Úvod do teorie plazmatu

Rozměr: px
Začít zobrazení ze stránky:

Download "Úvod do teorie plazmatu"

Transkript

1 Úvod do teorie plazmatu Petr Kulhánek AGA 2011

2 Text Petr Kulhánek ISBN:

3 Obsah PŘEDMLUVA...9 ÚVOD POHYBY NABITÝCH ČÁSTIC NERELATIVISTICKÉ POHYBY Lagrangeova a Hamiltonova funkce Pohyb v elektrickém poli, optická analogie Pohyb v homogenním magnetickém poli Pohyb ve zkřížených polích RELATIVISTICKÉ POHYBY Lagrangeova a Hamiltonova funkce Pohyb v homogenním elektrickém poli ADIABATICKÉ PŘIBLÍŽENÍ První adiabatický invariant Pohyb gyračního středu Síla μ B Driftová rovnice Drifty POHYBY VE SPECIÁLNÍCH KONFIGURACÍCH Magnetické zrcadlo Druhý adiabatický invariant, Fermiho mechanizmus Magnetický dipól, třetí adiabatický invariant Elektrický a magnetický monopól Tokamak Plazmové vlákno a souvislost driftů s proudy NUMERICKÉ SIMULACE POHYBU ČÁSTIC Newtonovo-Eulerovo schéma (NE) Skákající žába aneb Leap-Frog schéma (LF) Přesnější schémata (RK, BB) Relativistická schémata... 56

4 2. STATISTICKÝ POPIS PLAZMATU BOLTZMANNOVA ROVNICE Různé varianty Boltzmannovy rovnice Boltzmannův srážkový člen Rovnice přenosu (momentová rovnice) PŘECHOD OD STATISTIKY KE KONTINUU Nultý moment (zachování náboje) částice Nultý moment (zachování náboje) pole První moment (zachování hybnosti) částice První moment (zachování hybnosti) pole Druhý moment (zachování energie) částice Druhý moment (zachování energie) pole JEDNODUCHÉ TRANSPORTNÍ JEVY Transport náboje (Ohmův zákon) Transport částic (Fickův zákon) Ambipolární difúze Difúze v magnetickém poli Transport tepla (Fourierův zákon) Produkce entropie, Onsagerovy relace COULOMBOVA INTERAKCE Debyeova stínicí vzdálenost Coulombův rozptyl (Rutherfordova formule) Fokkerova-Planckova rovnice Rosenbluthovy potenciály Brzděná a ubíhající testovací částice Relaxační časy a srážkové frekvence MONTE CARLO SIMULACE Generátory náhodných čísel Realizace pravděpodobnostního rozdělení Metropolisova metoda MC simulace srážky dvou nabitých částic MAGNETOHYDRODYNAMIKA MINIMÁLNÍ VARIANTA Substancionální derivace a rovnice proudnice Rovnice pro magnetické pole Rovnice pro hustotu Rovnice pro rychlost Uzavření soustavy VYBRANÉ JEVY Hartmannovo řešení Vlny konečné amplitudy Helicita Tekutinové dynamo Přepojení magnetických indukčních čar

5 3.3 NĚKTERÉ ROVNOVÁŽNÉ KONFIGURACE V PLAZMATU Rovnováha v plazmatu Proudové vlákno (pinč) Proudová stěna Dvojvrstva Rázové vlny DIFERENČNÍ SCHÉMATA V MAGNETOHYDRODYNAMICE Parciální diferenciální rovnice Tvorba diferenčních schémat Posuzování stability schématu LINEÁRNÍ VLNY V PLAZMATU ZÁKLADNÍ POJMY Vlnění Rozměrová analýza (vlny na hluboké vodě) Lineární teorie (elektromagnetické vlny) Nelineární teorie (zvukové vlny) Další příklady (Jeansovo kritérium, různé vlnové rovnice) PLAZMOVÉ OSCILACE A VLNY Odvození disperzní relace Plazmové oscilace Plazmové vlny Iontové vlny Další vlivy MAGNETOAKUSTICKÉ VLNY Odvození disperzní relace Vlnoplochy magnetoakustických vln Směry vektorů v magnetoakustických vlnách ELEKTROMAGNETICKÉ VLNY Disperzní relace elektromagnetického komplexu Stixovy koeficienty, CMA diagram Faradayova rotace Hvizdy (whistlers) Tenzor permitivity pro elektromagnetické vlny v plazmatu Šlírová fotografie HLEDÁNÍ KOŘENŮ POLYNOMIÁLNÍ ROVNICE Weylův algoritmus Newtonův algoritmus Zobecněný Newtonův algoritmus NESTABILITY V PLAZMATU NEOMEZENÉ CHLADNÉ PLAZMA Základní pojmy Vícesvazková nestabilita Dva symetrické svazky

6 5.1.4 Nestabilita typu svazek-plazma Další nestability (driftová, Weibelova) PLAZMA S HRANICÍ A VÝMĚNNÉ NESTABILITY Základní vztahy, vektor posunutí Nestability plazmového vlákna Rayleighova-Taylorova nestabilita Kelvinova-Helmholtzova nestabilita Další nestability (Richtmyerova Meškovova, diocotronová) Výměnné (tlakem řízené) nestability REZISTIVNÍ NESTABILITY Základní vztahy Ostrůvková (tearing) nestabilita Řízené rezistivní nestability Tokamakové nestability MIKRONESTABILITY Základní vztahy Landauův útlum na elektronech Landauův útlum na iontech Bernsteinovy módy PIC SIMULACE Váhování Řešení polí Řešení pohybu částic DODATKY DODATEK A UŽITEČNÉ VZTAHY A1 Některé integrály a řady A2 Vektorový součin a některé vektorové identity A3 Základní vztahy z komplexní analýzy A4 Některé speciální funkce A5 Výpočet Rosenbluthových potenciálů pro Maxwellovo rozdělení rychlostí A6 Základní trigonometrické vztahy DODATEK B ZOBECNĚNÉ FUNKCE B1 Diracova distribuce B2 Konvoluce B3 Greenův operátor a Greenova funkce B4 Fourierova transformace B5 Obecné řešení rovnice difúze DODATEK C KŘIVOČARÉ SOUŘADNICE, VÍCEROZMĚRNÉ INTEGRÁLY C1 Křivočaré souřadnice C2 Křivkové, plošné a objemové integrály C3 Vnější algebra

