Úvod do teorie plazmatu
|
|
- Zdeňka Urbanová
- před 9 lety
- Počet zobrazení:
Transkript
1 Úvod do teorie plazmatu Petr Kulhánek AGA 2011
2 Text Petr Kulhánek ISBN:
3 Obsah PŘEDMLUVA...9 ÚVOD POHYBY NABITÝCH ČÁSTIC NERELATIVISTICKÉ POHYBY Lagrangeova a Hamiltonova funkce Pohyb v elektrickém poli, optická analogie Pohyb v homogenním magnetickém poli Pohyb ve zkřížených polích RELATIVISTICKÉ POHYBY Lagrangeova a Hamiltonova funkce Pohyb v homogenním elektrickém poli ADIABATICKÉ PŘIBLÍŽENÍ První adiabatický invariant Pohyb gyračního středu Síla μ B Driftová rovnice Drifty POHYBY VE SPECIÁLNÍCH KONFIGURACÍCH Magnetické zrcadlo Druhý adiabatický invariant, Fermiho mechanizmus Magnetický dipól, třetí adiabatický invariant Elektrický a magnetický monopól Tokamak Plazmové vlákno a souvislost driftů s proudy NUMERICKÉ SIMULACE POHYBU ČÁSTIC Newtonovo-Eulerovo schéma (NE) Skákající žába aneb Leap-Frog schéma (LF) Přesnější schémata (RK, BB) Relativistická schémata... 56
4 2. STATISTICKÝ POPIS PLAZMATU BOLTZMANNOVA ROVNICE Různé varianty Boltzmannovy rovnice Boltzmannův srážkový člen Rovnice přenosu (momentová rovnice) PŘECHOD OD STATISTIKY KE KONTINUU Nultý moment (zachování náboje) částice Nultý moment (zachování náboje) pole První moment (zachování hybnosti) částice První moment (zachování hybnosti) pole Druhý moment (zachování energie) částice Druhý moment (zachování energie) pole JEDNODUCHÉ TRANSPORTNÍ JEVY Transport náboje (Ohmův zákon) Transport částic (Fickův zákon) Ambipolární difúze Difúze v magnetickém poli Transport tepla (Fourierův zákon) Produkce entropie, Onsagerovy relace COULOMBOVA INTERAKCE Debyeova stínicí vzdálenost Coulombův rozptyl (Rutherfordova formule) Fokkerova-Planckova rovnice Rosenbluthovy potenciály Brzděná a ubíhající testovací částice Relaxační časy a srážkové frekvence MONTE CARLO SIMULACE Generátory náhodných čísel Realizace pravděpodobnostního rozdělení Metropolisova metoda MC simulace srážky dvou nabitých částic MAGNETOHYDRODYNAMIKA MINIMÁLNÍ VARIANTA Substancionální derivace a rovnice proudnice Rovnice pro magnetické pole Rovnice pro hustotu Rovnice pro rychlost Uzavření soustavy VYBRANÉ JEVY Hartmannovo řešení Vlny konečné amplitudy Helicita Tekutinové dynamo Přepojení magnetických indukčních čar
5 3.3 NĚKTERÉ ROVNOVÁŽNÉ KONFIGURACE V PLAZMATU Rovnováha v plazmatu Proudové vlákno (pinč) Proudová stěna Dvojvrstva Rázové vlny DIFERENČNÍ SCHÉMATA V MAGNETOHYDRODYNAMICE Parciální diferenciální rovnice Tvorba diferenčních schémat Posuzování stability schématu LINEÁRNÍ VLNY V PLAZMATU ZÁKLADNÍ POJMY Vlnění Rozměrová analýza (vlny na hluboké vodě) Lineární teorie (elektromagnetické vlny) Nelineární teorie (zvukové vlny) Další příklady (Jeansovo kritérium, různé vlnové rovnice) PLAZMOVÉ OSCILACE A VLNY Odvození disperzní relace Plazmové oscilace Plazmové vlny Iontové vlny Další vlivy MAGNETOAKUSTICKÉ VLNY Odvození disperzní relace Vlnoplochy magnetoakustických vln Směry vektorů v magnetoakustických vlnách ELEKTROMAGNETICKÉ VLNY Disperzní relace elektromagnetického komplexu Stixovy koeficienty, CMA diagram Faradayova rotace Hvizdy (whistlers) Tenzor permitivity pro elektromagnetické vlny v plazmatu Šlírová fotografie HLEDÁNÍ KOŘENŮ POLYNOMIÁLNÍ ROVNICE Weylův algoritmus Newtonův algoritmus Zobecněný Newtonův algoritmus NESTABILITY V PLAZMATU NEOMEZENÉ CHLADNÉ PLAZMA Základní pojmy Vícesvazková nestabilita Dva symetrické svazky
