Galileova transformace
|
|
- Otakar Pokorný
- před 6 lety
- Počet zobrazení:
Transkript
1 Glileov trnsformce r V Neeistuje v čse t = působ 0: = jk určit bsolutní rchlost m F m F m F ' konst.. Newtonův ákon r ' ' ' m ' F m ' F m ' F poloh ' ' v Vt ' rchlost ' v v ' v v ' v rchlení ' ' ' V
2 ovnoměrně rchlená vtžná soustv r v čse t = 0: = m F m F m F neinerciální soustv ' V At. Newtonův ákon m r ' ' ' m ' ' F F m ' F dánlivá síl setrvčná síl ma poloh ' v ' ' rchlost ' v ' v v v ' v ' ' ' 1 rchlení At At A
3 ovnoměrně rchlená vtžná soustv neinerciální soustv r ' V silný princip ekvivlence: At Grvitci není možné lokálně rolišit od neprvých sil. m F m F m F m r ' ' ' m ' ' F F m ' F ma poloh ' v ' ' rchlost ' v ' v v v ' v ' ' ' 1 rchlení At At A
4 ovnoměrně rotující vtžná soustv čárkovná vtžná soustv se otáčí s konstntní úhlovou rchlostí ' ' v čse t = 0 ob souřdné sstém splývjí poloh: polární souřdnice: krtéské souřdnice: ' ' r' r ' r cos r sin ' r'cos' ' r'sin ' r sin r cos ' ' ' cos sin ' sin cos
5 ovnoměrně rotující vtžná soustv čárkovná vtžná soustv se otáčí s konstntní úhlovou rchlostí ' ' ' v čse t = 0 ob souřdné sstém splývjí t t poloh: ' cost sin t ' sin t cost ' ' ' '
6 ovnoměrně rotující vtžná soustv čárkovná vtžná soustv se otáčí s konstntní úhlovou rchlostí ' ' ' v čse t = 0 ob souřdné sstém splývjí t t ' rchlost: v v ' ' v ' v v ' ' v cost v sin t v sin t cost ' ' ' rchlení: ' ' v ' ' v ' ' ' cost sin t sin t cost
7 ovnoměrně rotující vtžná soustv čárkovná vtžná soustv se otáčí s konstntní úhlovou rchlostí ' ' ' v čse t = 0 ob souřdné sstém splývjí t t ' odstředivé rchlení Coriolisovo rchlení ' ' ' rchlení: ' ' v ' ' v ' ' ' cost sin t sin t cost
8 ovnoměrně rotující vtžná soustv čárkovná vtžná soustv se otáčí s konstntní úhlovou rchlostí ' ' ' v čse t = 0 ob souřdné sstém splývjí t t rotce kolem obecné os: odstředivé rchlení: Coriolisovo rchlení: 0 r odstředivá síl: F0 m r C v' Coriolisov síl: m v' F C
9 Odstředivá síl kuličk n prováku F odstř m r pohled inerciální soustv pohled neinerciální rotující soustv v F dostř F odstř F dostř v m r F odstř m r
10 Odstředivá síl vážení n pólu n rovníku mg k v inerciální soustvě V g g pro Zemi: Z Z km 5 1 s mg k V m 0.4 % rekční síl kuličk n pružinu
11 Odstředivá síl vážení n pólu n rovníku mg k v neinerciální soustvě g pro Zemi: km 5 1 s mg k m 0.4 % odstředivá síl
12 ovnoměrně rotující vtžná soustv Kolotoč pohled vnější inerciální soustv pohled neinerciální soustv spojené s kolotočem t 1 t 1 t F C F O t t
13 Foucltovo kvdlo 360 / den min o 1 n pólu: n rovnoběžce eměpisnou šířkou : o 360 sin / den v re o min posun 1 h: 11.5 o
14 Coriolisov síl psát vnoucí směrem k rovníku F C m v' F C
15 Coriolisov síl hurikán Snd v severním ltntiku tropická bouře v jižním ltntiku
16 ossbho číslo ossbho číslo: Coriolisov frekvence: V L f sin pro Zemi = / den = s -1 V re = o f = s -1 >> 1 dominuje odstředivá síl f příkld: fotbl: 000 V 10 m/s, L 50 m, f 10-4 s -1 umvdlo: V 1 m/s, L 10 cm, f 10-4 s -1 cklón: 0.1 V 10 m/s, L 1000 km, f 10-4 s -1 Foucltovo kvdlo: 1400 V 1 m/s, L 7 m, f 10-4 s -1 délk ávěsu ~ 10 m, úhel +/- 0 o 1 vliv odstředivé Coriolisov síl srovntelný << 1 dominuje Coriolisov síl 10 m 0 o
Inerciální a neinerciální soustavy
Inerciální neinerciální soust olný hmotný bod (nepůsobí n něj žádné síl) inerciální soust: souřdnicoá soust ůči které je olný hmotný bod klidu nebo ronoměrném přímočrém pohbu pokud máme tři hmotné bod,
ω JY je moment setrvačnosti k ose otáčení y
ZÁKLADNÍ USPOŘÁDÁNÍ MECHANICKÝCH GYROSKOPŮ POUŽITÝCH NA LETADLE 3 2 1 ω 3 2 1 ω 3 ω Kardanův ávěs ω a) 4 Groskop se dvěma stupni volnosti 3 b) Groskop se třemi stupni volnosti Groskop se otáčí úhlovou
ZÁKLADNÍ PARAMETRY GYROSKOPU
ZÁKLADNÍ PARAMETRY GYROSKOPU v Vektor obvodové rchlosti Moment hbnosti r Hlavní osa otáčení Vektor úhlové rchlosti SLEDOVÁNÍ OTÁČENÍ ZEMĚKOULE POMOCÍ GYROSKOPU t hlavní osa t = 0 rovník Groskop je na rovníku,
TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD. 9, m s.
TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD Soustavu souřadnic spojenou se Zemí můžeme považovat prakticky za inerciální. Jen při několika jevech vznikají odchylky, které lze vysvětlit vlastním pohybem Země vzhledem
Nejdříve opis pro naladění čtenáře a uvedení do mého problému, ten, který budu za chvíli chtít diskutovat.
Problém Nvrátil ( tím, že neumí mtemtiku ) jsou : Nejdříve opis pro nldění čtenáře uvedení do mého problému, ten, který budu chvíli chtít diskutovt. Větu o áměnnosti smíšených derivcí le obdobných předpokldů
Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů. = 30 s.
Řešení úloh. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů.a) Doba jízdy na prvním úseku (v 5 m s ): t v a 30 s. Konečná rychlost jízdy druhého úseku je v v + a t 3 m s. Pro rovnoměrně
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
DYNAMIKA SÍLA 1. Úvod dynamos (dynamis) = síla; dynamika vysvětluje, proč se objekty pohybují, vysvětluje změny pohybu. Nepopisuje pohyb, jak to dělá... síly mohou měnit pohybový stav těles nebo mohou
Soustava hmotných bodů
Soustava hmotných bodů Těleso soustava hmotných bodů Tuhé těleso - pevný předmět jehož rozměr se nemění každé těleso se skládá z mnoha částc síla působící na -tou částc výsledná síla působící na předmět
Sestavení diferenciální a diferenční rovnice. Petr Hušek
Sestavení diferenciální a diferenční rovnice Petr Hušek Sestavení diferenciální a diferenční rovnice Petr Hušek husek@fel.cvut.cz katedra řídicí techniky Fakulta elektrotechnická ČVU v Praze MAS 1/13 ČVU
Mechanika úvodní přednáška
Mechanika úvodní přednáška Petr Šidlof TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247, který je
Obr Zrychlený pohyb vozíku.
Oba postupy budeme ilustrovat na následujícím příkladu. Uvažujme vozík, k jehož vnitřní stěně je pružinou upevněna koule (obr..0a), která se může pohybovat Obr..0. Zrychlený pohyb vozíku. bez tření. Uvedeme-li
2. Dynamika hmotného bodu
. Dynamika hmotného bodu Syllabus:. Dynamika hmotného bodu. Newtonovy zákony. Síly působící při známém druhu pohybu. Pohybová rovnice hmotného bodu, vrhy, harmonický pohyb. Inerciální a neinerciální soustavy
Mechanika - kinematika
Mechanika - kinematika Hlavní body Úvod do mechaniky, kinematika hmotného bodu Pohyb přímočarý rovnoměrný rovnoměrně zrychlený. Pohyb křivočarý. Pohyb po kružnici rovnoměrný rovnoměrně zrychlený Pohyb
5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole
5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole 5.1. Zadání úlohy 1. Určete velikost tíhového zrychlení pro Prahu reverzním kyvadlem.. Stanovte chybu měření tíhového zrychlení.
S t e j n o s měrné stroje Ing. Vítězslav Stýskala, Ph.D., únor 2006
8. ELEKTRICKÉ STROJE TOČIVÉ rčeno pro posluchče bklářských studijních progrmů FS S t e j n o s měrné stroje Ing. Vítězslv Stýskl, Ph.D., únor 6 Řešené příkldy Příkld 8. Mechnické chrkteristiky Stejnosměrný
Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.
.. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).
Matematické metody v kartografii. Jednoduchá azimutální zobrazení. Azimutální projekce. UPS. (10.)
Matematické metody v kartografii Jednoduchá azimutální zobrazení. Azimutální projekce. UPS. (10.) 1. Jednoduchá azimutální zobrazení Společné vlastnosti: Jednoduché zobrazení, zobrazuje na tečnou rovinu
2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 3 1 12 7 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 26 28 30
Cena celkem včetně DPH. E122099020 1 215 Kč 971332H001 1 656 Kč 52902P000012 1,2 714 Kč Cena bez DPH Cena celkem včetně DPH.
15 000 km/12 měsíců GD015ADCMP00 0,9 536 Kč 30 000 km/24 měsíců 45 000 km/36 měsíců GD030ADCMP00 1,4 833 Kč 4 339 Kč 5 251 Kč GD045ADCMP00 0,9 536 Kč 60 000 km/48 měsíců GD060ADCMP00 1,6 952 Kč 4 790 Kč
s 1 = d t 2 t 1 t 2 = 71 m. (2) t 3 = d v t t 3 = t 1t 2 t 2 t 1 = 446 s. (3) s = v a t 3. d = m.
Řešení úloh 1. kola 58. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů 1.a) Označme v a velikost rychlosti atleta, v t velikost rychlosti trenéra. Trenér do prvního setkání ušel dráhu s 1
Funkce dvou proměnných
Funkce dvou proměnných Funkce dvou proměnných harmonická vlna Postupné příčné vlnění T=2, = 2 ( t, ) Asin t 2 Asin t T v t Asin 2 T Počátek koná harmonický pohb, ten se šíří dál řadou oscilátorů ve směru
Í Č ú Č Š Í Á É Č Č ú š š Ž ž š Ť Ť Ž ž Ó ó Ž ž ž Í ú ž Ť ž ž š ň ž š š Í ž Í ň Ž ň š ó š Ž Ž Í Š ú Í ž ž Í š ž ž Ť š š Ž Ž Á ž ó ž Ť š ž ť š Í ň ť ž Ž ž Ž ž Ť ž šť š ž Ž ň ú ž š ž ú ú ť Ž ň ú š ú ž Ž
Popis polohy tělesa. Robotika. Vladimír Smutný. Centrum strojového vnímání. České vysoké učení technické v Praze
Popis poloh těles 1 2 Robotik Popis poloh těles 3 4 5 6 7 8 9 10 11 12 Vldimír Smutný Centrum strojového vnímání České vsoké učení technické v Prze 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Dynamika hmotného bodu
Dynamika hmotného bodu Dynamika Dynamika odvozeno odřeckéhoδύναμις síla Část mechaniky, která se zabývá příčinami změny pohybového stavu tělesa Je založena na třech Newtonových zákonech pohybu Dynamika
6. URČITÝ INTEGRÁL Výpočet určitého integrálu Úlohy k samostatnému řešení... 68
Sbírka úloh z matematik 6. URČITÝ INTEGRÁL... 68 6.. Výpočet určitého integrálu... 68 Úloh k samostatnému řešení... 68 6.. Geometrické aplikace... 69 6... Obsah rovinného obrazce... 69 Úloh k samostatnému
Úvod. 1 Převody jednotek
Úvod 1 Převody jednotek Násobky a díly jednotek: piko p 10-12 nano n 10-9 mikro μ 10-6 mili m 10-3 centi c 10-2 deci d 10-1 deka da 10 1 hekto h 10 2 kilo k 10 3 mega M 10 6 giga G 10 9 tera T 10 12 Ve
poznámky ke 3. přednášce volitelného předmětu PG na FCHI VŠCHT Martina Mudrová březen 2005
Úvod do gomtického modlování v G ponámk k. přdnášc volitlného přdmětu G n FCHI VŠCHT Mtin Mudová břn 5 Osnov přdnášk I. Zákldní pojm modlování tp modlů postup II. III. Zákldní pojm gomtického modlování
Derivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace
Derivace funkce Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Směrnice přímk Derivace a její geometrický význam 3 Definice derivace 4 Pravidla a vzorce pro derivování 5 Tečna a normála 6 Derivace
6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x.