7 DODATEK D PŘEHLED VZTAHŮ A DEFINIC D1 Základní vztahy D2 Bezrozměrné charakteristiky plazmatu D3 Potenciály elektromagnetického pole DODATEK E MULTIPÓLOVÝ ROZVOJ E1 Rozvoj potenciálu elektrostatického pole E2 Rozvoj potenciálu magnetostatického pole SEZNAM SYMBOLŮ REJSTŘÍK OSOBNOSTÍ REJSTŘÍK POJMŮ LITERATURA PŘÍLOHA ANEB O ČEM BYSTE MĚLI VĚDĚT...377

POŽADAVKY KE STÁTNÍ ZÁVĚREČNÉ ZKOUŠCE MAGISTERSKÉ STUDIUM POČÍTAČOVÉ MODELOVÁNÍ VE VĚDĚ A TECHNICE (NAVAZUJÍCÍ STUDIUM I DOBÍHAJÍCÍ 5-LETÉ STUDIUM)

POŽADAVKY KE STÁTNÍ ZÁVĚREČNÉ ZKOUŠCE MAGISTERSKÉ STUDIUM POČÍTAČOVÉ MODELOVÁNÍ VE VĚDĚ A TECHNICE (NAVAZUJÍCÍ STUDIUM I DOBÍHAJÍCÍ 5-LETÉ STUDIUM) POŽADAVKY KE STÁTNÍ ZÁVĚREČNÉ ZKOUŠCE MAGISTERSKÉ STUDIUM POČÍTAČOVÉ MODELOVÁNÍ VE VĚDĚ A TECHNICE (NAVAZUJÍCÍ STUDIUM I DOBÍHAJÍCÍ 5-LETÉ STUDIUM) Organizace zkoušky Zkouška je ústní a má čtyři části:

Více

Obsah PŘEDMLUVA...9 ÚVOD TEORETICKÁ MECHANIKA...15

Obsah PŘEDMLUVA...9 ÚVOD TEORETICKÁ MECHANIKA...15 Obsah PŘEDMLUVA...9 ÚVOD...11 1. TEORETICKÁ MECHANIKA...15 1.1 INTEGRÁLNÍ PRINCIPY MECHANIKY... 16 1.1.1 Základní pojmy z mechaniky... 16 1.1.2 Integrální principy... 18 1.1.3 Hamiltonův princip nejmenší

Více

Obr. 141: První tři Bernsteinovy iontové módy. Na vodorovné ose je bezrozměrný vlnový vektor a na svislé ose reálná část bezrozměrné frekvence.

Obr. 141: První tři Bernsteinovy iontové módy. Na vodorovné ose je bezrozměrný vlnový vektor a na svislé ose reálná část bezrozměrné frekvence. Mikronestability 33 m Re( ) ( m1) m1,,3, (5.18) ci Imaginární část frekvence, která je zodpovědná za útlum, razantně roste, pokud se vlny nešíří kolmo na magnetické pole. Útlum také roste s číslem módu

Více

Další aplikace magnetohydrodynamiky v astrofyzice, nestability v plazmatu

Další aplikace magnetohydrodynamiky v astrofyzice, nestability v plazmatu Další aplikace magnetohydrodynamiky v astrofyzice, nestability v plazmatu MHD dynamo, sluneční a hvězdný vítr, MHD vlny při srážkách HVC s galaktickým diskem Tekutinové dynamo Velmi důležitou částí magnetohydrodynamiky

Více

Vlnění, optika a atomová fyzika (2. ročník)

Vlnění, optika a atomová fyzika (2. ročník) Vlnění, optika a atomová fyzika (2. ročník) Vlnění 1. Kmity soustav hmotných bodů (6 hod.) 1.1 Netlumené malé kmity kolem stabilní rovnovážné polohy: linearita pohybových rovnic, princip superpozice, obecné

Více

Elektřina a magnetismus UF/01100. Základy elektřiny a magnetismu UF/PA112

Elektřina a magnetismus UF/01100. Základy elektřiny a magnetismu UF/PA112 Elektřina a magnetismus UF/01100 Rozsah: 4/2 Forma výuky: přednáška Zakončení: zkouška Kreditů: 9 Dop. ročník: 1 Dop. semestr: letní Základy elektřiny a magnetismu UF/PA112 Rozsah: 3/2 Forma výuky: přednáška

Více

2.3. POLARIZACE VLN, POLARIZAČNÍ KOEFICIENTY A POMĚR E/B

2.3. POLARIZACE VLN, POLARIZAČNÍ KOEFICIENTY A POMĚR E/B .3. POLARIZACE VLN, POLARIZAČNÍ KOEFICIENTY A POMĚR E/B V řadě případů je užitečné znát polarizaci vlny a poměry mezi jednotlivými složkami vektoru elektrické intenzity E takzvané polarizační koeficienty,

Více

Úvod do teorie plazmatu

Úvod do teorie plazmatu Úvod do teorie plazmatu Petr Kulhánek AGA 013 Text Petr Kulhánek ISBN: 978-80-90458-- Obsah PŘEDMLUVA 9 ÚVOD11 1 POHYBY NABITÝCH ČÁSTIC15 11 NERELATIVISTICKÉ POHYBY 16 111 Lagrangeova a Hamiltonova funkce

Více

SLUNCE A JEHO POZOROVÁNÍ I FYZIKA PLAZMATU

SLUNCE A JEHO POZOROVÁNÍ I FYZIKA PLAZMATU POZVÁNKA NA WORKSHOP PROJEKTU SE SLUNCEM SPOLEČNĚ SLUNCE A JEHO POZOROVÁNÍ I FYZIKA PLAZMATU 28. 30. června 2013, Hvězdárna Valašské Meziříčí Milí přátelé, Hvězdárna Valašské Meziříčí, p. o. ve spolupráci