6 5.1.4 Nestabilita typu svazek-plazma Další nestability (driftová, Weibelova) PLAZMA S HRANICÍ A VÝMĚNNÉ NESTABILITY Základní vztahy, vektor posunutí Nestability plazmového vlákna Rayleighova-Taylorova nestabilita Kelvinova-Helmholtzova nestabilita Další nestability (Richtmyerova Meškovova, diocotronová) Výměnné (tlakem řízené) nestability REZISTIVNÍ NESTABILITY Základní vztahy Ostrůvková (tearing) nestabilita Řízené rezistivní nestability Tokamakové nestability MIKRONESTABILITY Základní vztahy Landauův útlum na elektronech Landauův útlum na iontech Bernsteinovy módy PIC SIMULACE Váhování Řešení polí Řešení pohybu částic DODATKY DODATEK A UŽITEČNÉ VZTAHY A1 Některé integrály a řady A2 Vektorový součin a některé vektorové identity A3 Základní vztahy z komplexní analýzy A4 Některé speciální funkce A5 Výpočet Rosenbluthových potenciálů pro Maxwellovo rozdělení rychlostí A6 Základní trigonometrické vztahy DODATEK B ZOBECNĚNÉ FUNKCE B1 Diracova distribuce B2 Konvoluce B3 Greenův operátor a Greenova funkce B4 Fourierova transformace B5 Obecné řešení rovnice difúze DODATEK C KŘIVOČARÉ SOUŘADNICE, VÍCEROZMĚRNÉ INTEGRÁLY C1 Křivočaré souřadnice C2 Křivkové, plošné a objemové integrály C3 Vnější algebra
7 DODATEK D PŘEHLED VZTAHŮ A DEFINIC D1 Základní vztahy D2 Bezrozměrné charakteristiky plazmatu D3 Potenciály elektromagnetického pole DODATEK E MULTIPÓLOVÝ ROZVOJ E1 Rozvoj potenciálu elektrostatického pole E2 Rozvoj potenciálu magnetostatického pole SEZNAM SYMBOLŮ REJSTŘÍK OSOBNOSTÍ REJSTŘÍK POJMŮ LITERATURA PŘÍLOHA ANEB O ČEM BYSTE MĚLI VĚDĚT...377
POŽADAVKY KE STÁTNÍ ZÁVĚREČNÉ ZKOUŠCE MAGISTERSKÉ STUDIUM POČÍTAČOVÉ MODELOVÁNÍ VE VĚDĚ A TECHNICE (NAVAZUJÍCÍ STUDIUM I DOBÍHAJÍCÍ 5-LETÉ STUDIUM)
POŽADAVKY KE STÁTNÍ ZÁVĚREČNÉ ZKOUŠCE MAGISTERSKÉ STUDIUM POČÍTAČOVÉ MODELOVÁNÍ VE VĚDĚ A TECHNICE (NAVAZUJÍCÍ STUDIUM I DOBÍHAJÍCÍ 5-LETÉ STUDIUM) Organizace zkoušky Zkouška je ústní a má čtyři části:
Obsah PŘEDMLUVA...9 ÚVOD TEORETICKÁ MECHANIKA...15
Obsah PŘEDMLUVA...9 ÚVOD...11 1. TEORETICKÁ MECHANIKA...15 1.1 INTEGRÁLNÍ PRINCIPY MECHANIKY... 16 1.1.1 Základní pojmy z mechaniky... 16 1.1.2 Integrální principy... 18 1.1.3 Hamiltonův princip nejmenší
Obr. 141: První tři Bernsteinovy iontové módy. Na vodorovné ose je bezrozměrný vlnový vektor a na svislé ose reálná část bezrozměrné frekvence.
Mikronestability 33 m Re( ) ( m1) m1,,3, (5.18) ci Imaginární část frekvence, která je zodpovědná za útlum, razantně roste, pokud se vlny nešíří kolmo na magnetické pole. Útlum také roste s číslem módu
Další aplikace magnetohydrodynamiky v astrofyzice, nestability v plazmatu
Další aplikace magnetohydrodynamiky v astrofyzice, nestability v plazmatu MHD dynamo, sluneční a hvězdný vítr, MHD vlny při srážkách HVC s galaktickým diskem Tekutinové dynamo Velmi důležitou částí magnetohydrodynamiky
Vlnění, optika a atomová fyzika (2. ročník)
Vlnění, optika a atomová fyzika (2. ročník) Vlnění 1. Kmity soustav hmotných bodů (6 hod.) 1.1 Netlumené malé kmity kolem stabilní rovnovážné polohy: linearita pohybových rovnic, princip superpozice, obecné
Elektřina a magnetismus UF/01100. Základy elektřiny a magnetismu UF/PA112
Elektřina a magnetismus UF/01100 Rozsah: 4/2 Forma výuky: přednáška Zakončení: zkouška Kreditů: 9 Dop. ročník: 1 Dop. semestr: letní Základy elektřiny a magnetismu UF/PA112 Rozsah: 3/2 Forma výuky: přednáška
2.3. POLARIZACE VLN, POLARIZAČNÍ KOEFICIENTY A POMĚR E/B
.3. POLARIZACE VLN, POLARIZAČNÍ KOEFICIENTY A POMĚR E/B V řadě případů je užitečné znát polarizaci vlny a poměry mezi jednotlivými složkami vektoru elektrické intenzity E takzvané polarizační koeficienty,