KMA/MAT Přednášk cvičení č. 4, Určitý integrál 6. 7. březn 17 1 Aplikce určitého integrálu 1.1 Počáteční úvhy o výpočtu obshu geometrických útvrů v rovině Úloh 1.1. Vypočtěte obsh obrzce ohrničeného prbolou
Aleš Trojánek MACHŮV PRINCIP A STŘEDOŠKOLSKÁ MECHANIKA Mach s Principle and the Mechanics at Secondary Schools
Aleš Trojánek MACHŮV PRINCIP A STŘEDOŠKOLSKÁ MECHANIKA Mach s Principle and the Mechanics at Secondary Schools When explaining the inertial forces to secondary school students, one can expect to be asked
5.2. Určitý integrál Definice a vlastnosti
Určitý intgrál Dfinic vlstnosti Má-li spojitá funkc f() n otvřném intrvlu I primitivní funkci F(), pk pro čísl, I j dfinován určitý intgrál funkc f() od do vzthm [,, 7: [ F( ) = F( ) F( ) f ( ) d = (6)
Fyzika základního kurzu I (hypertextově) seznam důležitých skutečností
Fyzika základního kurzu I (hypertextově) seznam důležitých skutečností kolektiv ÚFI FSI Copyright c 005, ÚFI FSI VUT v Brně Tento text obsahuje rovnice, které jsou barevně vyznačeny v textu Fyzika. Kliknutím
Relativiatická fyzika a astrofyzika I. Geometrie
Reltivitická fyzik strofyzik I Geometrie Definice: Nechť g je metrický tenzor jeho komponenty vůči souřdnicové zi jsou g.dále nechť je g -1 inverzní mtice k g její komponenty k příslušné zi jsou g. zvedání
FYZIKA I. Gravitační pole. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERITA OSTRAVA FAKULTA STROJNÍ FYIKA I Gravitační pole Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar Mádrová
ÚLOHA Závaží pružin kmitá harmonicky amplituda = 2 cm, doba kmitu = 0,5 s. = 0 s rovnovážnou polohou vzh ru. Úkoly l :
ÚLOHA Závažíčko zavěšené na pružině kitá haronick tak, že: aplituda výchlk je 2 c, doba kitu je T 0,5 s. Předpokládáe, že včase t 0 s prochází závažíčko rovnovážnou polohou a sěřuje vzhůru. Úkol: a) Zjistíe
6. Setrvačný kmitový člen 2. řádu
6. Setrvčný kmitový člen. řádu Nejprve uvedeme dynmické vlstnosti kmitvého členu neboli setrvčného členu. řádu. Předstviteli těchto členů jsou obvody nebo technická zřízení, která obshují dvě energetické
III.4. Fubiniova (Fubiniho) věta pro trojný integrál
E. Brožíková, M. Kittlerová, F. Mrá: Sbírk příkldů Mtemtik II ( III.. Fubiniov (Fubiniho vět pro trojný integrál Vpočítejte trojné integrál n dných množinách E : Příkld. I Řešení : I ( + d d d; {[,, E
Projekty - Vybrané kapitoly z matematické fyziky
Projekty - Vybrané kapitoly z matematické fyziky Klára Švarcová klara.svarcova@tiscali.cz 1 Obsah 1 Průlet tělesa skrz Zemi 3 1.1 Zadání................................. 3 1. Řešení.................................
Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I. Mechanika hmotného bodu
Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I Mechanika hmotného bodu Autor: Kateřina Kárová Text vznikl v rámci bakalářské práce roku 2006. Návod na práci s
Inerciální a neinerciální soustavy
K přednášce NUFY080 Fika I (mechanika) proatímní učební tet, vere 0 6 Inerciální a neinerciální soustav Leoš Dvořák, MFF UK Praha, 016-018 6.1 Inerciální soustav Inerciální a neinerciální soustav Veškeré
KINEMATIKA. 18. ROVNOMĚRNÝ POHYB PO KRUŽNICI III. Úhlová rychlost. Mgr. Jana Oslancová VY_32_INOVACE_F1r0218
KINEMATIKA 18. ROVNOMĚRNÝ POHYB PO KRUŽNICI III. Úhlová rychlost Mgr. Jana Oslancová VY_32_INOVACE_F1r0218 Úkol 1: Roztřiď do dvou sloupců, které veličiny, popisující pohyb, jsou u všech bodů otáčejícího
Kuželosečky jako algebraické křivky 2. stupně
Kuželosečk Pretrické iplicití vjádřeí kuželoseček P. Pech: Kuželosečk, JU České Budějovice 4, 59s Kuželosečk jko lgerické křivk. stupě Kuželosečk je oži odů v roviě, jejichž souřdice (, ) vhovují v ějké
= (1.21) a t. v v. což je výraz v závorce ve vztahu (1.19). Normálové zrychlení a H jednoduše jako rozdíl = (1.20)
Tečné zrychlení získáme průmětem vektoru zrychlení a vynásobením jednotkovým vektorem ve směru rychlosti do směru rychlosti a a t v v a v v = (1.19) Podotýkáme, že vektor tečného zrychlení může být souhlasně
Přijímací zkouška na navazující magisterské studium 2015
Přijímací zkouška na navazující magisterské studium 205 Studijní program: Studijní obory: Fyzika FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Pro funkci f(x) := e x 2. Určete definiční
Dynamika. Síla a její účinky na těleso Newtonovy pohybové zákony Tíhová síla, tíha tělesa a síly brzdící pohyb Dostředivá a odstředivá síla
Dynamika Síla a její účinky na těleso Newtonovy pohybové zákony Tíhová síla, tíha tělesa a síly brzdící pohyb Dostředivá a odstředivá síla Dynamika studuje příčiny pohybu těles (proč a za jakých podmínek
Dynamika hmotného bodu
Dynamika hmotného bodu (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 23. října 2009 Obsah Newtonovy zákony První Newtonův zákon Druhý Newtonův zákon Třetí Newtonův zákon Zákon zachování
Výsledky úloh. 1. Úpravy výrazů + x 0, 2x 1 2 2, x Funkce. = f) a 2.8. ( ) ( ) 1.6. , klesající pro a ( 0, ) ), rostoucí pro s (, 1)
Výsledky úloh. Úpravy výrazů.. +, + R.., a 0, a b.., a ± b, a b a b a +.. + a +, 0, a.., a 0; ± ; n + a.. a + b 9, > 0.7., a ± b a b m n.8., m 0, n 0, m n.9. a, a > 0 m + n.0., ;0; ;;.., k.. tg, k sin.
3. Souřadnicové výpočty
3. Souřadnicové výpočty 3.1 Délka. 3.2 Směrník. 3.3 Polární metoda. 3.4 Protínání vpřed z úhlů. 3.5 Protínání vpřed z délek. 3.6 Polygonové pořady. 3.7 Protínání zpět. 3.8 Transformace souřadnic. 3.9 Volné
26. listopadu a 10.prosince 2016
Integrální počet Přednášk 4 5 26. listopdu 10.prosince 2016 Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce K čemu integrální
Dynamika. Dynamis = řecké slovo síla
Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při
Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83
Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice
x 2 +1 x 3 3x 2 4x = x 2 +3
I. Určitý integrál I.. Eistence určitých integrálů Zjistěte, zda eistují určité integrály : Příklad. + + d Řešení : Ano eistuje, protože funkce f() + + je spojitá na intervalu,. Příklad. + 4 d Řešení :
Exponenciální funkce, rovnice a nerovnice
Eonenciální unkce, rovnice a nerovnice Mamut s korovou omáčkou (Eonenciální unkce) a) AN; b) NE; c) NE; d) AN; e) NE; ) NE; g) AN; h) NE a),; b),; c) ; d) ; e) ; ) e + b) - - - D()= R; H ()=( ; ) ; P neeistuje
Fyzikální korespondenční seminář UK MFF http://fykos.mff.cuni.cz 18. V. S
8. ročník, úloha V. S... Merkur, jáma a kyvadlo (6 bodů; průměr 3,9; řešilo 3 studentů) V následujících úlohách ověříme vaši znalost všech dosud probraných kapitol mechaniky, tj. Newtonova formalismu,
Téma 9 Těžiště Těžiště rovinných čar Těžiště jednoduchých rovinných obrazců Těžiště složených rovinných obrazců
Stvení sttik, 1.ročník klářského studi Tém 9 Těžiště Těžiště rovinných čr Těžiště jednoduchých rovinných orců Těžiště složených rovinných orců Ktedr stvení mechniky Fkult stvení, VŠB - Technická univerit