Více

5.2.4 Rayleighova Taylorova nestabilita

5.2.4 Rayleighova Taylorova nestabilita 74 Nestability v plazmatu 5..4 Rayleighova Taylorova nestabilita Rayleighova Taylorova nestabilita (RT nestabilita) vzniká na rozhraní dvou tekutin různých hustot (například je-li v gravitačním poli hustší

Více

Breviář fyzikální chemie

Breviář fyzikální chemie Breviář fyzikální chemie Anatol Malijevský Josef P. Novák Stanislav Labík Ivona Malijevská Připomínky k elektronické verzi posílejte na adresu: labik@vscht.cz 24. ledna 2001 Strana 1 z 519 Úvod Milí přátelé,

Více

Základy matematické statistiky

Základy matematické statistiky r- MATEMATICKO-FYZIKÁLNí FAKULTA UNIVERZITY KARLOVY V PRAZE Jifí Andel Základy matematické statistiky matfyzpress PRAHA 2011 r I Obsah Predmluva. 11 1 Náhodné veličiny 1.1 Základní pojmy 1.2 Príklady diskrétních

Více

Základy magnetohydrodynamiky. aneb MHD v jedné přednášce?! To si snad děláte legraci!

Základy magnetohydrodynamiky. aneb MHD v jedné přednášce?! To si snad děláte legraci! Základy magnetohydrodynamiky aneb MHD v jedné přednášce?! To si snad děláte legraci! Osnova Magnetohydrodynamika Maxwellovy rovnice Aplikace pinče, MHD generátory, geofyzika, astrofyzika... Magnetohydrodynamika

Více

Ideální krystalová mřížka periodický potenciál v krystalu. pásová struktura polovodiče

Ideální krystalová mřížka periodický potenciál v krystalu. pásová struktura polovodiče Cvičení 3 Ideální krystalová mřížka periodický potenciál v krystalu Aplikace kvantové mechaniky pásová struktura polovodiče Nosiče náboje v polovodiči hustota stavů obsazovací funkce, Fermiho hladina koncentrace

Více

Optika. VIII - Seminář

Optika. VIII - Seminář Optika VIII - Seminář Op-1: Šíření světla Optika - pojem Historie - dva pohledy na světlo ČÁSTICOVÁ TEORIE (I. Newton): světlo je proud částic VLNOVÁ TEORIE (Ch.Huygens): světlo je vlnění prostředí Dělení

Více

ZÁŘENÍ V ASTROFYZICE

ZÁŘENÍ V ASTROFYZICE ZÁŘENÍ V ASTROFYZICE Plazmový vesmír Uvádí se, že 99 % veškeré hmoty ve vesmíru je v plazmovém skupenství (hvězdy, mlhoviny, ) I na Zemi se vyskytuje plazma, např. v podobě blesků, polárních září Ve sluneční

Více

Úvod do molekulové dynamiky simulace proteinů. Eva Fadrná evaf@chemi.muni.cz

Úvod do molekulové dynamiky simulace proteinů. Eva Fadrná evaf@chemi.muni.cz Úvod do molekulové dynamiky simulace proteinů Eva Fadrná evaf@chemi.muni.cz Molekulová mechanika = metoda silového pole = force field Energie vypočtená řešením Schrodingerovy rovnice Energie vypočtená

Více

O symetrii tokamaku. Vtomto článku opustíme tematiku konkrétních. Jan Mlynář. 50 let UFP AV ČR

O symetrii tokamaku. Vtomto článku opustíme tematiku konkrétních. Jan Mlynář. 50 let UFP AV ČR č. 4 Čs. čas. fyz. 59 (2009) 207 O symetrii tokamaku Jan Mlynář Ústav fyziky plazmatu AV ČR, v. v. i., Za Slovankou 3, 182 00 Praha 8 Loňské čtvrté číslo Čs. čas. fyz. se podrobně věnovalo historii tokamaků

Více

Oddělení fyziky vrstev a povrchů makromolekulárních struktur

Oddělení fyziky vrstev a povrchů makromolekulárních struktur Oddělení fyziky vrstev a povrchů makromolekulárních struktur Témata diplomových prací 2014/2015 Studium změn elektrické vodivosti emeraldinových solí vystavených pokojovým a mírně zvýšeným teplotám klíčová

Více

STUDIJNÍ TEXT PRO FJFI ČVUT

STUDIJNÍ TEXT PRO FJFI ČVUT TEORIE PLAZMATU STUDIJNÍ TEXT PRO FJFI ČVUT PETR KULHÁNEK PRAHA 9/15 FJFI ČVUT PŘEDMLUVA O plazmatu se často hovoří jako o čtvrtém skupenství hmoty A je to oprávněné, protože vlastnosti plazmatu jsou velmi

Více

Navazující magisterský studijní program Fyzika

Navazující magisterský studijní program Fyzika Navazující magisterský studijní program Fyzika Navazující magisterský studijní program Fyzika se člení na následující obory: 1. Astronomie a astrofyzika 2. Geofyzika 3. Meteorologie a klimatologie 4. Teoretická

Více

Maturitní okruhy Fyzika 2015-2016

Maturitní okruhy Fyzika 2015-2016 Maturitní okruhy Fyzika 2015-2016 Mgr. Ladislav Zemánek 1. Fyzikální veličiny a jejich jednotky. Měření fyzikálních veličin. Zpracování výsledků měření. - fyzikální veličiny a jejich jednotky - mezinárodní

Více

laboratorní řád, bezpečnost práce metody fyzikálního měření, chyby měření hustota tělesa

laboratorní řád, bezpečnost práce metody fyzikálního měření, chyby měření hustota tělesa Vyučovací předmět Fyzika Týdenní hodinová dotace 2 hodiny Ročník 1. Roční hodinová dotace 72 hodin Výstupy Učivo Průřezová témata, mezipředmětové vztahy používá s porozuměním učivem zavedené fyzikální

Více

epojení) magnetického pole

epojení) magnetického pole Rekonexe magnetického pole, current-sheet, X-bodX Rekonexe (rekonekce, přepojenp epojení) magnetického pole Ve fyzice plazmatu je jev rekonexe magnetického pole velmi důležitým jevem Jde o jev, s jehož

Více

Úvod do vln v plazmatu

Úvod do vln v plazmatu Úvod do vln v plazmatu Co je to vlna? (fázová a grupová rychlost) Přehled vln v plazmatu Plazmové oscilace Iontové akustické vlny Horní hybridní frekvence Elektrostatické iontové cyklotronové vlny Dolní

Více

Dynamika. Akademik Karel J uliš, Doc. Ing. Rudolf Brepta, DrSc. a kol. , f,,,.,'. < ... t- PRAHA 1987 SNTL - NAKLADATELSTVÍ TECHNICKÉ LITERATURY !