Úvod do teorie plazmatu
Úvod do teorie plazmatu Petr Kulhánek AGA 013 Text Petr Kulhánek ISBN: 978-80-90458-- Obsah PŘEDMLUVA 9 ÚVOD11 1 POHYBY NABITÝCH ČÁSTIC15 11 NERELATIVISTICKÉ POHYBY 16 111 Lagrangeova a Hamiltonova funkce
SLUNCE A JEHO POZOROVÁNÍ I FYZIKA PLAZMATU
POZVÁNKA NA WORKSHOP PROJEKTU SE SLUNCEM SPOLEČNĚ SLUNCE A JEHO POZOROVÁNÍ I FYZIKA PLAZMATU 28. 30. června 2013, Hvězdárna Valašské Meziříčí Milí přátelé, Hvězdárna Valašské Meziříčí, p. o. ve spolupráci
5.2.4 Rayleighova Taylorova nestabilita
74 Nestability v plazmatu 5..4 Rayleighova Taylorova nestabilita Rayleighova Taylorova nestabilita (RT nestabilita) vzniká na rozhraní dvou tekutin různých hustot (například je-li v gravitačním poli hustší
Breviář fyzikální chemie
Breviář fyzikální chemie Anatol Malijevský Josef P. Novák Stanislav Labík Ivona Malijevská Připomínky k elektronické verzi posílejte na adresu: labik@vscht.cz 24. ledna 2001 Strana 1 z 519 Úvod Milí přátelé,
Základy matematické statistiky
r- MATEMATICKO-FYZIKÁLNí FAKULTA UNIVERZITY KARLOVY V PRAZE Jifí Andel Základy matematické statistiky matfyzpress PRAHA 2011 r I Obsah Predmluva. 11 1 Náhodné veličiny 1.1 Základní pojmy 1.2 Príklady diskrétních
Základy magnetohydrodynamiky. aneb MHD v jedné přednášce?! To si snad děláte legraci!
Základy magnetohydrodynamiky aneb MHD v jedné přednášce?! To si snad děláte legraci! Osnova Magnetohydrodynamika Maxwellovy rovnice Aplikace pinče, MHD generátory, geofyzika, astrofyzika... Magnetohydrodynamika
Ideální krystalová mřížka periodický potenciál v krystalu. pásová struktura polovodiče
Cvičení 3 Ideální krystalová mřížka periodický potenciál v krystalu Aplikace kvantové mechaniky pásová struktura polovodiče Nosiče náboje v polovodiči hustota stavů obsazovací funkce, Fermiho hladina koncentrace
Optika. VIII - Seminář
Optika VIII - Seminář Op-1: Šíření světla Optika - pojem Historie - dva pohledy na světlo ČÁSTICOVÁ TEORIE (I. Newton): světlo je proud částic VLNOVÁ TEORIE (Ch.Huygens): světlo je vlnění prostředí Dělení
ZÁŘENÍ V ASTROFYZICE
ZÁŘENÍ V ASTROFYZICE Plazmový vesmír Uvádí se, že 99 % veškeré hmoty ve vesmíru je v plazmovém skupenství (hvězdy, mlhoviny, ) I na Zemi se vyskytuje plazma, např. v podobě blesků, polárních září Ve sluneční
Úvod do molekulové dynamiky simulace proteinů. Eva Fadrná evaf@chemi.muni.cz
Úvod do molekulové dynamiky simulace proteinů Eva Fadrná evaf@chemi.muni.cz Molekulová mechanika = metoda silového pole = force field Energie vypočtená řešením Schrodingerovy rovnice Energie vypočtená
O symetrii tokamaku. Vtomto článku opustíme tematiku konkrétních. Jan Mlynář. 50 let UFP AV ČR
č. 4 Čs. čas. fyz. 59 (2009) 207 O symetrii tokamaku Jan Mlynář Ústav fyziky plazmatu AV ČR, v. v. i., Za Slovankou 3, 182 00 Praha 8 Loňské čtvrté číslo Čs. čas. fyz. se podrobně věnovalo historii tokamaků
Oddělení fyziky vrstev a povrchů makromolekulárních struktur
Oddělení fyziky vrstev a povrchů makromolekulárních struktur Témata diplomových prací 2014/2015 Studium změn elektrické vodivosti emeraldinových solí vystavených pokojovým a mírně zvýšeným teplotám klíčová
STUDIJNÍ TEXT PRO FJFI ČVUT
TEORIE PLAZMATU STUDIJNÍ TEXT PRO FJFI ČVUT PETR KULHÁNEK PRAHA 9/15 FJFI ČVUT PŘEDMLUVA O plazmatu se často hovoří jako o čtvrtém skupenství hmoty A je to oprávněné, protože vlastnosti plazmatu jsou velmi
Navazující magisterský studijní program Fyzika
