poznámky ke 3. přednášce volitelného předmětu PG na FCHI VŠCHT Martina Mudrová březen 2005

Rozměr: px
Začít zobrazení ze stránky:

Download "poznámky ke 3. přednášce volitelného předmětu PG na FCHI VŠCHT Martina Mudrová březen 2005"

Transkript

1 Úvod do gomtického modlování v G ponámk k. přdnášc volitlného přdmětu G n FCHI VŠCHT Mtin Mudová břn 5

2 Osnov přdnášk I. Zákldní pojm modlování tp modlů postup II. III. Zákldní pojm gomtického modlování souřdnicové sstém Gomtické tnsfomc IV. Modlování křivk v G - nltick dných intpolčních poimčních - v D D V. Modlování ploch v G ákldní poblém VI. Algoitm všující náonost obní

3 I. Způsob modlování v G Co s oumí modlováním v G? gfické náonění dvouoměných nbo tříoměných objktů modlování D (posto ) D (posto ) 5D (šblonování swping) - tnslční } D těls vnikjí pou posouváním nbo otáčním -otční D útvů modlování gomtické - dátové modl plošné modl objmové množinové CGS (Constuctiv Solid Gomt) oktlové stom mtod poříní D počítčového modlu: D skn intktivní modlování simulc (pocduální modlování)

4 ostup gomtického modlování Jk vniká D gomtický modl?. výpočt dátového modlu jho poic (otoční posunutí kosní...) po obní - půmět D do D. výpočt plošného modlu. odstnění nviditlných hn ploch b. přiřní bv plochám při použití vhodného osvětlovcího postupu nbo ttu přiřní půhldnosti... c. půmět D do D 4

5 II. Souřdnicové sstém používné v G Uživtlský s.s (WC Wod Coodints) - sstém v ktém pcuj uživtl - jdnotk: m km mm... Nomliovný s.s. (NC Nomlid Coodints) - mistupň - pcuj v <> S.s. říní (DC Dvic Coodints) - dán možnostmi obovcího říní (olišní monitou...) - jdnotk: tiskřské bod pil... -Ktéské s.s. -Afinní souřdnicové sstém jsou pou LN 5

6 Afinní souřdnicové sstém finní souřdnic: báové vkto jsou pou LN X Tnsfomc finních souřdnic: ) ( ) ( Kd: [ ] počátk [ ] i i i i libovolný bod [ ] báové vkto [ ] X X vjádřní čákovného sstému pomocí nčákovného ovnic přchodu od nčák.s. k čák.s.: E EA [ ] [ ] A...mtic přchodu kd [ ] jsou souřdnic počátku čák.sstému. v nčák.s. A X X [ ] [ ] [ ] 6

7 Homognní souřdnic ktéské souřdnic: báové vkto jsou otonomální tj. jsou lináně návislé po dvou n sb kolmé o vlikosti pltí v nich: A - A T homognní souřdnic: [ ] [ X Y Z w] [XYZw] kd w váh bodu (w) X Y w w Z w výhod: přchod od jdné soustv k duhé použití pou mtic přchodu tpu (44) v D popř. () v D X X A H kd mtic přchodu A H! npltí d: A - H AT H 7

8 III. Gomtické tnsfomc posunutí (tnslc) otc souměnost měn měřítk kosní pomítání kždá tnsfomc j chktiován svojí mticí přchodu složitější opc jsou liován skládáním ákldních > násobní mtic přchodu álží n pořdí násobní 8

9 osunutí - tnslc njjdnodušší gom. tnsfomc [] souřdnic bodu [] [] [] [] Mtic přchodu v D: 9

10 Otoční okolo počátku D (os v D) [] Mtic přchodu v D: cos( α) sin( α) sin( α) cos( α) Otoční okolo bodu [XY] : - složní posunutí otc okolo počátku > násobní mticmi přchodu V přípdě stového obu: il s nmpuj přsně n poici jiného pilu > nutno použít D intpolční mtod

11 Souměnost (cdlní) v D [] [] [] Mtic přchodu v D: podl os střdová... otc o 8 osová... podl os nbo podl os [] [] [] podl střdu

12 Změn měřítk (scl oom) ().5 [] [] s [].5 s s koficint měřítkování v sm. os s koficint měřítkování v směu os < s < mnšní s > podloužní s< opčný smě. s. s Mtic přchodu v D: V přípdě stového obu: - měn měřítk mění vlikost obu přvokování - použití D intpolčních mtod -důsldk v vlstnostch obu

13 Změn měřítk () - stový ob přvokování - měn měřítk mění vlikost obu popř. olišní - použití D intpolčních mtod -důsldk v vlstnostch obu []

14 omítání obní D do D (půmětn) ovnoběžné všchn ppsk jsou ovnoběžné - podl poloh směu pomítání k půmětně: ) pvoúhlé nás půdos bokos pvoúhlá onomti b) kosoúhlé střdové ppsk vchájí jdnoho bodu vhodné po větší objkt linání pspktiv 4

15 Rovnoběžné pomítání ) Kosoúhlé Mtic přchodu po ovnoběžné pomítání do ovin v směu s[q q - ] q q -o q q : pvoúhlé p. - Alspoň q<> : kosoúhlé p. -o q q : kvlíní pspktiv tchnická onomti b) voúhlé 5

16 IV. Gomtické modlování křivk v G křivk dné nltickým popism pmtický tv intpolční křivk poimční křivk (jiné mtod modlování: pocduální modlování-fktál...) intktivně vtvářné křivk spolupác s uživtlm () () () t Q(t) () t () čsté poždvk: () invinc k finním tnsfomcím loklit měn (> njčstěji po částch polnomiální) konvní obálk - bod řídicího polgonu uvnitř -vně kjní bod jsou-njsou součástí křivk Intpolc poimc: Apoim c Ř ídící bod Intpolc 6

17 ostřdk po výšní náonosti obní - pspktivní pomítání -střdové pomítání - njpřionější působ obní - finní tnsfomc v homognních souřdnicích - obní odžného světl (stínování) hongův osvětlovcí modl chktistik povchů ttu - odstnění ktých částí objktů - lgoitmus Z-buff - mlířův lgoitmus 7

Konstrukci (její části) budeme idealizovat jako tuhá (nedeformovatelná) tělesa (v prostoru) nebo desky (v rovině).