Dynamika. Akademik Karel J uliš, Doc. Ing. Rudolf Brepta, DrSc. a kol. , f,,,.,'. < ... t- PRAHA 1987 SNTL - NAKLADATELSTVÍ TECHNICKÉ LITERATURY ! I MECHANIKA Dynamika II DÍḶ Akademik Karel J uliš, Doc Ing Rudolf Brepta, DrSc a kol " ",,l;' ' -,' "" ;,!,", f,,,,' < '" ~ t- PRAHA 1987 I SNTL - NAKLADATELSTVÍ TECHNICKÉ LITERATURY OBSAH PREDMLUVA lo

Více

Fyzika - Kvarta Fyzika kvarta Výchovné a vzdělávací strategie Učivo ŠVP výstupy

Fyzika - Kvarta Fyzika kvarta Výchovné a vzdělávací strategie Učivo ŠVP výstupy - Kvarta Fyzika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k učení Kompetence pracovní Učivo magnetické

Více

Petr Kulhánek České vysoké učení technické v Praze, Fakulta elektrotechnická, katedra fyziky

Petr Kulhánek České vysoké učení technické v Praze, Fakulta elektrotechnická, katedra fyziky PLAZMA ČTVRTÉ SKUPENSTVÍ HMOTY Petr Kulhánek České vysoké učení technické v Praze, Fakulta elektrotechnická, katedra fyziky Abstrakt: Příspěvek pojednává o vlastnostech laboratorního i vesmírného plazmatu,

Více

Isingův model. H s J s s h s

Isingův model. H s J s s h s Ising Isingův model H s J s s h s i, j Motivován studiem fázových přechodů a kritických jevů Užíva se popis pomocí magnetických veličin i j i i Vlastnosti pomocí partiční sumy počítej: měrné teplo, susceptibilitu

Více

Slovo úvodem 9 1 Klasická astronomie, nebeská mechanika 11 1.1 Časomíra...... 11 1.1.1 Sluneční hodiny.... 11 1.1.2 Pravý místní sluneční čas versus pásmový středoevropský čas.. 13 1.1.3 Přesnější definice

Více

KYBERNETIKA. Prof. Ing. Vilém Srovnal, CSc. Vysoká škola báňská Technická univerzita Ostrava

KYBERNETIKA. Prof. Ing. Vilém Srovnal, CSc. Vysoká škola báňská Technická univerzita Ostrava KYBERNETIKA Prof. Ing. Vilém Srovnal, CSc. Vysoká škola báňská Technická univerzita Ostrava 28 . ÚVOD DO TECHNICKÉ KYBERNETIKY... 5 Co je to kybernetika... 5 Řídicí systémy... 6 Základní pojmy z teorie

Více

Interakce laserového impulsu s plazmatem v souvislosti s inerciální fúzí zapálenou rázovou vlnou

Interakce laserového impulsu s plazmatem v souvislosti s inerciální fúzí zapálenou rázovou vlnou Interakce laserového impulsu s plazmatem v souvislosti s inerciální fúzí zapálenou rázovou vlnou Autor práce: Petr Valenta Vedoucí práce: Ing. Ondřej Klimo, Ph.D. Konzultanti: prof. Ing. Jiří Limpouch,

Více

A1B14SP1 ELEKTRICKÉ STROJE A PŘÍSTROJE 1

A1B14SP1 ELEKTRICKÉ STROJE A PŘÍSTROJE 1 A1B14SP1 ELEKTRICKÉ STROJE A PŘÍSTROJE 1 3+2 z,zk Doc. Ing. Petr Voženílek, CSc. 2 2435 2135 T2:B3-257 Doc. Ing. Vladimír Novotný, CSc. 2 2435 2150 T2:B3-247 Doc. Ing. Pavel Mindl, CSc. 2 2435 2150 T2:B3-247

Více

VÝUKOVÝ MATERIÁL. Pro vzdělanější Šluknovsko. 32 Inovace a zkvalitnění výuky prostřednictvím ICT. 0210 Bc. David Pietschmann.

VÝUKOVÝ MATERIÁL. Pro vzdělanější Šluknovsko. 32 Inovace a zkvalitnění výuky prostřednictvím ICT. 0210 Bc. David Pietschmann. VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Autor Tematická oblast Číslo a název materiálu Anotace Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková

Více

PRINCIPY ZAŘÍZENÍ PRO FYZIKÁLNÍ TECHNOLOGIE (FSI-TPZ-A)

PRINCIPY ZAŘÍZENÍ PRO FYZIKÁLNÍ TECHNOLOGIE (FSI-TPZ-A) PRINCIPY ZAŘÍZENÍ PRO FYZIKÁLNÍ TECHNOLOGIE (FSI-TPZ-A) GARANT PŘEDMĚTU: Prof. RNDr. Tomáš Šikola, CSc. (ÚFI) VYUČUJÍCÍ PŘEDMĚTU: Prof. RNDr. Tomáš Šikola, CSc., Ing. Stanislav Voborný, Ph.D. (ÚFI) JAZYK

Více

Sada: VY_32_INOVACE_4IS

Sada: VY_32_INOVACE_4IS Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_4IS Pořadové číslo: 12 Ověření ve výuce Třída: 8.A Datum: 20. 3. 2013 1 Elektrické pole Předmět: Ročník: Fyzika 8.