Navazující magisterský studijní program Fyzika Navazující magisterský studijní program Fyzika se člení na následující obory: 1. Astronomie a astrofyzika 2. Geofyzika 3. Meteorologie a klimatologie 4. Teoretická
Maturitní okruhy Fyzika 2015-2016
Maturitní okruhy Fyzika 2015-2016 Mgr. Ladislav Zemánek 1. Fyzikální veličiny a jejich jednotky. Měření fyzikálních veličin. Zpracování výsledků měření. - fyzikální veličiny a jejich jednotky - mezinárodní
laboratorní řád, bezpečnost práce metody fyzikálního měření, chyby měření hustota tělesa
Vyučovací předmět Fyzika Týdenní hodinová dotace 2 hodiny Ročník 1. Roční hodinová dotace 72 hodin Výstupy Učivo Průřezová témata, mezipředmětové vztahy používá s porozuměním učivem zavedené fyzikální
epojení) magnetického pole
Rekonexe magnetického pole, current-sheet, X-bodX Rekonexe (rekonekce, přepojenp epojení) magnetického pole Ve fyzice plazmatu je jev rekonexe magnetického pole velmi důležitým jevem Jde o jev, s jehož
Úvod do vln v plazmatu
Úvod do vln v plazmatu Co je to vlna? (fázová a grupová rychlost) Přehled vln v plazmatu Plazmové oscilace Iontové akustické vlny Horní hybridní frekvence Elektrostatické iontové cyklotronové vlny Dolní
Dynamika. Akademik Karel J uliš, Doc. Ing. Rudolf Brepta, DrSc. a kol. , f,,,.,'. < ... t- PRAHA 1987 SNTL - NAKLADATELSTVÍ TECHNICKÉ LITERATURY !
I MECHANIKA Dynamika II DÍḶ Akademik Karel J uliš, Doc Ing Rudolf Brepta, DrSc a kol " ",,l;' ' -,' "" ;,!,", f,,,,' < '" ~ t- PRAHA 1987 I SNTL - NAKLADATELSTVÍ TECHNICKÉ LITERATURY OBSAH PREDMLUVA lo
Fyzika - Kvarta Fyzika kvarta Výchovné a vzdělávací strategie Učivo ŠVP výstupy
- Kvarta Fyzika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k učení Kompetence pracovní Učivo magnetické
Petr Kulhánek České vysoké učení technické v Praze, Fakulta elektrotechnická, katedra fyziky
PLAZMA ČTVRTÉ SKUPENSTVÍ HMOTY Petr Kulhánek České vysoké učení technické v Praze, Fakulta elektrotechnická, katedra fyziky Abstrakt: Příspěvek pojednává o vlastnostech laboratorního i vesmírného plazmatu,
Isingův model. H s J s s h s
Ising Isingův model H s J s s h s i, j Motivován studiem fázových přechodů a kritických jevů Užíva se popis pomocí magnetických veličin i j i i Vlastnosti pomocí partiční sumy počítej: měrné teplo, susceptibilitu
Slovo úvodem 9 1 Klasická astronomie, nebeská mechanika 11 1.1 Časomíra...... 11 1.1.1 Sluneční hodiny.... 11 1.1.2 Pravý místní sluneční čas versus pásmový středoevropský čas.. 13 1.1.3 Přesnější definice
KYBERNETIKA. Prof. Ing. Vilém Srovnal, CSc. Vysoká škola báňská Technická univerzita Ostrava
KYBERNETIKA Prof. Ing. Vilém Srovnal, CSc. Vysoká škola báňská Technická univerzita Ostrava 28 . ÚVOD DO TECHNICKÉ KYBERNETIKY... 5 Co je to kybernetika... 5 Řídicí systémy... 6 Základní pojmy z teorie
Interakce laserového impulsu s plazmatem v souvislosti s inerciální fúzí zapálenou rázovou vlnou
Interakce laserového impulsu s plazmatem v souvislosti s inerciální fúzí zapálenou rázovou vlnou Autor práce: Petr Valenta Vedoucí práce: Ing. Ondřej Klimo, Ph.D. Konzultanti: prof. Ing. Jiří Limpouch,
A1B14SP1 ELEKTRICKÉ STROJE A PŘÍSTROJE 1
A1B14SP1 ELEKTRICKÉ STROJE A PŘÍSTROJE 1 3+2 z,zk Doc. Ing. Petr Voženílek, CSc. 2 2435 2135 T2:B3-257 Doc. Ing. Vladimír Novotný, CSc. 2 2435 2150 T2:B3-247 Doc. Ing. Pavel Mindl, CSc. 2 2435 2150 T2:B3-247
VÝUKOVÝ MATERIÁL. Pro vzdělanější Šluknovsko. 32 Inovace a zkvalitnění výuky prostřednictvím ICT. 0210 Bc. David Pietschmann.
VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Autor Tematická oblast Číslo a název materiálu Anotace Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková
PRINCIPY ZAŘÍZENÍ PRO FYZIKÁLNÍ TECHNOLOGIE (FSI-TPZ-A)
PRINCIPY ZAŘÍZENÍ PRO FYZIKÁLNÍ TECHNOLOGIE (FSI-TPZ-A) GARANT PŘEDMĚTU: Prof. RNDr. Tomáš Šikola, CSc. (ÚFI) VYUČUJÍCÍ PŘEDMĚTU: Prof. RNDr. Tomáš Šikola, CSc., Ing. Stanislav Voborný, Ph.D. (ÚFI) JAZYK
Sada: VY_32_INOVACE_4IS
Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_4IS Pořadové číslo: 12 Ověření ve výuce Třída: 8.A Datum: 20. 3. 2013 1 Elektrické pole Předmět: Ročník: Fyzika 8.
Vlny v plazmatu. Narušení rovnováhy, perturbace se šíří prostorem => vlny Vlna musí být řešením příslušných rovnic plazmatu => módy
Vlny v plazmatu Narušení rovnováhy, perturbace se šíří prostorem => vlny Vlna musí být řešením příslušných rovnic plazmatu => módy Jakákoli perturbace A( x,t může být reprezentována jako kombinace rovinných
Matice a maticová algebra, soustavy lineárních rovnic, kořeny polynomu a soustava nelin.rovnic
co byste měli umět po dnešní lekci: definovat matici, přistupovat k jejím prvkům provádět základní algebraické operace spočíst inverzní matici najít řešení soustavy lineárních rovnic určit vlastní čísla
Laserová technika prosince Katedra fyzikální elektroniky.
Laserová technika 1 Aktivní prostředí Šíření rezonančního záření dvouhladinovým prostředím Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program
Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009)
Střední průmyslová škola Jihlava tř. Legionářů 1572/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Strojírenství (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje
MODEL MECHANISMU STĚRAČE SE TŘENÍM. Inženýrská mechanika a mechatronika Martin Havlena
MODEL MECHANISMU STĚRAČE SE TŘENÍM Inženýrská mechanika a mechatronika Martin Havlena Osnova 2/17 Obsah prezentace Cíle práce Požadavky společnosti PAL International s.r.o. Souprava stěrače čelního skla
Elementární částice. 1. Leptony 2. Baryony 3. Bosony. 4. Kvarkový model 5. Slabé interakce 6. Partonový model
Elementární částice 1. Leptony 2. Baryony 3. Bosony 4. Kvarkový model 5. Slabé interakce 6. Partonový model I.S. Hughes: Elementary Particles M. Leon: Particle Physics W.S.C. Williams Nuclear and Particle
Termika a molekulová fyzika Teplota a její měření: nultý termodynamický zákon, teploměry, empirická, absolutní a termodynamická
POŽADAVKY KE STÁTNÍ ZÁVĚREČNÉ ZKOUŠCE BAKALÁŘSKÉ JEDNOOBOROVÉ STUDIUM FYZIKA Zkouška je ústní a má dvě části: 1. Fyzika 2. Specializace - student si volí jeden z následujících okruhů: a) Experimentální
Vlastnosti pevných látek
lastnosti pevných látek fyzikální vlastnost: odezva na určitý podnět, fyzikální rovnice definue vztah mezi nimi Příklad: elastická deformace izotropního pružného tělesa l 0 (Hookův zákon) = E tahové napětí
Mechanika tuhého tělesa. Dynamika + statika
Mechanika tuhého tělesa Dynamika + statika Moment hybnosti U tuhého tělesa není hybnost vhodnou veličinou pro posouzení dynamického stavu rotujícího tělesa Definujeme veličinu analogickou hybnosti, která
Úvod do fyziky plazmatu
Úvod do fyziky plazmatu Plazma Velmi často se o plazmatu mluví jako o čtvrtém skupenství hmoty Název plazma pro ionizovaný plyn poprvé použil Irwing Langmuir (1881 1957) v roce 1928, protože mu chováním
Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách
Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky
Požadavky ke státní závěrečné zkoušce pro obor učitelství fyziky pro SŠ
Požadavky ke státní závěrečné zkoušce pro obor učitelství fyziky pro SŠ Organizace zkoušky Zkouška je ústní a má dvě části: 1. fyzika, 2. didaktika fyziky. Každému posluchači budou zadány dvě otázky z
Aerodynamika. Tomáš Kostroun
Aerodynamika Tomáš Kostroun Aerodynamika Pojednává o plynech v pohybu a jejich působení na tělesa Dělení podle rychlosti Nízkorychlostní M = (0-0,3) Vysokorychlostní M = (0,3-0,85) Transonická M = (0,85-1,1)
Termodynamika v biochemii
Termodynamika v biochemii Studium energetických změn Klasická x statistická Rovnovážná x nerovnovážná lineárn rní a nelineárn rní Základní pojmy Makroskopický systém, okolí systému Termodynamický systém
SYNTÉZA AUDIO SIGNÁLŮ
SYNTÉZA AUDIO SIGNÁLŮ R. Čmejla Fakulta elektrotechnická, ČVUT v Praze Abstrakt Příspěvek pojednává o technikách číslicové audio syntézy vyučovaných v předmětu Syntéza multimediálních signálů na Elektrotechnické