Konstrukci (její části) budeme idealizovat jako tuhá (nedeformovatelná) tělesa (v prostoru) nebo desky (v rovině). . íl působící na tělso/dsku.. Zadání úloh, přdpoklad Úloha této kapitol: obcněji matmatick popsat mchanické účink atížní na konstukci a účink částí konstukc navájm. Konstukci (jjí části) budm idaliovat

Více

Konstrukci (jejíčásti) budeme idealizovat jako tuhá (nedeformovatelná) tělesa (v prostoru) nebo desky (v rovině).

Konstrukci (jejíčásti) budeme idealizovat jako tuhá (nedeformovatelná) tělesa (v prostoru) nebo desky (v rovině). . íl působící na tělso/dsku.. Zadání úloh, přdpoklad Úloha: obcněji matmatick popsat mchanické účink atížní na konstukci a účink částí konstukc navájm. Konstukci (jjíčásti) budm idaliovat jako tuhá (ndfomovatlná)

Více

Trivium z optiky 37. 6. Fotometrie

Trivium z optiky 37. 6. Fotometrie Trivium z optiky 37 6. Fotomtri V přdcházjící kapitol jsm uvdli, ž lktromagntické zářní (a tdy i světlo) přnáší nrgii. V této kapitol si ukážm, jakými vličinami j možno tnto přnos popsat a jak zohldnit

Více

Tepelné soustavy v budovách - Výpočet tepelného výkonu ČSN EN 12 831 Ing. Petr Horák, Ph.D.

Tepelné soustavy v budovách - Výpočet tepelného výkonu ČSN EN 12 831 Ing. Petr Horák, Ph.D. Tplné soustavy v budovách - Výpočt tplného výkonu ČSN EN 12 831 Ing. Ptr Horák, Ph.D. Platnost normy ČSN 060210 - Výpočt tplných ztrát budov při ústřdním vytápění Pozbyla platnost 1.9 2008. ČSN EN 12 831

Více

Obr.1 Schéma tvaru haly a jejího umístění v terénu

Obr.1 Schéma tvaru haly a jejího umístění v terénu Příklad P1.4 - Zatížní větrm Zadání příkladu Stanovt atížní větrm působící na výrobní halu s plochou střchou. Výška haly h= m, šířka b=18m, délka l=7 m. Hala j umístěna v svažitém trénu u hřbn v okolí

Více

I. Statické elektrické pole ve vakuu

I. Statické elektrické pole ve vakuu I. Statické elektické pole ve vakuu Osnova:. Náboj a jeho vlastnosti 2. Coulombův zákon 3. Intenzita elektostatického pole 4. Gaussova věta elektostatiky 5. Potenciál elektického pole 6. Pole vodiče ve

Více

Příklady výpočtů částí strojů

Příklady výpočtů částí strojů T E C H N C K Á U N V E R Z T A V L B E R C AKULTA TROJNÍ KATERA VÝROBNÍCH YTÉŮ A AUTOATZACE Příkldy výpočtů částí stojů g. Pt Zlý Ph.. 05 Poděkováí Vytvoří vydáí skipt bylo podpořo pojktm OPVK Zvýší

Více

Fyzikální podstata fotovoltaické přeměny solární energie

Fyzikální podstata fotovoltaické přeměny solární energie účinky a užití optického zářní yzikální podstata fotovoltaické přměny solární nri doc. In. Martin Libra, CSc., Čská změdělská univrzita v Praz a Jihočská univrzita v Čských Budějovicích, In. Vladislav

Více

Řešení úloh 1. kola 52. ročníku fyzikální olympiády. Kategorie B Autořiúloh:M.Jarešová(5),P.Šedivý(1,4),J.Thomas(2,3,7), K.RauneraP.Šedivý(6).

Řešení úloh 1. kola 52. ročníku fyzikální olympiády. Kategorie B Autořiúloh:M.Jarešová(5),P.Šedivý(1,4),J.Thomas(2,3,7), K.RauneraP.Šedivý(6). Řešení úloh 1. kola 52. očníku fyzikální olympiády. Kategoie B Autořiúloh:M.Jaešová(5),P.Šedivý(1,4),J.Thomas(2,3,7), K.auneaP.Šedivý(6). 1.a) Potože se tyč otáčí velmi pomalu, můžeme každou její polohu

Více

Ý š é š ó š ž š žé ó Š é ď Ý é é ž é ž š ž Ť é š é é Ř š é ď é ž é ž é é ž Ť é ď é šš é ž é ž é ž ů ž ž é Ť Ť Ř š é ž ž ď Ú š é ž š š ž š é ž š é é š ž é ž é ž ů é ž é ž é Č é é ž š š é é Ř š ž Ž š é é

Více

ď ď ď š Ý š š É Ý šš š š š šš š š š š Ě š Ó ď šš š šš ď Ě šš š šš Ě š Ě Ě Ú š š š Ě š š ď Ě š š Ž š Ě š Č š Ý ď š š ď š Ý Ť š š š š š Ý š ď ď š š Á Á É š š š Ž šš ď ř ň ř ř š Ý ď š š š š š š Ť Ě š Ť š

Více

š Ý š š Ú ž ž š ž š š ž š Í š š ž š Ú ž ž ž šš ž ž ž šš ž ž š ž ž š š ž ž ž šš ž ň Č ž ž ž ž šš ž ž ž š š š ó š š ž š ž š ž Ú ž š ž š š Ú ň š š ó š ž š ž š Ž ň š š š š š š š ž š š ž š š š š š š š š š š

Více

Transformace 2D. Transformace. Souřadnicové systémy. Vektorová a rastrová grafika. Přednáška 7

Transformace 2D. Transformace. Souřadnicové systémy. Vektorová a rastrová grafika. Přednáška 7 Přednáška 7 Transformace D Transformace Transformace je proces, při kterém dochází ke změně poloh, orientace nebo velikosti jednotlivých zobrazovaných objektů (geometrie objektů. Transformace souřadnicového

Více

Í Č ú Č Š Í Á É Č Č ú š š Ž ž š Ť Ť Ž ž Ó ó Ž ž ž Í ú ž Ť ž ž š ň ž š š Í ž Í ň Ž ň š ó š Ž Ž Í Š ú Í ž ž Í š ž ž Ť š š Ž Ž Á ž ó ž Ť š ž ť š Í ň ť ž Ž ž Ž ž Ť ž šť š ž Ž ň ú ž š ž ú ú ť Ž ň ú š ú ž Ž