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 19. 11. 2012 Číslo DUM: VY_32_INOVACE_14_FY_B
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 19. 11. 2012 Číslo DUM: VY_32_INOVACE_14_FY_B Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh:
Obsah rovinného obrazce
Osh rovinného orzce Nejjednodušší plikcí určitého integrálu je výpočet oshu rovinného orzce. Zčneme větou. Vět : Je-li funkce f spojitá nezáporná n n orázku níže roven f ( ) d. ;, je osh rovinného orzce
Správné řešení písemné zkoušky z matematiky- varianta A Přijímací řízení do NMgr. studia učitelských oborů 2010
právné řešení písemné koušky mtemtiky- vrint A Přijímcí říení do NMgr. studi učitelských oborů Příkld. Vyšetřete průběh funkce v jejím mimálním definičním oboru nčrtněte její grf y Určete pritu (sudá/lichá),
Pohyby částic ve vnějším poli A) Homogenní pole. qb m. cyklotronová frekvence. dt = = 0. 2 ω PČ 1
Způsob popisu Pohb částic v poli vnějším Pohb částic v selfkonsistentním poli Kinetické rovnice Hdrodnamické rovnice * tekutin * 1 tekutina * magnetohdrodnamika Pohb částic ve vnějším poli A) Homogenní
MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A
MECHANICKÉ KMITÁNÍ Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A Kinematika kmitavého pohybu Mechanický oscilátor - volně kmitající zařízení Rovnovážná poloha Výchylka Kinematika kmitavého pohybu Veličiny charakterizující
Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu
Geometrické plikce určitého integrálu Osh rovinné olsti Je-li ploch ohrničen křivkou f () osou Při výpočtu oshu tkto omezených rovinných olstí mohou nstt následující zákldní přípd : Nechť funkce f () je
Přijímací zkouška pro nav. magister. studium, obor učitelství F-M, 2012, varianta A
Přijímací zkouška pro nav. magister. studium, obor učitelství F-M, 1, varianta A Příklad 1 (5 bodů) Koule o poloměru R1 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční
Modularizace a modernizace studijního programu počáteční přípravy učitele fyziky. Studijní modul MECHANIKA. Renata Holubová
Modularizace a modernizace studijního programu počáteční přípravy učitele fyziky Studijní modul MECHANIKA Renata Holubová Olomouc 01 Zpracováno v rámci řešení projektu Evropského sociálního fondu a Ministerstva
Přijímací zkouška na navazující magisterské studium 2017 Studijní program: Fyzika Studijní obory: FFUM
Přijímací zkouška na navazující magisterské studium 207 Studijní program: Fyzika Studijní obory: FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Nechť (a) Spočtěte lim n x n. (b)
Matematické metody v kartografii
Mtemtické metody v krtogrfii. Přednášk Referenční elipsoid zákldní vzthy. Poloměry křivosti. Délky poledníkového rovnoběžkového oblouku. 1. Zákldní vzthy n rotčním elipoidu Rotční elipsoid dán následujícími
Řešení úloh 1. kola 52. ročníku fyzikální olympiády. Kategorie D., kde t 1 = s v 1
Řešení úloh kola 5 ročníku fyzikální olympiády Kategorie D Autořiúloh:JJírů(až6),MJarešová(7) a) Označme sdráhumezivesnicemi, t časjízdynakole, t časchůze, t 3 čas běhuav =7km h, v =5km h, v 3 =9km h jednotlivérychlosti
Řešení úloh regionálního kola 47. ročníku fyzikální olympiády. Kategorie B Autořiúloh:M.Jarešová(1,2,3)M.CvrčekaP.Šedivý(4)
Řešení úloh regionálního kola 47 ročníku fyzikální olympiády Kategorie B Autořiúloh:MJarešová(1,,3)MCvrčekaPŠedivý(4) 1a) Pro pohyb úlomků platí zákon zachování hybnosti: mv 01 + mv 0 + mv 03 0 Protože
8. Elementární funkce
Historie přírodních věd potvrzuje, že většinu reálně eistujících dějů lze reprezentovt mtemtickými model, které jsou popsán tzv. elementárními funkcemi. Elementární funkce je kždá funkce, která vznikne
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala
f(x)dx, kde a < b < c
URČITÝ INTEGRÁL jeho plikce Newton-Leibnizov formule f(x)=f(b) F(), kde F (x)=f(x). Vlstnosti ) ) ) 4) Substituce f(x)+ c f(x)= f(x)= f(x)= b f(g(x))g (x)= f(x)= f(x) c f(x), kde < b < c pro fsudou, =
Základním úkolem při souřadnicovém určování polohy bodů je výpočet směrníků a délky strany mezi dvěma body, jejichž pravoúhlé souřadnice jsou známé.
1 Určování poloh bodů pomocí souřadnic Souřadnicové výpočt eodetických úloh řešíme v pravoúhlém souřadnicovém sstému S-JTSK, ve kterém osa +X je orientována od severu na jih a osa +Y od východu na západ.