Vojtěch Hrubý: Esej pro předmět Seminář EVF
Vojtěch Hrubý: Esej pro předmět Seminář EVF Plazma Pod pojmem plazma většinou myslíme plynné prostředí, které se skládá z neutrálních částic, iontů a elektronů. Poměr množství neutrálních a nabitých částic
Několik poznámek na téma lineární algebry pro studenty fyzikální chemie
Několik poznámek na téma lineární algebry pro studenty fyzikální chemie Jiří Kolafa Vektory. Vektorový prostor Vektor je často zaveden jako n-tice čísel, (v,..., v n ), v i R (pro reálný vektorový prostor);
a 4. (letní semestr) Doc.ing.Vlastimil Jáneš, CSc Ing.Karel Malý, Ph.D Ing. Jindřich Sadil, Ph.D
K620ELT1 - Elektrotechnika 1 Skupina předmětů: Typ studia: Semestr: Rozsah; ukončení: Garant: Vyučující: Povinný předmět oborový (TL) bakalářské a 4. (letní semestr) 2+2; z, zk Doc.ing. Vlastimil Jáneš,
Netradiční výklad tradičních témat
Netradiční výklad tradičních témat J. Musilová, P. Musilová: Matematika pro porozumění i praxi I. VUTIUM, Brno 2006 (291 s.), 2009 (349 s.). J. Musilová, P. Musilová: Matematika pro porozumění i praxi
pro studijní obor optika
Zkušební požadavky k bakalářské zkoušce z fyziky pro studijní obor optika Experimentální a obecná fyzika 1. Veličiny a jednotky ve fyzice, souřadnicové systémy. Rozdělení fyzikálních jednotek, soustava
2. Statistický popis plazmatu
Statistický popis plazmatu 60 Statistický popis plazmatu Při popisu typického plazmatu je technicky nemožné popsat trajektorie všech částic Jen v řídkém plazmatu mezihvězdného prostoru nalezneme miliony
STUDIJNÍ TEXT PRO FJFI ČVUT
TEORIE PLAZMATU STUDIJNÍ TEXT PRO FJFI ČVUT PETR KULHÁNEK PRAHA 8 FJFI ČVUT PŘEDMLUVA O plazmatu se často hovoří jako o čtvrtém skupenství hmoty A je to oprávněné, protože vlastnosti plazmatu jsou velmi
ZS: 2018/2019 NMAF063 F/3 Josef MÁLEK. Matematika pro fyziky III
ZS: 2018/2019 NMAF063 F/3 Josef MÁLEK Matematika pro fyziky III OBECNÉ INFORMACE A SYLABUS Přednášející: Cvičící: Josef Málek Tomáš Los, Michal Pavelka, Michal Pavelka, Vít Průša Termíny přednášek: čtvrtek
Požadavky ke státní závěrečné zkoušce pro obor Učitelství fyziky pro SŠ
Požadavky ke státní závěrečné zkoušce pro obor Učitelství fyziky pro SŠ Organizace zkoušky Zkouška je ústní a má dvě části: A. fyzika, B. didaktika fyziky. Každému posluchači budou zadány dvě otázky z
3.2 Rovnice postupné vlny v bodové řadě a v prostoru
3 Vlny 3.1 Úvod Vlnění můžeme pozorovat například na vodní hladině, hodíme-li do vody kámen. Mechanické vlnění je děj, při kterém se kmitání šíří látkovým prostředím. To znamená, že například zvuk, který
Zasedání OR FCH 27. ledna 2016 zápis
Zasedání OR FCH 27. ledna 2016 zápis 1. Předseda OR (prof. Pekař) informoval o prodloužení akreditace. OR projednala související změny ve struktuře studijních předmětů konstatovala, že návrh z posledního
Obsah PŘEDMLUVA 11 ÚVOD 13 1 Základní pojmy a zákony teorie elektromagnetického pole 23
Obsah PŘEDMLUVA... 11 ÚVOD... 13 0.1. Jak teoreticky řešíme elektrotechnické projekty...13 0.2. Dvojí význam pojmu pole...16 0.3. Elektromagnetické pole a technické projekty...20 1. Základní pojmy a zákony
Fyzika - Septima, 3. ročník
- Septima, 3. ročník Fyzika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence sociální a personální Kompetence komunikativní Kompetence občanská Kompetence k podnikavosti Kompetence
Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba
Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba Petr Pošta Text pro soutěžící FO a ostatní zájemce o fyziku 2 1. úloha Obrázek 1.1 ukazuje pevný, homogenní míč poloměru R. Před pádem na
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Jan Mlynář Rovnováha plazmatu a magnetického pole v termojaderných reaktorech typu tokamak Pokroky matematiky, fyziky a astronomie, Vol. 57 (2012), No. 2, 122--139
Látka a těleso skupenství látek atomy, molekuly a jejich vlastnosti. Fyzikální veličiny a jejich měření fyzikální veličiny a jejich jednotky
Vyučovací předmět Fyzika Týdenní hodinová dotace 1 hodina Ročník Prima Roční hodinová dotace 36 hodin Výstupy Učivo Průřezová témata, mezipředmětové vztahy prakticky rozeznává vlastnosti látek a těles
INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY
INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY FUNKCÍ DVOU PROMĚNNÝCH Robert Mařík 2. října 2009 Obsah z = x 4 +y 4 4xy + 30..................... 3 z = x 2 y 2 x 2 y 2........................ 18 z = y ln(x 2 +y)..........................
Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115
Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: CZ.1.07/1.5.00/34.0410 Číslo šablony: 22 Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tématický celek:
Jiøí Myslík Elektromagnetické pole základy teorie Kniha je vìnována základùm teorie elektromagnetického pole Je zpracována tak, aby posloužila jak studentùm vysokých, tak i støedních škol a všem zájemcùm
5.6.3 Rekursivní indexace složitostních tříd 5.6.4 Uniformní diagonalizace 5.6.5 Konstrukce rekursivních indexací a aplikace uniformní diagonalizace
Obsah prvního svazku 1 Úvod 1.1 Přehled pojmů a struktur 1.1.1 Množiny, čísla a relace 1.1.2 Funkce 1.1.3 Pravděpodobnost 1.1.4 Grafy 1.2 Algebra 1.2.1 Dělitelnost, prvočíselnost a základní kombinatorické
Tvorba trendové funkce a extrapolace pro roční časové řady
Tvorba trendové funkce a extrapolace pro roční časové řady Příklad: Základem pro analýzu je časová řada živě narozených mezi lety 1970 a 2005. Prvním úkolem je vybrat vhodnou trendovou funkci pro vystižení
Základní otázky pro teoretickou část zkoušky.
Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.
[N; m.f -1, C, C, m]
3. Elektrostatika je nauka o vlastnostech elektrických nábojů, které jsou v klidu 3.1. Vznik elektrostatického pole Elektrostatickým polem se nazývá prostředí, ve kterém vzniknou jakýmkoliv způsobem rozdílné
Projekty do předmětu MF
Univerzita Palackého v Olomouci Přírodovědecká fakulta Katedra optiky ZÁVĚREČNÁ PRÁCE Projekty do předmětu MF Vypracoval: Miroslav Mlynář E-mail: mlynarm@centrum.cz Studijní program: B1701 Fyzika Studijní
Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15
Proč studovat hvězdy? 9 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů.... 13 1.3 Model našeho Slunce 15 2 Záření a spektrum 21 2.1 Elektromagnetické záření
Matematické symboly a značky
Matematické symboly a značky Z Wikipedie, otevřené encyklopedie Matematický symbol je libovolný znak, používaný v. Může to být znaménko pro označení operace s množinami, jejich prvky, čísly či jinými objekty,
Fyzika IV. -ezv -e(z-zv) kov: valenční elektrony vodivostní elektrony. Elektronová struktura pevných látek model volných elektronů
Elektronová struktura pevných látek model volných elektronů 1897: J.J. Thomson - elektron jako částice 1900: P. Drude: kinetická teorie plynů - kov jako plyn elektronů Drudeho model elektrony se mezi srážkami
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při
LASEROVÉ SVAZKY PRO OPTICKÉ MANIPULACE
LASEROVÉ SVAZKY PRO OPTICKÉ MANIPULACE Katedra optiky, PřF UP 17. Listopadu 50, 772 07 Olomouc Řešitelé grantu MPO: Z. Bouchal, Z. Hradil, J. Řeháček, J. Wagner, I. Vyšín PGS studenti : R. Čelechovský,
Jemný úvod do numerických metod
Jemný úvod do numerických metod Matematické algoritmy (11MAG) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 8. přednáška 11MAG pondělí 24. listopadu 2014 verze:2014-11-24 16:35
Seminář z matematiky. jednoletý volitelný předmět
Název předmětu: Zařazení v učebním plánu: Seminář z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je koncipován pro přípravu studentů k úspěšnému zvládnutí profilové (školní)
POŽADAVKY K RIGOROZNÍ ZKOUŠCE UČITELSTVÍ FYZIKY PRO STŘEDNÍ ŠKOLY
POŽADAVKY K RIGOROZNÍ ZKOUŠCE UČITELSTVÍ FYZIKY PRO STŘEDNÍ ŠKOLY Organizace zkoušky Zkouška je ústní a má tři části: 1. Fyzika 2. Teorie vyučování fyzice 3. Specializace. Z první části budou položeny
C Mapy Kikuchiho linií 263. D Bodové difraktogramy 271. E Počítačové simulace pomocí programu JEMS 281. F Literatura pro další studium 289
OBSAH Předmluva 5 1 Popis mikroskopu 13 1.1 Transmisní elektronový mikroskop 13 1.2 Rastrovací transmisní elektronový mikroskop 14 1.3 Vakuový systém 15 1.3.1 Rotační vývěvy 16 1.3.2 Difúzni vývěva 17
Osnova kurzu. Základy teorie elektrických obvodů 1
Osnova kurzu 1) Úvodní informace; zopakování nejdůležitějších vztahů 2) Základy teorie elektrických obvodů 1 3) Základy teorie elektrických obvodů 2 4) Základy teorie elektrických obvodů 3 5) Základy teorie