Více

GEOMETRICKÉ APLIKACE INTEGRÁLNÍHO POČTU

GEOMETRICKÉ APLIKACE INTEGRÁLNÍHO POČTU Integální počet funkcí jedné eálné poměnné - 4. - GEOMETRICKÉ APLIKACE INTEGRÁLNÍHO POČTU PŘÍKLAD Učete plochu pod gfem funkce f ( x) = sinx n intevlu,. Ploch pod gfem nezáponé funkce f(x) se n intevlu,

Více

Předmět: Konstrukční cvičení - modelování součástí ve 3D. Téma 5: Další možnosti náčrtů a modelování

Předmět: Konstrukční cvičení - modelování součástí ve 3D. Téma 5: Další možnosti náčrtů a modelování Předmět: Konstrukční cvičení - modelování součástí ve 3D Téma 5: Další možnosti náčrtů a modelování Učební cíle Vytvářet obrysy tvarů v rovinách jiných, než základní rovině XY. Vytváření pracovních tvarů

Více

Galileova transformace

Galileova transformace Glileov trnsformce r V Neeistuje v čse t = působ 0: = jk určit bsolutní rchlost m F m F m F ' konst.. Newtonův ákon r ' ' ' m ' F m ' F m ' F poloh ' ' v Vt ' rchlost ' v v ' v v ' v rchlení ' ' ' V ovnoměrně

Více

Stavební statika. Cvičení 1 Přímková a rovinná soustava sil. Goniometrické funkce. Přímková a rovinná soustava sil. 1) Souřadný systém

Stavební statika. Cvičení 1 Přímková a rovinná soustava sil. Goniometrické funkce. Přímková a rovinná soustava sil. 1) Souřadný systém Vysoká škola báňskb ská Technická univeita Ostava Stavební statika Cvičení 1 římková a ovinná soustava sil římková soustava sil ovinný svaek sil Statický moment síly k bodu a dvojice sil v ovině Obecná

Více

5. Geometrické transformace

5. Geometrické transformace 5. Geometrické trnormce V této čáti předmětu 3D počítčová grik e budeme bývt geometrickými trnormcemi 3D objektů. Jedná e o operce pouvů otáčení měn měřítk koení těle vtvořených opercemi modelování. Stejnou

Více

6 Elektronový spin. 6.1 Pojem spinu

6 Elektronový spin. 6.1 Pojem spinu 6 Elktronový spin Elktronový spin j vličina poněkud záhadná, vličina, ktrá nmá obdoby v klasickém svět. Do kvantové mchaniky s spin dostal jako xprimntální fakt: z řady xprimntů totiž vyplývalo, ž kromě

Více

2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 3 1 12 7 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 26 28 30

Více

Cena celkem včetně DPH. E122099020 1 215 Kč 971332H001 1 656 Kč 52902P000012 1,2 714 Kč Cena bez DPH Cena celkem včetně DPH.

Cena celkem včetně DPH. E122099020 1 215 Kč 971332H001 1 656 Kč 52902P000012 1,2 714 Kč Cena bez DPH Cena celkem včetně DPH. 15 000 km/12 měsíců GD015ADCMP00 0,9 536 Kč 30 000 km/24 měsíců 45 000 km/36 měsíců GD030ADCMP00 1,4 833 Kč 4 339 Kč 5 251 Kč GD045ADCMP00 0,9 536 Kč 60 000 km/48 měsíců GD060ADCMP00 1,6 952 Kč 4 790 Kč

Více

Geometrická optika. Aberace (vady) optických soustav

Geometrická optika. Aberace (vady) optických soustav Geometická optika Abeace (vady) optických soustav abeace (vady) optických soustav jsou odchylky zobazení eálné optické soustavy od zobazení ideální optické soustavy v důsledku abeací není obazem bodu bod,

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univrzita omáš Bati v Zlíně LABORAORNÍ CVIČENÍ Z FYZIKY II Názv úlohy: Voltampérová charaktristika polovodičové diody a žárovky Jméno: Ptr Luzar Skupina: I II/1 Datum měřní: 14.listopadu 7 Obor: Informační

Více

Geometrické a fyzikální aplikace určitého integrálu. = b a. je v intervalu a, b záporná, je integrál rovněž záporný.

Geometrické a fyzikální aplikace určitého integrálu. = b a. je v intervalu a, b záporná, je integrál rovněž záporný. 4. přednášk Geometické zikální plikce učitého integálu Geometické plikce. Osh ovinného útvu A. Pokud se jedná o ovinný útv omezený osou přímkmi gem spojité nezáponé unkce pk je jeho osh dán učitým integálem

Více

2.9.16 Přirozená exponenciální funkce, přirozený logaritmus

2.9.16 Přirozená exponenciální funkce, přirozený logaritmus .9.6 Přirozná ponnciální funkc, přirozný ritmus Přdpokldy: 95 Pdgogická poznámk: V klsické gymnziální sdě j přirozná ponnciální funkc 0; j funkc y = +. Asi dvkrát vyrán jko funkc, jjíž tčnou v odě [ ]

Více

ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 4

ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 4 ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 4 Ptr Dourmashkin MIT 6, přklad: Vítězslav Kříha (7) Obsah SADA 4 ÚLOHA 1: LIDSKÝ KONDENZÁTO ÚLOHA : UDĚLEJTE SI KONDENZÁTO ÚLOHA 3: KONDENZÁTOY ÚLOHA 4: PĚT KÁTKÝCH

Více

SROVNÁNÍ KOLORIMETRICKÝCH ZKRESLENÍ SNÍMACÍCH SOUSTAV XYZ A RGB Jan Kaiser, Emil Košťál xkaiserj@feld.cvut.cz

SROVNÁNÍ KOLORIMETRICKÝCH ZKRESLENÍ SNÍMACÍCH SOUSTAV XYZ A RGB Jan Kaiser, Emil Košťál xkaiserj@feld.cvut.cz SROVNÁNÍ KOLORIMETRICKÝCH ZKRESLENÍ SNÍMACÍCH SOUSTAV XYZ A RGB Jan Kaisr, Emil Košťál xkaisrj@fld.cvut.cz ČVUT, Fakulta lktrotchnická, katdra Radiolktroniky Tchnická 2, 166 27 Praha 6 1. Úvod Článk s