Více

Vlny v plazmatu. Narušení rovnováhy, perturbace se šíří prostorem => vlny Vlna musí být řešením příslušných rovnic plazmatu => módy

Vlny v plazmatu. Narušení rovnováhy, perturbace se šíří prostorem => vlny Vlna musí být řešením příslušných rovnic plazmatu => módy Vlny v plazmatu Narušení rovnováhy, perturbace se šíří prostorem => vlny Vlna musí být řešením příslušných rovnic plazmatu => módy Jakákoli perturbace A( x,t může být reprezentována jako kombinace rovinných

Více

Matice a maticová algebra, soustavy lineárních rovnic, kořeny polynomu a soustava nelin.rovnic

Matice a maticová algebra, soustavy lineárních rovnic, kořeny polynomu a soustava nelin.rovnic co byste měli umět po dnešní lekci: definovat matici, přistupovat k jejím prvkům provádět základní algebraické operace spočíst inverzní matici najít řešení soustavy lineárních rovnic určit vlastní čísla

Více

Laserová technika prosince Katedra fyzikální elektroniky.

Laserová technika prosince Katedra fyzikální elektroniky. Laserová technika 1 Aktivní prostředí Šíření rezonančního záření dvouhladinovým prostředím Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program

Více

Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009)

Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009) Střední průmyslová škola Jihlava tř. Legionářů 1572/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Strojírenství (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje

Více

MODEL MECHANISMU STĚRAČE SE TŘENÍM. Inženýrská mechanika a mechatronika Martin Havlena

MODEL MECHANISMU STĚRAČE SE TŘENÍM. Inženýrská mechanika a mechatronika Martin Havlena MODEL MECHANISMU STĚRAČE SE TŘENÍM Inženýrská mechanika a mechatronika Martin Havlena Osnova 2/17 Obsah prezentace Cíle práce Požadavky společnosti PAL International s.r.o. Souprava stěrače čelního skla

Více

Elementární částice. 1. Leptony 2. Baryony 3. Bosony. 4. Kvarkový model 5. Slabé interakce 6. Partonový model

Elementární částice. 1. Leptony 2. Baryony 3. Bosony. 4. Kvarkový model 5. Slabé interakce 6. Partonový model Elementární částice 1. Leptony 2. Baryony 3. Bosony 4. Kvarkový model 5. Slabé interakce 6. Partonový model I.S. Hughes: Elementary Particles M. Leon: Particle Physics W.S.C. Williams Nuclear and Particle

Více

Termika a molekulová fyzika Teplota a její měření: nultý termodynamický zákon, teploměry, empirická, absolutní a termodynamická

Termika a molekulová fyzika Teplota a její měření: nultý termodynamický zákon, teploměry, empirická, absolutní a termodynamická POŽADAVKY KE STÁTNÍ ZÁVĚREČNÉ ZKOUŠCE BAKALÁŘSKÉ JEDNOOBOROVÉ STUDIUM FYZIKA Zkouška je ústní a má dvě části: 1. Fyzika 2. Specializace - student si volí jeden z následujících okruhů: a) Experimentální

Více

Vlastnosti pevných látek

Vlastnosti pevných látek lastnosti pevných látek fyzikální vlastnost: odezva na určitý podnět, fyzikální rovnice definue vztah mezi nimi Příklad: elastická deformace izotropního pružného tělesa l 0 (Hookův zákon) = E tahové napětí

Více

Mechanika tuhého tělesa. Dynamika + statika

Mechanika tuhého tělesa. Dynamika + statika Mechanika tuhého tělesa Dynamika + statika Moment hybnosti U tuhého tělesa není hybnost vhodnou veličinou pro posouzení dynamického stavu rotujícího tělesa Definujeme veličinu analogickou hybnosti, která

Více

Úvod do fyziky plazmatu

Úvod do fyziky plazmatu Úvod do fyziky plazmatu Plazma Velmi často se o plazmatu mluví jako o čtvrtém skupenství hmoty Název plazma pro ionizovaný plyn poprvé použil Irwing Langmuir (1881 1957) v roce 1928, protože mu chováním

Více

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky

Více

Požadavky ke státní závěrečné zkoušce pro obor učitelství fyziky pro SŠ

Požadavky ke státní závěrečné zkoušce pro obor učitelství fyziky pro SŠ Požadavky ke státní závěrečné zkoušce pro obor učitelství fyziky pro SŠ Organizace zkoušky Zkouška je ústní a má dvě části: 1. fyzika, 2. didaktika fyziky. Každému posluchači budou zadány dvě otázky z

Více

Aerodynamika. Tomáš Kostroun

Aerodynamika. Tomáš Kostroun Aerodynamika Tomáš Kostroun Aerodynamika Pojednává o plynech v pohybu a jejich působení na tělesa Dělení podle rychlosti Nízkorychlostní M = (0-0,3) Vysokorychlostní M = (0,3-0,85) Transonická M = (0,85-1,1)

Více

Termodynamika v biochemii

Termodynamika v biochemii Termodynamika v biochemii Studium energetických změn Klasická x statistická Rovnovážná x nerovnovážná lineárn rní a nelineárn rní Základní pojmy Makroskopický systém, okolí systému Termodynamický systém

Více

SYNTÉZA AUDIO SIGNÁLŮ

SYNTÉZA AUDIO SIGNÁLŮ SYNTÉZA AUDIO SIGNÁLŮ R. Čmejla Fakulta elektrotechnická, ČVUT v Praze Abstrakt Příspěvek pojednává o technikách číslicové audio syntézy vyučovaných v předmětu Syntéza multimediálních signálů na Elektrotechnické

Více

Vojtěch Hrubý: Esej pro předmět Seminář EVF

Vojtěch Hrubý: Esej pro předmět Seminář EVF Vojtěch Hrubý: Esej pro předmět Seminář EVF Plazma Pod pojmem plazma většinou myslíme plynné prostředí, které se skládá z neutrálních částic, iontů a elektronů. Poměr množství neutrálních a nabitých částic

Více

Několik poznámek na téma lineární algebry pro studenty fyzikální chemie

Několik poznámek na téma lineární algebry pro studenty fyzikální chemie Několik poznámek na téma lineární algebry pro studenty fyzikální chemie Jiří Kolafa Vektory. Vektorový prostor Vektor je často zaveden jako n-tice čísel, (v,..., v n ), v i R (pro reálný vektorový prostor);

