní a absolutně spojitá náhodná
VícePravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců
VíceCo je to statistika? Úvod statistické myšlení. Základy statistického hodnocení výsledků zkoušek. Petr Misák
Základy statistického hodnocení výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Co je to statistika? Statistika je jako bikiny. Odhalí téměř vše, ale to nejdůležitější nám zůstane skryto. (autor neznámý)
VíceCvičící Kuba Kubina Kubinčák Body u závěrečného testu
1. Příklad U 12 studentů jsme sledovali počet dosažených bodů na závěrečném testu (od 0 do 60). Vždy 4 z těchto studentů chodili k jednomu ze 3 cvičících panu Kubovi, panu Kubinovi, nebo panu Kubinčákovi.
VíceTéma 2: Pravděpodobnostní vyjádření náhodných veličin
0.05 0.0 0.05 0.0 0.005 Nominální napětí v pásnici Std Mean 40 60 80 00 0 40 60 Std Téma : Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník
VíceKORELACE. Komentované řešení pomocí programu Statistica
KORELACE Komentované řešení pomocí programu Statistica Vstupní data I Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu Popisná
VíceIntervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
VíceMinikurz aplikované statistiky. Minikurz aplikované statistiky p.1
Minikurz aplikované statistiky Marie Šimečková, Petr Šimeček Minikurz aplikované statistiky p.1 Program kurzu základy statistiky a pravděpodobnosti regrese (klasická, robustní, s náhodnými efekty, ev.
VíceKGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení
VíceVzorová prezentace do předmětu Statistika
Vzorová prezentace do předmětu Statistika Popis situace: U 3 náhodně vybraných osob byly zjišťovány hodnoty těchto proměnných: SEX - muž, žena PUVOD Skandinávie, Středomoří, 3 západní Evropa IQ hodnota
Více