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE DIPLOMOVÁ PRÁCE. 2008 Bc. Pavel Hájek

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE DIPLOMOVÁ PRÁCE. 2008 Bc. Pavel Hájek ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE DIPLOMOVÁ PRÁCE 8 Bc. Pavl Hájk ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavbní, Katdra spciální godézi Názv diplomové prác: Vbudování, zaměřní a výpočt bodového

Více

Ť Í ň š Ť ň Ú Ú Ť č č č č ň ů š Ť ňš č š ť Ť š š č š ň č š č ť č š č Ť Ž Ť Ť š č Í š š ť š Ť ň č š Í ňč ň č š ň Ž č č ú č ť ď č Ť Ť ň ň š Ť č š ů ň ň Ů Í š š ň š ť Ů ň č Ž Ž ť č č Í Ď ť Ťč š ť š Ž Ď Ž

Více

MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1,

MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1, MATEMATIKA III Program - vojný integrál. Vpočtěte dvojrozměrné integrál v obdélníku : + dd = { < > < > } ( 3), (, ) : 0,, 0,, dd = { < > < > } ( 4 ), (, ) :,3,,, + dd = { < > < > } ( ), (, ):,0,,, + dd=

Více

Otázky z kapitoly Stereometrie

Otázky z kapitoly Stereometrie Otázky z kapitoly Stereometrie 10. února 015 Obsah 1 Krokované příklady (0 otázek) 1 Metrické vlastnosti (30 otázek) 1.1 Obtížnost 1 (16 otázek)....................................... 1. Obtížnost (14

Více

MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ

MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ Úloha č. 6 a MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ ÚKOL MĚŘENÍ:. Změřte magnetickou indukci podél osy ovinných cívek po případy, kdy vdálenost mei nimi je ovna poloměu cívky R a dále R a R/..

Více

(3) vnitřek čtyřúhelníka tvořeného body [0, 0], [2, 4], [4, 0] a [3, 3]. (2) těleso ohraničené rovinami x = 1, y = 0 z = x a z = y

(3) vnitřek čtyřúhelníka tvořeného body [0, 0], [2, 4], [4, 0] a [3, 3]. (2) těleso ohraničené rovinami x = 1, y = 0 z = x a z = y 3. Násobné integrály 3.. Oblasti v R. Načrtněte množinu R a najděte meze integrálů f(x, y)dxdy, kde je dána: () = {(x, y) : x, y 3} () vnitřek trojúhelníka tvořeného body [, ], [, ] a [, ]. (3) vnitřek

Více

347/2012 Sb. VYHLÁŠKA

347/2012 Sb. VYHLÁŠKA 347/2012 Sb. VYHLÁŠKA z dn 12. října 2012, ktrou s stanoví tchnicko-konomické paramtry obnovitlných zdrojů pro výrobu lktřiny a doba životnosti výrobn lktřiny z podporovaných zdrojů Změna: 350/2013 Sb.

Více

7.5.8 Středová rovnice elipsy

7.5.8 Středová rovnice elipsy 758 Středová rovnice elips Předpokld: 750, 7507 Př : Vrchol elips leží v odech A[ ;], B [ 3;], [ ;5], [ ; 3] elips souřdnice jejích ohnisek Urči prmetr Zdné souřdnice už n první pohled vpdjí podezřele,

Více

Zkoušky vnitřním přetlakem > 100 bar

Zkoušky vnitřním přetlakem > 100 bar Zkoušky vnitřním přetlakem > 100 bar Září 2006 1 Zkoušky vnitřním přetlakem v laboratoři plastových potrubních systémů Zkoušky statickým vnitřním přetlakem (zkušební teplota, prostředí, tlakové médium)

Více

Kapitola 2. Bohrova teorie atomu vodíku

Kapitola 2. Bohrova teorie atomu vodíku Kapitola - - Kapitola Bohrova tori atomu vodíku Obsah:. Klasické modly atomu. Spktrum atomu vodíku.3 Bohrův modl atomu vodíku. Frack-Hrtzův pokus Litratura: [] BEISER A. Úvod do modrí fyziky [] HORÁK Z.,

Více

Dýzy s dalekým dosahem

Dýzy s dalekým dosahem T 1.2/2/TCH/2 Dýzy s dalekým dosahem Série DUK TROX AUSTRIA GmbH. tel.: +420 283 880 380 organizační složka fax: +420 286 881 870 Ďáblická 2 e-mail: trox@trox.cz 182 00 Praha 8 http:// www.trox.cz T_1-2_2_EN_2_DUK_1ver.indd

Více

Napětí horninového masivu

Napětí horninového masivu Npětí honinového msivu pimání npjtostí sekundání npjtostí účinky n stbilitu podzemního díl Dále můžeme uvžovt * bobtnání honiny * teplotní stv honiny J. Pušk MH 6. přednášk 1 Pimání npjtost gvitční (vyvolán

Více

= b a. V případě, že funkce f(x) je v intervalu <a,b> záporná, je integrál rovněž záporný.

= b a. V případě, že funkce f(x) je v intervalu <a,b> záporná, je integrál rovněž záporný. 5. přednášk APLIKAE URČITÉHO INTERÁLU Pomocí integálního počtu je možné vpočítt osh ovinných útvů ojem otčních těles délk ovinných křivek. Velké upltnění má učitý integál tké ve zice chemii. eometické

Více

4. PRŮBĚH FUNKCE. = f(x) načrtnout.

4. PRŮBĚH FUNKCE. = f(x) načrtnout. Etrém funkc 4. PRŮBĚH FUNKCE Průvodc studim V matmatic, al i v fzic a tchnických oborch s často vsktn požadavk na sstrojní grafu funkc K nakrslní grafu funkc lz dns většinou použít vhodný matmatický softwar.

Více

Matematika II. (LS 2009) FS VŠB-TU Ostrava. Bud te. A = a + 1 2, B = 1. b + 1. y = x 2 + Bx 3A. a osou x.