Řešení. Označme po řadě F (z) Odtud plyne, že
Úloha Nechť ~ R(, ) a Y = Jinak řečeno, Y je odmocnina čísla vybraného zcela náhodně z intervalu (, ) Popište rozdělení veličiny Y a určete jeho modus, medián, střední hodnotu a rozptyl Řešení Označme
3.1.3 Rychlost a zrychlení harmonického pohybu
3.1.3 Rychlost a zrychlení haronického pohybu Předpoklady: 312 Kroě dráhy (výchylky) popisujee pohyb i poocí dalších dvou veličin: rychlosti a zrychlení. Jak budou vypadat jejich rovnice? Společný graf
F n = F 1 n 1 + F 2 n 2 + F 3 n 3.
Plošný integrál Několik pojmů Při našich úvahách budeme často vužívat skalární součin dvou vektorů. Platí F n F n cos α, kde α je úhel, který svírají vektor F a n. Vidíme, že pokud je tento úhel ostrý,
Michael Valášek Vedoucí práce: doc. Ing. Václav Bauma, CSc.
Michael Valášek Vedoucí práce: doc. Ing. Václav Bauma, CSc. Zadání bakalářské práce Mechanismus vztlakové klapky křídla 1. Proveďte rešerši možných konstrukčních řešení vztlakové klapky křídla 2. Seznamte
FYZIKA 3. ROČNÍK. Vlastní kmitání oscilátoru. Kmitavý pohyb. Kinematika kmitavého pohybu. y m
Vlastní itání oscilátoru Kitavý pohb Kitání periodicý děj zařízení oná opaovaně stejný pohb a periodic se vrací do určitého stavu. oscilátor zařízení, teré ůže volně itat (závaží na pružině, vadlo) it
Plynové pružiny se sníženým nárůstem tlaku
Plnové pružin se sníženým nárůstem tlaku Změn vhrazen F161 Plnové pružin se sníženým nárůstem tlaku Variant upevnění 2481.12.00750. 2480.011.01500 2480.011.01500.2 2480.022.01500 M M 40 ø40 DIN 74 - Km
ÚVOD DO DYNAMIKY HMOTNÉHO BODU
ÚVOD DO DYNAMIKY HMOTNÉHO BODU Obsah Co je o dnamika? 1 Základní veličin dnamik 1 Hmonos 1 Hbnos 1 Síla Newonov pohbové zákon První Newonův zákon - zákon servačnosi Druhý Newonův zákon - zákon síl Třeí
11. cvičení z Matematické analýzy 2
11. cvičení z Mtemtické nlýzy 1. - 1. prosince 18 11.1 (cylindrické souřdnice) Zpište integrály pomocí cylindrických souřdnic pk je spočítejte: () x x x +y (x + y ) dz dy dx. (b) 1 1 x 1 1 x x y (x + y
Hledání hyperbol
759 Hledání hyperol Předpokldy: 756, 757, 758 Pedgogická poznámk: Některé příkldy jsou zdlouhvější, pokud mám dosttek čsu proírám tuto následující hodinu ěhem tří vyučovcích hodin Př : Npiš rovnici hyperoly,
Určení hmotnosti zeměkoule vychází ze základního Newtonova vztahu (1) mezi gravitačním zrychlením a g a hmotností M Z gravitačního centra (Země).
Projekt: Cíl projektu: Určení hmotnosti Země Místo konání: Černá věž - Klatovy, Datum: 28.10.2008, 12.15-13.00 hod. Motto: Krása středoškolské fyziky je především v její hravosti, stejně tak jako je krása
Fyzika - Kvinta, 1. ročník
- Fyzika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence k učení Učivo fyzikální
Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje);
Newtonovy pohybové zákony: Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje); předpokládáme soustředění hmoty tělesa a všech
7 Transformace 2D. 7.1 Transformace objektů obecně. Studijní cíl. Doba nutná k nastudování. Průvodce studiem
7 Transformace 2D Studijní cíl Tento blok je věnován základním principům transformací v rovinné grafice. V následujícím textu bude vysvětlen rozdíl v přístupu k transformacím u vektorového a rastrového
Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.
7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1
Souřadnicové výpočty. Geodézie Přednáška
Souřadnicové výpočt Geodézie Přednáška Souřadnicové výpočt strana 2 Souřadnicové výpočt (souřadnicová geometrie) vchází z analtické geometrie zkoumá geometrické tvar pomocí algebraických a analtických
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. x m. Ne čas!