Více

a 4. (letní semestr) Doc.ing.Vlastimil Jáneš, CSc Ing.Karel Malý, Ph.D Ing. Jindřich Sadil, Ph.D

a 4. (letní semestr) Doc.ing.Vlastimil Jáneš, CSc Ing.Karel Malý, Ph.D Ing. Jindřich Sadil, Ph.D K620ELT1 - Elektrotechnika 1 Skupina předmětů: Typ studia: Semestr: Rozsah; ukončení: Garant: Vyučující: Povinný předmět oborový (TL) bakalářské a 4. (letní semestr) 2+2; z, zk Doc.ing. Vlastimil Jáneš,

Více

Netradiční výklad tradičních témat

Netradiční výklad tradičních témat Netradiční výklad tradičních témat J. Musilová, P. Musilová: Matematika pro porozumění i praxi I. VUTIUM, Brno 2006 (291 s.), 2009 (349 s.). J. Musilová, P. Musilová: Matematika pro porozumění i praxi

Více

pro studijní obor optika

pro studijní obor optika Zkušební požadavky k bakalářské zkoušce z fyziky pro studijní obor optika Experimentální a obecná fyzika 1. Veličiny a jednotky ve fyzice, souřadnicové systémy. Rozdělení fyzikálních jednotek, soustava

Více

2. Statistický popis plazmatu

2. Statistický popis plazmatu Statistický popis plazmatu 60 Statistický popis plazmatu Při popisu typického plazmatu je technicky nemožné popsat trajektorie všech částic Jen v řídkém plazmatu mezihvězdného prostoru nalezneme miliony

Více

STUDIJNÍ TEXT PRO FJFI ČVUT

STUDIJNÍ TEXT PRO FJFI ČVUT TEORIE PLAZMATU STUDIJNÍ TEXT PRO FJFI ČVUT PETR KULHÁNEK PRAHA 8 FJFI ČVUT PŘEDMLUVA O plazmatu se často hovoří jako o čtvrtém skupenství hmoty A je to oprávněné, protože vlastnosti plazmatu jsou velmi

Více

ZS: 2018/2019 NMAF063 F/3 Josef MÁLEK. Matematika pro fyziky III

ZS: 2018/2019 NMAF063 F/3 Josef MÁLEK. Matematika pro fyziky III ZS: 2018/2019 NMAF063 F/3 Josef MÁLEK Matematika pro fyziky III OBECNÉ INFORMACE A SYLABUS Přednášející: Cvičící: Josef Málek Tomáš Los, Michal Pavelka, Michal Pavelka, Vít Průša Termíny přednášek: čtvrtek

Více

Požadavky ke státní závěrečné zkoušce pro obor Učitelství fyziky pro SŠ

Požadavky ke státní závěrečné zkoušce pro obor Učitelství fyziky pro SŠ Požadavky ke státní závěrečné zkoušce pro obor Učitelství fyziky pro SŠ Organizace zkoušky Zkouška je ústní a má dvě části: A. fyzika, B. didaktika fyziky. Každému posluchači budou zadány dvě otázky z

Více

3.2 Rovnice postupné vlny v bodové řadě a v prostoru

3.2 Rovnice postupné vlny v bodové řadě a v prostoru 3 Vlny 3.1 Úvod Vlnění můžeme pozorovat například na vodní hladině, hodíme-li do vody kámen. Mechanické vlnění je děj, při kterém se kmitání šíří látkovým prostředím. To znamená, že například zvuk, který

Více

Zasedání OR FCH 27. ledna 2016 zápis

Zasedání OR FCH 27. ledna 2016 zápis Zasedání OR FCH 27. ledna 2016 zápis 1. Předseda OR (prof. Pekař) informoval o prodloužení akreditace. OR projednala související změny ve struktuře studijních předmětů konstatovala, že návrh z posledního

Více

Obsah PŘEDMLUVA 11 ÚVOD 13 1 Základní pojmy a zákony teorie elektromagnetického pole 23

Obsah PŘEDMLUVA 11 ÚVOD 13 1 Základní pojmy a zákony teorie elektromagnetického pole 23 Obsah PŘEDMLUVA... 11 ÚVOD... 13 0.1. Jak teoreticky řešíme elektrotechnické projekty...13 0.2. Dvojí význam pojmu pole...16 0.3. Elektromagnetické pole a technické projekty...20 1. Základní pojmy a zákony

Více

Fyzika - Septima, 3. ročník

Fyzika - Septima, 3. ročník - Septima, 3. ročník Fyzika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence sociální a personální Kompetence komunikativní Kompetence občanská Kompetence k podnikavosti Kompetence

Více

Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba

Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba Petr Pošta Text pro soutěžící FO a ostatní zájemce o fyziku 2 1. úloha Obrázek 1.1 ukazuje pevný, homogenní míč poloměru R. Před pádem na

Více

Pokroky matematiky, fyziky a astronomie

Pokroky matematiky, fyziky a astronomie Pokroky matematiky, fyziky a astronomie Jan Mlynář Rovnováha plazmatu a magnetického pole v termojaderných reaktorech typu tokamak Pokroky matematiky, fyziky a astronomie, Vol. 57 (2012), No. 2, 122--139

Více

Látka a těleso skupenství látek atomy, molekuly a jejich vlastnosti. Fyzikální veličiny a jejich měření fyzikální veličiny a jejich jednotky

Látka a těleso skupenství látek atomy, molekuly a jejich vlastnosti. Fyzikální veličiny a jejich měření fyzikální veličiny a jejich jednotky Vyučovací předmět Fyzika Týdenní hodinová dotace 1 hodina Ročník Prima Roční hodinová dotace 36 hodin Výstupy Učivo Průřezová témata, mezipředmětové vztahy prakticky rozeznává vlastnosti látek a těles

Více

INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY

INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY FUNKCÍ DVOU PROMĚNNÝCH Robert Mařík 2. října 2009 Obsah z = x 4 +y 4 4xy + 30..................... 3 z = x 2 y 2 x 2 y 2........................ 18 z = y ln(x 2 +y)..........................