Matematika II. (LS 2009) FS VŠB-TU Ostrava. Bud te. A = a + 1 2, B = 1. b + 1. y = x 2 + Bx 3A. a osou x. Program 2. Aplikace určitého integrálu zadání 1. y = x 2 + Bx 3A y = ln(bx), x = 1/A a x = 3A Vypočítejte její obsah. 3. Určete obsah plochy ohraničené parametricky zadanou křivkou (tzv. cykloidou) x(t)

Více

ÁVD K MTÁŽI A UŽÍVÁÍ

ÁVD K MTÁŽI A UŽÍVÁÍ FERDUS - MATERIÁLY A RAVY EUMATIK J. Fučíka 699, 6 11 Chr%&yně e-mail: inf%@ferdus.cz, tel./fax: 5 103 566, 53 356 390 E-BCHD : www.ferdus.cz. STAHVÁK RUŽI AUTMBILŮ ty& 2200 LBS R. No. 110.76 ÁVD K MTÁŽI

Více

REGULACE. Rozvětvené regulační obvody. rozvětvené regulační obvody dvoupolohová regulace regulační schémata typických technologických aparátů

REGULACE. Rozvětvené regulační obvody. rozvětvené regulační obvody dvoupolohová regulace regulační schémata typických technologických aparátů REGULACE (pokračování 2) rozvětvné rgulační obvody dvoupolohová rgulac rgulační schémata typických tchnologických aparátů Rozvětvné rgulační obvody dopřdná rgulac obvod s měřním poruchy obvod s pomocnou

Více

ZJIŠŤOVÁNÍ FREKVENČNÍCH VLASTNOSTÍ OTEVŘENÉHO OBVODU V UZAVŘENÉ REGULAČNÍ SMYČCE

ZJIŠŤOVÁNÍ FREKVENČNÍCH VLASTNOSTÍ OTEVŘENÉHO OBVODU V UZAVŘENÉ REGULAČNÍ SMYČCE Nové mtod a postp v olasti přístrojové tchnik, atomatického řízní a informatik Ústav přístrojové a řídicí tchnik ČVUT v Praz odorný sminář Jindřichův Hradc, 28. až 29. května 2009 ZJIŠŤOVÁNÍ FREKVENČNÍCH

Více

Konzultace z předmětu MATEMATIKA pro první ročník dálkového studia

Konzultace z předmětu MATEMATIKA pro první ročník dálkového studia - - Konzultce z předmětu MATEMATIKA pro první ročník dálkového studi ) Číselné obor ) Zákldní početní operce procentový počet ) Absolutní hodnot reálného čísl ) Intervl množinové operce ) Mocnin ) Odmocnin

Více

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ. Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních

Více

Z teorie je nutné znát pojmy: lineární funkcionál, jádro, hodnost a defekt lineárního funkcionálu. Také využijeme 2. větu o dimenzi.

Z teorie je nutné znát pojmy: lineární funkcionál, jádro, hodnost a defekt lineárního funkcionálu. Také využijeme 2. větu o dimenzi. Lineární funkcionál Z teorie je nutné znát pojm: lineární funkcionál jádro hodnost a defekt lineárního funkcionálu Také vužijeme větu o dimenzi [cvičení] Nechť je definován funkcionál ϕ : C C pro každé

Více

FYZIKA 3. ROČNÍK. Nestacionární magnetické pole. Magnetický indukční tok. Elektromagnetická indukce. π Φ = 0. - magnetické pole, které se s časem mění

FYZIKA 3. ROČNÍK. Nestacionární magnetické pole. Magnetický indukční tok. Elektromagnetická indukce. π Φ = 0. - magnetické pole, které se s časem mění FYZKA 3. OČNÍK - magntické pol, ktré s s časm mění Vznik nstacionárního magntického pol: a) npohybující s vodič s časově proměnným proudm b) pohybující s vodič s proudm c) pohybující s prmanntní magnt

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ GB02 FYZIKA II MODUL M01 ELEKTŘINA A MAGNETISMUS

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ GB02 FYZIKA II MODUL M01 ELEKTŘINA A MAGNETISMUS VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ PROF. ING. BOHUMIL KOKTAVÝ, CSC., DOC. ING. PAVEL KOKTAVÝ, CSC., PH.D. GB FYZIKA II MODUL M1 ELEKTŘINA A MAGNETISMUS STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY

Více

Technická mechanika - Statika

Technická mechanika - Statika Technická mechanika - Statika Elektronická učebnice Ing. Jaromír Petr Tento materiál byl vytvořen v rámci projektu CZ.1.07/1.1.07/03.0027 Tvorba elektronických učebnic O B S A H 1 Statika tuhých těles...

Více

Popis polohy tělesa. Robotika. Vladimír Smutný. Centrum strojového vnímání. České vysoké učení technické v Praze

Popis polohy tělesa. Robotika. Vladimír Smutný. Centrum strojového vnímání. České vysoké učení technické v Praze Popis poloh těles 1 2 Robotik Popis poloh těles 3 4 5 6 7 8 9 10 11 12 Vldimír Smutný Centrum strojového vnímání České vsoké učení technické v Prze 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Více

SYLABUS PŘEDNÁŠKY 6a Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčovací sítě) 4. ročník bakalářského studia studijní program G studijní obor G

SYLABUS PŘEDNÁŠKY 6a Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčovací sítě) 4. ročník bakalářského studia studijní program G studijní obor G SYLABUS PŘEDNÁŠKY 6a Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčovací sítě) 4. ročník bakalářského studia studijní program G studijní obor G říjen 2014 1 7. POLOHOVÉ VYTYČOVACÍ SÍTĚ Vytyčení je součástí realizace

Více

Euklidovský prostor Stručnější verze

Euklidovský prostor Stručnější verze [1] Euklidovský prostor Stručnější verze definice Eulidovského prostoru kartézský souřadnicový systém vektorový součin v E 3 vlastnosti přímek a rovin v E 3 a) eprostor-v2, 16, b) P. Olšák, FEL ČVUT, c)

Více

IV. Magnetické pole ve vakuu a v magnetiku. 1. Magnetické pole el. proudu 2. Vlastnosti mg. pole 3. Magnetikum

IV. Magnetické pole ve vakuu a v magnetiku. 1. Magnetické pole el. proudu 2. Vlastnosti mg. pole 3. Magnetikum IV. Magnetické pole ve vakuu a v magnetiku Osnova: 1. Magnetické pole el. poudu 2. Vlastnosti mg. pole 3. Magnetikum 1. Magnetické pole el. poudu histoický úvod podivné expeimenty ukazující neznámé silové