MECHANICKÉ VLNĚNÍ I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í uveďte rozdíly mezi mechanickým a elektromagnetickým vlněním zdroj mechanického vlnění musí. a to musí být přenášeno vhodným prostředím,
GEOMETRICKÉ APLIKACE INTEGRÁLNÍHO POČTU
Integální počet funkcí jedné eálné poměnné - 4. - GEOMETRICKÉ APLIKACE INTEGRÁLNÍHO POČTU PŘÍKLAD Učete plochu pod gfem funkce f ( x) = sinx n intevlu,. Ploch pod gfem nezáponé funkce f(x) se n intevlu,
Matematické metody v kartografii. Kruhová zobrazení. Polyedrická a neklasifikovaná zobrazení (12)
Matematické metody v kartografii Kruhová zobrazení. Polyedrická a neklasifikovaná zobrazení (12) Kruhová zobrazení Společné vlastnosti: Síť poledníků/rovnoběžek tvořena pouze kruhovými oblouky Středy rovnoběžkových
Matematická kartografie. Černý J., Kočandrlová M.: Konstruktivní geometrie, ČVUT. Referenční plochy
Matematická kartografie Buchar.: Matematická kartografie 10, ČVUT; Černý J., Kočandrlová M.: Konstruktivní geometrie, ČVUT Referenční plochy referenční elipsoid (sféroid) zploštělý rotační elipsoid Besselův
Podnebí a počasí všichni tyto pojmy známe
Podnebí a počasí všichni tyto pojmy známe Obsah: Podnebí Podnebné pásy Podnebí v České republice Počasí Předpověď počasí Co meteorologové sledují a používají Meteorologické přístroje Meteorologická stanice
Trigonometrie - Sinová a kosinová věta
Trigonometrie - Sinová kosinová vět jejih užití v Tehniké mehnie Dn Říhová, Pvl Kotásková Mendelu rno Perspektiv krjinného mngementu - inove krjinářskýh disipĺın reg.č. Z.1.7/../15.8 Osh 1 Goniometriké
SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1
SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1 (Souřdnicové výpočty) 1 ročník bklářského studi studijní progrm G studijní obor G doc Ing Jromír Procházk CSc listopd 2015 1 Geodézie 1 přednášk č7 VÝPOČET SOUŘADNIC JEDNOHO
Hyperbola a přímka
7.5.8 Hperol přímk Předpokld: 75, 75, 755, 756 N orázku je nkreslen hperol = se středem v počátku soustv souřdnic. Jká je vzájemná poloh této hperol přímk, která prochází počátkem soustv souřdnic? E B
Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015
Kartografie 1 - přednáška 6 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Kartografická zobrazení použitá na našem území důležitá jsou zejména zobrazení pro státní mapová díla v
Transformace 2D. Transformace. Souřadnicové systémy. Vektorová a rastrová grafika. Přednáška 7
Přednáška 7 Transformace D Transformace Transformace je proces, při kterém dochází ke změně poloh, orientace nebo velikosti jednotlivých zobrazovaných objektů (geometrie objektů. Transformace souřadnicového
Obr. 4 Změna deklinace a vzdálenosti Země od Slunce v průběhu roku
4 ZÁKLADY SFÉRICKÉ ASTRONOMIE K posouzení proslunění budovy nebo oslunění pozemku je vždy nutné stanovit polohu slunce na obloze. K tomu slouží vztahy sférické astronomie slunce. Pro sledování změn slunečního
Gravitační pole. a nepřímo úměrná čtverci vzdáleností r. r r
Newtonův avitační zákon: Gavitační pole ezi dvěa tělesy o hotnostech 1 a, kteé jsou od sebe vzdáleny o, působí stejně velké síly vzájené přitažlivosti, jejichž velikost je přío úěná součinu hotností 1
A DIRACOVA DISTRIBUCE 1. δ(x) dx = 1, δ(x) = 0 pro x 0. (1) Graficky znázorňujeme Diracovu distribuci šipkou jednotkové velikosti (viz obr. 1).
A DIRACOVA DISTRIBUCE A Dircov distribuce A Definice Dircovy distribuce Dircovu distribuci δx) lze zvést třemi ekvivlentními způsoby ) Dirc [] ji zvedl vzthy δx) dx, δx) pro x ) Grficky znázorňujeme Dircovu
18. x x 5 dx subst. t = 2 + x x 1 + e2x x subst. t = e x ln 2 x. x ln 2 x dx 34.
I. Určete integrály proved te zkoušku. Určete intervl(y), kde integrál eistuje... 3. 4. 5. 6. 7. 8. 9. 0... 3. 4. 5. 6. 7. e d substituce t = ln ln(ln ) d substituce t = ln(ln ), dt = ln 3 e 4 d substituce