Více

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: CZ.1.07/1.5.00/34.0410 Číslo šablony: 22 Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tématický celek:

Více

Jiøí Myslík Elektromagnetické pole základy teorie Kniha je vìnována základùm teorie elektromagnetického pole Je zpracována tak, aby posloužila jak studentùm vysokých, tak i støedních škol a všem zájemcùm

Více

5.6.3 Rekursivní indexace složitostních tříd 5.6.4 Uniformní diagonalizace 5.6.5 Konstrukce rekursivních indexací a aplikace uniformní diagonalizace

5.6.3 Rekursivní indexace složitostních tříd 5.6.4 Uniformní diagonalizace 5.6.5 Konstrukce rekursivních indexací a aplikace uniformní diagonalizace Obsah prvního svazku 1 Úvod 1.1 Přehled pojmů a struktur 1.1.1 Množiny, čísla a relace 1.1.2 Funkce 1.1.3 Pravděpodobnost 1.1.4 Grafy 1.2 Algebra 1.2.1 Dělitelnost, prvočíselnost a základní kombinatorické

Více

Tvorba trendové funkce a extrapolace pro roční časové řady

Tvorba trendové funkce a extrapolace pro roční časové řady Tvorba trendové funkce a extrapolace pro roční časové řady Příklad: Základem pro analýzu je časová řada živě narozených mezi lety 1970 a 2005. Prvním úkolem je vybrat vhodnou trendovou funkci pro vystižení

Více

Základní otázky pro teoretickou část zkoušky.

Základní otázky pro teoretickou část zkoušky. Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.

Více

[N; m.f -1, C, C, m]

[N; m.f -1, C, C, m] 3. Elektrostatika je nauka o vlastnostech elektrických nábojů, které jsou v klidu 3.1. Vznik elektrostatického pole Elektrostatickým polem se nazývá prostředí, ve kterém vzniknou jakýmkoliv způsobem rozdílné

Více

Projekty do předmětu MF

Projekty do předmětu MF Univerzita Palackého v Olomouci Přírodovědecká fakulta Katedra optiky ZÁVĚREČNÁ PRÁCE Projekty do předmětu MF Vypracoval: Miroslav Mlynář E-mail: mlynarm@centrum.cz Studijní program: B1701 Fyzika Studijní

Více

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15 Proč studovat hvězdy? 9 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů.... 13 1.3 Model našeho Slunce 15 2 Záření a spektrum 21 2.1 Elektromagnetické záření

Více

Matematické symboly a značky

Matematické symboly a značky Matematické symboly a značky Z Wikipedie, otevřené encyklopedie Matematický symbol je libovolný znak, používaný v. Může to být znaménko pro označení operace s množinami, jejich prvky, čísly či jinými objekty,

Více

Fyzika IV. -ezv -e(z-zv) kov: valenční elektrony vodivostní elektrony. Elektronová struktura pevných látek model volných elektronů

Fyzika IV. -ezv -e(z-zv) kov: valenční elektrony vodivostní elektrony. Elektronová struktura pevných látek model volných elektronů Elektronová struktura pevných látek model volných elektronů 1897: J.J. Thomson - elektron jako částice 1900: P. Drude: kinetická teorie plynů - kov jako plyn elektronů Drudeho model elektrony se mezi srážkami

Více

Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory

Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při

Více

LASEROVÉ SVAZKY PRO OPTICKÉ MANIPULACE

LASEROVÉ SVAZKY PRO OPTICKÉ MANIPULACE LASEROVÉ SVAZKY PRO OPTICKÉ MANIPULACE Katedra optiky, PřF UP 17. Listopadu 50, 772 07 Olomouc Řešitelé grantu MPO: Z. Bouchal, Z. Hradil, J. Řeháček, J. Wagner, I. Vyšín PGS studenti : R. Čelechovský,

Více

Jemný úvod do numerických metod

Jemný úvod do numerických metod Jemný úvod do numerických metod Matematické algoritmy (11MAG) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 8. přednáška 11MAG pondělí 24. listopadu 2014 verze:2014-11-24 16:35

Více

Seminář z matematiky. jednoletý volitelný předmět

Seminář z matematiky. jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Seminář z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je koncipován pro přípravu studentů k úspěšnému zvládnutí profilové (školní)

Více

POŽADAVKY K RIGOROZNÍ ZKOUŠCE UČITELSTVÍ FYZIKY PRO STŘEDNÍ ŠKOLY

POŽADAVKY K RIGOROZNÍ ZKOUŠCE UČITELSTVÍ FYZIKY PRO STŘEDNÍ ŠKOLY POŽADAVKY K RIGOROZNÍ ZKOUŠCE UČITELSTVÍ FYZIKY PRO STŘEDNÍ ŠKOLY Organizace zkoušky Zkouška je ústní a má tři části: 1. Fyzika 2. Teorie vyučování fyzice 3. Specializace. Z první části budou položeny

Více

C Mapy Kikuchiho linií 263. D Bodové difraktogramy 271. E Počítačové simulace pomocí programu JEMS 281. F Literatura pro další studium 289

C Mapy Kikuchiho linií 263. D Bodové difraktogramy 271. E Počítačové simulace pomocí programu JEMS 281. F Literatura pro další studium 289 OBSAH Předmluva 5 1 Popis mikroskopu 13 1.1 Transmisní elektronový mikroskop 13 1.2 Rastrovací transmisní elektronový mikroskop 14 1.3 Vakuový systém 15 1.3.1 Rotační vývěvy 16 1.3.2 Difúzni vývěva 17

Více

Osnova kurzu. Základy teorie elektrických obvodů 1

Osnova kurzu. Základy teorie elektrických obvodů 1 Osnova kurzu 1) Úvodní informace; zopakování nejdůležitějších vztahů 2) Základy teorie elektrických obvodů 1 3) Základy teorie elektrických obvodů 2 4) Základy teorie elektrických obvodů 3 5) Základy teorie