Fourierovské metody v teorii difrakce a ve strukturní analýze
Osnova přednášky na 31 kolokviu Krystalografické společnosti Výpočetní metody v rtg a neutronové strukturní analýze Nové Hrady, 16 20 6 2003 Fourierovské metody v teorii difrakce a ve strukturní analýze
Vlastnosti pevných látek
Vlastnosti pevných látek fyzikální vlastnost: odezva na určitý podnět, fyzikální rovnice definue vztah mezi nimi Příklad: elastická deformace izotropního pružného tělesa l 0 (Hookův zákon) = E tahové napětí
Sluneční dynamika. Michal Švanda Astronomický ústav AV ČR Astronomický ústav UK
Sluneční dynamika Michal Švanda Astronomický ústav AV ČR Astronomický ústav UK Slunce: dynamický systém Neměnnost Slunce Iluze Slunce je proměnná hvězda Sluneční proměny Díky vývoji Dynamika hmoty Magnetická
Vlastnosti pevných látek
Vlastnosti pevných látek fyzikální vlastnost: odezva na určitý podnět, fyzikální rovnice definuje vztah mezi nimi (fyzikální veličiny skaláry, vektory, tenzory) Příklad: elastická deformace izotropního
V mnoha běžných případech v optickém oboru je zanedbáváno silové působení magnetické složky elektromagnetického pole na náboje v látce str. 3 6.
Nekvantový popis interakce světla s pasivní látkou Zcela nekvantová fyzika nemůže interakci elektromagnetického záření s látkou popsat, např. atom jako soustava kladných a záporných nábojů by vůbec nebyl
Maturitní otázky z fyziky Vyučující: Třída: Školní rok:
Maturitní otázky z fyziky Vyučující: Třída: Školní rok: 1) Trajektorie, dráha, dráha 2) Rychlost 3) Zrychlení 4) Intenzita 5) Práce, výkon 6) Energie 7) Částice a vlny; dualita 8) Síla 9) Náboj 10) Proudění,
Diskontinuity a šoky
Diskontinuity a šoky tok plazmatu Oblast 1 Oblast ( upstream ) ( downstream ) ρu Uu Bu pu ρd Ud Bd pd hranice mezi oblastmi může tu docházet k disipaci (růstu entropie a nevratným změnám) není popsatelná
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Fyzika 2 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat
Základní otázky ke zkoušce A2B17EPV. České vysoké učení technické v Praze ID Fakulta elektrotechnická
Základní otázky ke zkoušce A2B17EPV Materiál z přednášky dne 10/5/2010 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2. Coulombův zákon, orientace vektorů
1.3. Cíle vzdělávání v oblasti citů, postojů, hodnot a preferencí
1. Pojetí vyučovacího předmětu 1.1. Obecný cíl vyučovacího předmětu Obecným cílem je zprostředkovat základní fyzikální poznatky potřebné v odborném i dalším vzdělání a praktickém životě a také naučit žáky
Teplotní roztažnost Přenos tepla Kinetická teorie plynů
Teplotní roztažnost Přenos tepla Kinetická teorie plynů Teplotní roztažnost pevných látek l a kapalin Teplotní délková roztažnost Teplotní objemová roztažnost a závislost hustoty na teplotě Objemová roztažnost
Zeemanův jev. Pavel Motal 1 SOŠ a SOU Kuřim, s. r. o. Miroslav Michlíček 2 Gymnázium Vyškov
Zeemanův jev Pavel Motal 1 SOŠ a SOU Kuřim, s. r. o. Miroslav Michlíček 2 Gymnázium Vyškov 1 Abstrakt Při tomto experimentu jsme zopakovali pokus Pietera Zeemana (nositel Nobelovy ceny v roce 1902) se
Zkušební otázky pro bakalářské SZZ Fyzika, Fyzika pro vzdělávání, Biofyzika
Zkušební otázky pro bakalářské SZZ Fyzika, Fyzika pro vzdělávání, Biofyzika Obecná fyzika - Fyzika, Fyzika pro vzdělávání, Biofyzika (povinně pro všechny obory) 1. Trajektorie hmotného bodu, poloha, dráha,
1. Elektrická práce a výkon. 2. Zdroj a šíření zvuku. 3. Odraz světla
1. Elektrická práce a výkon ANOTACE: Materiál slouží k výkladu pojmů elektrická práce a výkon. V prezentaci je jsou vysvětleny oba pojmy a uvedeny vztahy pro výpočet práce i výkonu. Na přehledném schématu
Emisní spektrální čáry atomů. Úvod do teorie a dvě praktické aplikace
Emisní spektrální čáry atomů. Úvod do teorie a dvě praktické aplikace Ing. Pavel Oupický Oddělení optické diagnostiky, Turnov Ústav fyziky plazmatu AV ČR, v.v.i., Praha Úvod Teorie vzniku a kvantifikace