Více

Komentovaný vzorový příklad výpočtu suterénní zděné stěny zatížené kombinací normálové síly a ohybového momentu

Komentovaný vzorový příklad výpočtu suterénní zděné stěny zatížené kombinací normálové síly a ohybového momentu Fakulta stavbní ČVUT v Praz Komntovaný vzorový příklad výpočtu sutrénní zděné stěny zatížné kombinací normálové síly a ohybového momntu Výuková pomůcka Ing. Ptr Bílý, 2012 Tnto dokumnt vznikl za finanční

Více

6. URČITÝ INTEGRÁL Výpočet určitého integrálu Úlohy k samostatnému řešení... 68

6. URČITÝ INTEGRÁL Výpočet určitého integrálu Úlohy k samostatnému řešení... 68 Sbírka úloh z matematik 6. URČITÝ INTEGRÁL... 68 6.. Výpočet určitého integrálu... 68 Úloh k samostatnému řešení... 68 6.. Geometrické aplikace... 69 6... Obsah rovinného obrazce... 69 Úloh k samostatnému

Více

El2.C. Podle knihy A Blahovec Základy elektrotechniky v příkladech a úlohách zpracoval ing. Eduard Vladislav Kulhánek

El2.C. Podle knihy A Blahovec Základy elektrotechniky v příkladech a úlohách zpracoval ing. Eduard Vladislav Kulhánek Spš lko PŘÍKOPY El. viční z základů lkochniky. očník Podl knihy Blahovc Základy lkochniky v příkladch a úlohách zpacoval ing. Eduad ladislav Kulhánk yšší odboná a sřdní půmyslová škola lkochnická Faniška

Více

Úloha č. 11. H0 e. (4) tzv. Stefanův - Bo1tzmannův zákon a 2. H λ dλ (5)

Úloha č. 11. H0 e. (4) tzv. Stefanův - Bo1tzmannův zákon a 2. H λ dλ (5) pyromtrm - vrz 01 Úloha č. 11 Měřní tplotní vyzařovací charaktristiky wolframového vlákna žárovky optickým pyromtrm 1) Pomůcky: Měřicí zařízní obsahující zdroj lktrické nrgi, optický pyromtr a žárovku

Více

5.2. Určitý integrál Definice a vlastnosti

5.2. Určitý integrál Definice a vlastnosti Určitý intgrál Dfinic vlstnosti Má-li spojitá funkc f() n otvřném intrvlu I primitivní funkci F(), pk pro čísl, I j dfinován určitý intgrál funkc f() od do vzthm [,, 7: [ F( ) = F( ) F( ) f ( ) d = (6)

Více

č č ň Ž ť ň Ž č Í č Ž Í č Í ň č ň Ž č č Ď ň Í Š č ň č Ž ň ň ň ň ň č Ž č ť Ů č ň ň č Í č ň Ó č č ň č Í č č ň Ď ň č č ň ň Í č č č Ž Ž č Ž Ž ň Ž ň ň Ó č ň ň Ž č č č ň ď Ž ň Íč ť č Ů Ž č č č Í ň Í ň č č ň

Více

Test studijních předpokladů. (c) 2008 Masarykova univerzita. Varianta 18

Test studijních předpokladů. (c) 2008 Masarykova univerzita. Varianta 18 Tst studijních přdpokladů (c) 2008 Masarykova univrzita Varianta 18 Vrbální myšlní 1 2 3 4 5 Čský výraz hodinu označuj délku trvání události a lz ho přidat k něktrým čským větám: např. Ptr psal dopis hodinu.

Více

základní pojmy základní pojmy teorie základní pojmy teorie základní pojmy teorie základní pojmy teorie

základní pojmy základní pojmy teorie základní pojmy teorie základní pojmy teorie základní pojmy teorie Tori v strojírnské tchnologii Ing. Oskar Zmčík, Ph.D. základní pojmy používaná rozdělní vztahy, dfinic výpočty základní pojmy žádnou součást ndokážm vyrobit s absolutní přsností při výrobě součásti dochází

Více

Ě ů ý š ř ť š š š Ú š š š š š š Č š ť šš ť š š ť ň š Č š ť ó ť Č š š ó ň ň Š Č Č ť Č ň Š ť Š š š š š š š ň š š š š š š š š š š š š ň š š š ů Š Í ň š š Š š ť š Ž š š š š š š š š š ť ť š Š š ň š š š š ď

Více

= = Řešení: Pro příspěvek k magnetické indukci v bodě A platí podle Biot-Savartova zákona. d 1

= = Řešení: Pro příspěvek k magnetické indukci v bodě A platí podle Biot-Savartova zákona. d 1 Mgntiké pol 8 Vypočtět mgntikou inuki B kuhové smyčky o poloměu 5 m n jjí os symti v válnosti 1 m o oviny smyčky, jstliž smyčkou potéká lktiký pou 1 A Řšní: Po příspěvk k mgntiké inuki v boě A pltí pol

Více

ď Ž ó Ý š Ž ú š š š ť ó ť ť š š Ž Ž š Ž Č ď š Ž ň š Ž š š š ú Ú Š ď š š Č ú š ň š š š š š Č ú ú š ú ú š š š š š ň ň š šú š š š š š ť Č š š ú š š Ž šť š š ň ň ú š ň Ž ú š Č ú š ú Š š š ň Š ú ú Č É š š ď

Více

Jaký vliv na tvar elipsy má rozdíl mezi délkou provázku mezi body přichycení a vzdáleností těchto bodů.