Více

Fourierovské metody v teorii difrakce a ve strukturní analýze

Fourierovské metody v teorii difrakce a ve strukturní analýze Osnova přednášky na 31 kolokviu Krystalografické společnosti Výpočetní metody v rtg a neutronové strukturní analýze Nové Hrady, 16 20 6 2003 Fourierovské metody v teorii difrakce a ve strukturní analýze

Více

Vlastnosti pevných látek

Vlastnosti pevných látek Vlastnosti pevných látek fyzikální vlastnost: odezva na určitý podnět, fyzikální rovnice definue vztah mezi nimi Příklad: elastická deformace izotropního pružného tělesa l 0 (Hookův zákon) = E tahové napětí

Více

Sluneční dynamika. Michal Švanda Astronomický ústav AV ČR Astronomický ústav UK

Sluneční dynamika. Michal Švanda Astronomický ústav AV ČR Astronomický ústav UK Sluneční dynamika Michal Švanda Astronomický ústav AV ČR Astronomický ústav UK Slunce: dynamický systém Neměnnost Slunce Iluze Slunce je proměnná hvězda Sluneční proměny Díky vývoji Dynamika hmoty Magnetická

Více

Vlastnosti pevných látek

Vlastnosti pevných látek Vlastnosti pevných látek fyzikální vlastnost: odezva na určitý podnět, fyzikální rovnice definuje vztah mezi nimi (fyzikální veličiny skaláry, vektory, tenzory) Příklad: elastická deformace izotropního

Více

V mnoha běžných případech v optickém oboru je zanedbáváno silové působení magnetické složky elektromagnetického pole na náboje v látce str. 3 6.

V mnoha běžných případech v optickém oboru je zanedbáváno silové působení magnetické složky elektromagnetického pole na náboje v látce str. 3 6. Nekvantový popis interakce světla s pasivní látkou Zcela nekvantová fyzika nemůže interakci elektromagnetického záření s látkou popsat, např. atom jako soustava kladných a záporných nábojů by vůbec nebyl

Více

Maturitní otázky z fyziky Vyučující: Třída: Školní rok:

Maturitní otázky z fyziky Vyučující: Třída: Školní rok: Maturitní otázky z fyziky Vyučující: Třída: Školní rok: 1) Trajektorie, dráha, dráha 2) Rychlost 3) Zrychlení 4) Intenzita 5) Práce, výkon 6) Energie 7) Částice a vlny; dualita 8) Síla 9) Náboj 10) Proudění,

Více

Diskontinuity a šoky

Diskontinuity a šoky Diskontinuity a šoky tok plazmatu Oblast 1 Oblast ( upstream ) ( downstream ) ρu Uu Bu pu ρd Ud Bd pd hranice mezi oblastmi může tu docházet k disipaci (růstu entropie a nevratným změnám) není popsatelná

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Fyzika 2 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat

Více

Základní otázky ke zkoušce A2B17EPV. České vysoké učení technické v Praze ID Fakulta elektrotechnická

Základní otázky ke zkoušce A2B17EPV. České vysoké učení technické v Praze ID Fakulta elektrotechnická Základní otázky ke zkoušce A2B17EPV Materiál z přednášky dne 10/5/2010 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2. Coulombův zákon, orientace vektorů

Více

1.3. Cíle vzdělávání v oblasti citů, postojů, hodnot a preferencí

1.3. Cíle vzdělávání v oblasti citů, postojů, hodnot a preferencí 1. Pojetí vyučovacího předmětu 1.1. Obecný cíl vyučovacího předmětu Obecným cílem je zprostředkovat základní fyzikální poznatky potřebné v odborném i dalším vzdělání a praktickém životě a také naučit žáky

Více

Teplotní roztažnost Přenos tepla Kinetická teorie plynů

Teplotní roztažnost Přenos tepla Kinetická teorie plynů Teplotní roztažnost Přenos tepla Kinetická teorie plynů Teplotní roztažnost pevných látek l a kapalin Teplotní délková roztažnost Teplotní objemová roztažnost a závislost hustoty na teplotě Objemová roztažnost

Více

Zeemanův jev. Pavel Motal 1 SOŠ a SOU Kuřim, s. r. o. Miroslav Michlíček 2 Gymnázium Vyškov

Zeemanův jev. Pavel Motal 1 SOŠ a SOU Kuřim, s. r. o. Miroslav Michlíček 2 Gymnázium Vyškov Zeemanův jev Pavel Motal 1 SOŠ a SOU Kuřim, s. r. o. Miroslav Michlíček 2 Gymnázium Vyškov 1 Abstrakt Při tomto experimentu jsme zopakovali pokus Pietera Zeemana (nositel Nobelovy ceny v roce 1902) se

Více

Zkušební otázky pro bakalářské SZZ Fyzika, Fyzika pro vzdělávání, Biofyzika

Zkušební otázky pro bakalářské SZZ Fyzika, Fyzika pro vzdělávání, Biofyzika Zkušební otázky pro bakalářské SZZ Fyzika, Fyzika pro vzdělávání, Biofyzika Obecná fyzika - Fyzika, Fyzika pro vzdělávání, Biofyzika (povinně pro všechny obory) 1. Trajektorie hmotného bodu, poloha, dráha,

Více

1. Elektrická práce a výkon. 2. Zdroj a šíření zvuku. 3. Odraz světla

1. Elektrická práce a výkon. 2. Zdroj a šíření zvuku. 3. Odraz světla 1. Elektrická práce a výkon ANOTACE: Materiál slouží k výkladu pojmů elektrická práce a výkon. V prezentaci je jsou vysvětleny oba pojmy a uvedeny vztahy pro výpočet práce i výkonu. Na přehledném schématu

Více

Emisní spektrální čáry atomů. Úvod do teorie a dvě praktické aplikace

Emisní spektrální čáry atomů. Úvod do teorie a dvě praktické aplikace Emisní spektrální čáry atomů. Úvod do teorie a dvě praktické aplikace Ing. Pavel Oupický Oddělení optické diagnostiky, Turnov Ústav fyziky plazmatu AV ČR, v.v.i., Praha Úvod Teorie vzniku a kvantifikace

Více