Jaký vliv na tvar elipsy má rozdíl mezi délkou provázku mezi body přichycení a vzdáleností těchto bodů. 7.5.7 lips Přdpokldy: 7501 lips = rozšlápnutá kružnic. Jk ji sstrojit? Zhrdnická konstrukc lipsy (tkto s vytyčují záhony): Vzmm provázk n koncích ho přidělám tk, y nyl npnutý. Klcíkm provázk npnm tk, y

Více

L HOSPITALOVO PRAVIDLO

L HOSPITALOVO PRAVIDLO Difrnciální počt funkcí jdné rálné proměnné - 7 - L HOSPITALOVO PRAVIDLO LIMITY TYPU 0/0 PŘÍKLAD Pomocí L Hospitalova pravidla určt sin 0 Ověřní přdpokladů L Hospitalovy věty Přímočarým použitím věty o

Více

III.4. Fubiniova (Fubiniho) věta pro trojný integrál

III.4. Fubiniova (Fubiniho) věta pro trojný integrál E. Brožíková, M. Kittlerová, F. Mrá: Sbírk příkldů Mtemtik II ( III.. Fubiniov (Fubiniho vět pro trojný integrál Vpočítejte trojné integrál n dných množinách E : Příkld. I Řešení : I ( + d d d; {[,, E

Více

š Š ó Ú š Ž š ž š ú Č š ú Ž š š š š ú ž Ú š š ď ň ž ó ó š ž ú š žď Ů Ú š Ž ó ž Ž ž ž ž ž Ó ú š ú ď ú š ď ú š Ž š ú Š ž š Š š Š ú š š ž š Ú ú Ú ž š ť ó ď š š š Á Š Ů ť ť ú š Ž ó š Č š š Ž ú š š Ú Ů ž Ž

Více

POŽADAVEK NA SNIŽOVÁNÍ ODTOKOVÝCH KONCENTRACÍ FOSFORU JE V BOJI PROTI EUTROFIZACI TOKŮ I U MALÝCH ČOV AKTUÁLNÍ.

POŽADAVEK NA SNIŽOVÁNÍ ODTOKOVÝCH KONCENTRACÍ FOSFORU JE V BOJI PROTI EUTROFIZACI TOKŮ I U MALÝCH ČOV AKTUÁLNÍ. POŽADAVEK NA SNIŽOVÁNÍ ODTOKOVÝCH KONCENTRACÍ FOSFORU JE V BOJI PROTI EUTROFIZACI TOKŮ I U MALÝCH ČOV AKTUÁLNÍ. Ing. Jan Follr, Martin Eyr, Vodárnská akciová spolčnost, a.s. OČEKÁVANÝ CÍLOVÝ STAV NORMY

Více

hledané funkce y jedné proměnné.

hledané funkce y jedné proměnné. DIFERCIÁLNÍ ROVNICE Úvod Df : Občjnou difrniální rovnií dál jn DR rozumím rovnii, v ktré s vsktují driva hldané funk jdné proměnné n n Můž mít pliitní tvar f,,,,, n nbo impliitní tvar F,,,,, Řádm difrniální

Více

č Ť Ť Ď Ť č č šš š č š Í Í š č š š ň č Í Í š ň š š š š č š č š š š š č š š č č š š ď č č š ť š š ň č ďč č č Í š š Í š šš š Í š ď Ť Ť Í Á č š č Ť Í Ů Ú č č š š š š ď ď ň ť ď ď Ě š ď ď ď š č ď Í č š Ť Ž

Více

+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity

+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity Tlumené kmit V praxi téměř vžd brání pohbu nějaká brzdicí síla, jejíž původ je v třecích silách mezi reálnými těles. Matematický popis těchto sil bývá dosti komplikovaný. Velmi často se vsktuje tzv. viskózní

Více

Řešení testu 1b. Fyzika I (Mechanika a molekulová fyzika) NOFY021. 19. listopadu 2015

Řešení testu 1b. Fyzika I (Mechanika a molekulová fyzika) NOFY021. 19. listopadu 2015 Řešení testu b Fyzika I (Mechanika a olekulová fyzika) NOFY0 9. listopadu 05 Příklad Zadání: Kulička byla vystřelena vodorovně rychlostí 0 /s do válcové roury o průěru a koná pohyb naznačený na obrázku.

Více

Elektrické. MP - Ampérmetr A U I R. Naměřená hodnota proudu 5 A znamená, že měřená veličina je 5 x větší než jednotka - A

Elektrické. MP - Ampérmetr A U I R. Naměřená hodnota proudu 5 A znamená, že měřená veličina je 5 x větší než jednotka - A Elektrické měření definice.: Poznávací proces jehož prvořadým cílem je zjištění: výskytu a velikosti (tzv. kvantifikace) měřené veličiny při využívání známých fyzikálních jevů a zákonů. MP - mpérmetr R

Více

Mechanismy. Vazby členů v mechanismech (v rovině):

Mechanismy. Vazby členů v mechanismech (v rovině): Mechanismy Mechanismus klikový, čtyřkloubový, kulisový, západkový a vačkový jsou nejčastějšími mechanismy ve strojích (kromě převodů). Mechanismy obsahují členy (kliky, ojnice, těhlice, křižáky a další).

Více

Dráhy planet. 28. července 2015

Dráhy planet. 28. července 2015 Dáhy plnet Pet Šlecht 28. čevence 205 Výpočet N střední škole se zpvidl učí, že dáhy plnet jsou elipsy se Sluncem v ohnisku. Tké se učí, že tento fkt je možné dokázt z Newtonov gvitčního zákon. Příslušný

Více

Přímková a rovinná soustava sil

Přímková a rovinná soustava sil STAVEBNÍ STATIKA Ing. Lenka Lausová LH 47/1 tel. 59 73 136 římková a ovinná soustava sil lenka.lausova@vsb.c http://fast1.vsb.c/lausova Základní pojmy: Jednotková kužnice 1) Souřadný systém 1 sin potilehlá

Více

. Opakovací kurs středoškolské matematiky podzim 2015

. Opakovací kurs středoškolské matematiky podzim 2015 . Opakovací kurs středoškolské matematiky podzim 0 František Mráz Ústav technické matematiky, Frantisek.Mraz@fs.cvut.cz I. Mocniny, odmocniny, algeraické výrazy Upravte (zjednodušte), případně určete číselnou

Více

část 8. (rough draft version)

část 8. (rough draft version) Gntika v šlchtění zvířat TGU 006 9 Odhad PH BLUP M část 8. (rough draft vrsion V animal modlu (M s hodnotí každé zvíř samostatně a současně v závislosti na užitkovosti příbuzných jdinců hodnocné populac.

Více

Molekula vodíku. ez E. tak její tvar můžeme zjednodušit zavedením tzv. Bohrova poloměru vztahem: a celou rovlici (0.1) vynásobíme výrazem

Molekula vodíku. ez E. tak její tvar můžeme zjednodušit zavedením tzv. Bohrova poloměru vztahem: a celou rovlici (0.1) vynásobíme výrazem Molkul vodíku Přípvná část tomové jdnotky Vzmm-li si npř. Schodingovu ovnici: Z, (0.) m tk jjí tv můžm zjdnodušit zvdním tzv. ohov poloměu vzthm: (0.) m Pokud v těchto jdnotkách udm měřit vzdálnosti, noli

Více

2. Frekvenční a přechodové charakteristiky

2. Frekvenční a přechodové charakteristiky rkvnční a přchodové charaktristiky. rkvnční a přchodové charaktristiky.. Obcný matmatický popis Přchodové a frkvnční charaktristiky jsou důlžitým prostřdkm pro analýzu a syntézu rgulačních obvodů a tdy

Více

Zápočtová písemka z Matematiky III (BA04) skupina A

Zápočtová písemka z Matematiky III (BA04) skupina A skupina A 0 pro x < 1, ae x pro x 1, ), Pravděpodobnost P (X ) a P (X =.). E (X) a E ( X 1). Hustotu transformované náhodné veličiny Y = (X + 1). F(x) = x 3 pro x (0, 9), Hustotu f(x). Pravděpodobnost

Více

ČKAIT 12.5.2011 - AGEL

ČKAIT 12.5.2011 - AGEL Euroó v přílaech Dřevěné onstruce Návrh a posouení jenotlivých prvů rovu ČKAIT 1.5.011 - AGEL Ing. Petr Agel, oc. Ing. Antonín Loaj, Ph.D. 1 1. Geometrie rovu. Zatížení rovu.1 Stálé atížení. Proměnné atížení.

Více

4ST201 STATISTIKA CVIČENÍ Č. 8

4ST201 STATISTIKA CVIČENÍ Č. 8 4ST201 STATISTIKA CVIČENÍ Č. 8 analýza závislostí kontingenční tabulky test závislosti v kontingenční tabulce analýza rozptylu regresní analýza lineární regrese Analýza závislostí Budeme ověřovat existenci

Více

Ing. Ondrej Panák, ondrej.panak@upce.cz Katedra polygrafie a fotofyziky, Fakulta chemicko-technologická, Univerzita Pardubice

Ing. Ondrej Panák, ondrej.panak@upce.cz Katedra polygrafie a fotofyziky, Fakulta chemicko-technologická, Univerzita Pardubice 1 ěřní barvnosti studijní matriál Ing. Ondrj Panák, ondrj.panak@upc.cz Katdra polygrafi a fotofyziky, Fakulta chmicko-tchnologická, Univrzita Pardubic Úvod Abychom mohli či už subjktivně nbo objktivně

Více

ZÁKLADY KRYSTALOGRAFIE KOVŮ A SLITIN

ZÁKLADY KRYSTALOGRAFIE KOVŮ A SLITIN ZÁKLADY KRYSTALOGRAFIE KOVŮ A SLITIN pevné látky jsou chrkterizovány omezeným pohybem zákldních stvebních částic (tomů, iontů, molekul) kolem rovnovážných poloh PEVNÉ LÁTKY krystlické morfní KRYSTAL pevné

Více

Funkce zadané implicitně

Funkce zadané implicitně Kapitola 8 Funkce zadané implicitně Začneme několika příklady. Prvním je známá rovnice pro jednotkovou kružnici x 2 + y 2 1 = 0. Tato rovnice popisuje křivku, kterou si však nelze představit jako graf

Více

C.1 Tabulka inventarizace sadu

C.1 Tabulka inventarizace sadu C.1 Tabulka inventarizace sadu Souřadnice A8 SS TR 157 50 1649 A9 PS S 73 23 1650 NK A10 PS S 80 25 1651 A11 PS S 83 26 1652 NK A12 DS KV 52 17 1653 obvod hlavni větve 52cm, obvod u paty kmene 117 A13

Více

ý ý ý ů ů ů ř Ž ř ř ý ý ý ý ý ů ř ý š Š ý ř ř Ž ý ř ž ň ř ý ů ů ž ž ř ý ý ů ř ů ů š Ž ř Ž ů ó ř ó ó ž ý ý Í Í ý š ý ž ý ů ý ř ů ů ý ý šť ř ý ů ú ň ý ž ž ř ů ý ý ř ř Ž Ž ř Ú ó ó š ý ý š ů š ž ř ů š ý š

Více

Zvýšení bezpečnosti provozu na vrátnici

Zvýšení bezpečnosti provozu na vrátnici P OD N I KOVÁ VRÁTN I C E Spolhlié a fktiní řšní. N ÁKLAD OVÁ VRÁTN I C E Zásadní zrychlní odbaní ozidl Průkazná idnc průjzdu ozidl a pěších náště Díky snímání SPZ možnost dalších automatických funkcí

Více

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ převody. Přednáška 6

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ převody. Přednáška 6 Fakulta strojního inženýrství VUT v Brně Ústav konstruování KONSTRUOVÁNÍ STROJŮ převody Přednáška 6 Pevnostní výpočet čelních ozubených kol Don t force it! Use a bigger hammer. ANONYM Kontrolní výpočet

Více

Pražská plošina Středolabská tabule. Benešovská pahorkatina. Hornosázavská pahorkatina

Pražská plošina Středolabská tabule. Benešovská pahorkatina. Hornosázavská pahorkatina Pražská plošina Středolabská tabule Benešovská pahorkatina Hornosázavská pahorkatina Typ krajiny podle reliéfu Geologická mapa Povodí Jalového potoka Výškopis Geodetický bod Vrstevnice zdůrazněná Vrstevnice

Více

PŘÍKLAD 2 1. STANOVENÍ ÚSPOR TEPLA A ROČNÍ MĚRNÉ POTŘEBY TEPLA 1.1. GEOMETRICKÉ VLASTNOSTI BUDOVY 1.2. CHARAKTERISTIKA STAVEBNÍCH KONSTRUKCÍ

PŘÍKLAD 2 1. STANOVENÍ ÚSPOR TEPLA A ROČNÍ MĚRNÉ POTŘEBY TEPLA 1.1. GEOMETRICKÉ VLASTNOSTI BUDOVY 1.2. CHARAKTERISTIKA STAVEBNÍCH KONSTRUKCÍ PŘÍKLAD 2 1. STANOVENÍ ÚSPOR TEPLA A ROČNÍ MĚRNÉ POTŘEBY TEPLA pro clkové zatplní panlového domu Běhounkova 2457-2462, Praha 5 Objkt má dvět nadzmní podlaží a jdno podlaží podzmní, částčně pod trénm. Objkt

Více