Jemný úvod do numerických metod
|
|
- Štěpán Bařtipán
- před 9 lety
- Počet zobrazení:
Transkript
1 Jemný úvod do numerických metod Matematické algoritmy (11MAG) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 8. přednáška 11MAG pondělí 24. listopadu 2014 verze: :35
2 Obsah přednášky 1 Úvod do numerické matematiky Matematické modelování Numerická matematika Numerická úloha 2 Zobrazení čísel v počítači 3 Typy chyb 4 Typy numerických úloh
3 Matematické modelování Zopakujme si MSP Systém část prostředí, kterou lze vnímat odděleně od jejího okolí. Systém od okolí odděluje nějaká hranice, ať už fyzická, či myšlenková. Abychom mohli zkoumat chování nějakého systému, můžeme provádět experimenty anebo popsat systém matematicky sestavit jeho matematický model. V rámci předmětu Modelování systémů a procesů jsme si ukazovali různé modely, popisující chování systémů ve spojitém či diskrétním čase a popis systémů těmito modely dělili na vnější a vnitřní (stavový) popis.
4 Matematické modelování Příklady Příklad (Závaží na pružině) Netlumené kmity závaží na pružině popisuje homogenní diferenciální rovnice harmonických kmitů Příklad (Model vývoje dluhu) d 2 y(t) dt 2 + ω 2 y(t) = 0. Finanční model vývoje zadlužení může mít tvar diferenční rovnice y[n + 1] = (1 + α[n]) y[n] u[n].
5 Matematické modelování Co stojí za Matlabem a Simulinkem? Ke zkoumání matematických modelů systémů jsme používali Matlab a Simulink. V příštích přednáškách si stručně povíme co vlastně počítač musí umět, aby dokázal s dostatečnou přesností počítat s matematickými modely reálného světa, jaké matematické algoritmy se ve vybraných případech používají a proč není dobré počítači vždycky slepě věřit.
6 Matematické modelování Pozice numerické matematiky reálný problém matematická úloha (matematický model) experimenty a měření exaktní metody řešení problému teoretické řešení úlohy analýza modelu jednodušší matematická úloha numerická úloha numerické řešení úlohy přibližné metody numerické metody
7 Čím se numerická matematika zabývá Numerické úlohy a metody Protože počítač je konečný automat pracující pouze s konečným počtem vstupních a výstupních dat, zavádí se někdy také pojem numerické úlohy. Numerická úloha jasný a jednoznačný popis funkčního vztahu mezi konečným počtem vstupních a výstupních dat. Počítačový model je taková aproximace matematického modelu, jež může být v konečném čase realizována na počítači. Numerický algoritmus postup, kterým se v konečném počtu kroků řeší daná numerická úloha. Při studiu vlastností numerických algoritmů nás zajímá především realizace aritmetických operací s čísly, nikoliv logické operace. Konstrukce a analýza metod a algoritmů pro realizaci numerických úloh na počítačích: numerická matematika.
8 Numerické úlohy Příklady Příklad (Numerická úloha) Přibližné řešení rovnice x 4 + a 1 x 2 + a 2 x + a 3 = 0 je možno počítat numericky pro konkrétní vstupní vektor a = [a 1, a 2, a 3 ] R 3. Výstupem numerické metody řešení bude vektor x = [x 1, x 2, x 3, x 4 ] C 4. Příklad (Co není numerická úloha) Řešení rovnice y (x) y(x) 2 = 0 za daných počátečních podmínek nelze vyjádřit konečným počtem čísel a nelze jej tedy hledat numericky. Numerický přístup pouze pro vyšetření hodnot ve vybraných bodech x {x i } n 1.
9 Obsah přednášky 1 Úvod do numerické matematiky 2 Zobrazení čísel v počítači Celá čísla, pevná a pohyblivá řádová čárka 3 Typy chyb 4 Typy numerických úloh
10 Zobrazení čísel v počítači Celá čísla, pevná a pohyblivá řádová čárka Počítač binární logika, binární reprezentace čísel. Celá čísla ekvivalenty ve dvojkové soustavě, jeden (nejvyšší) bit na znaménko Příklad 66 = ( ) 2, 126 = ( ) 2, ovšem také ( ) 2 = 254 Pevná řádová čárka pevný počet bitů pro celou a desetinnou část čísla Příklad 5, (= 101, ), 7, =
11 Zobrazení čísel v počítači Mantisa a exponent Pohyblivá řádová čárka převod na tvar a q b. Definice (Semilogaritmický tvar) Číslo x lze reprezentovat v semilogaritmickém tvaru s normalizovanou mantisou jako ( a1 x = sgn(x) q + a 2 q a ) l q l q b, kde q > 1 je základ, a i {0, 1,..., q 1}, a 1 1, jsou číslice mantisy a b {m 1,..., m 2 } je exponent.
12 Zobrazení čísel v počítači Mantisa a exponent Reprezentace x pokrývá pouze podmnožinu R má pouze 2(q 1)q l 1 (m 2 m 1 + 1) + 1 prvků. Některá reálná čísla nelze přesně reprezentovat. Příklad (Reprezentace 1/2 a 1/10) Budeme-li uvažovat q = 2, bude ale ( = ) ( = ) nelze reprezentovat konečným rozvojem.
13 Obsah přednášky 1 Úvod do numerické matematiky 2 Zobrazení čísel v počítači 3 Typy chyb Typy chyb v matematickém modelování Relativní a absolutní chyba Vliv zahokrouhlovacích chyb Vliv aritmetických operací na relativní chybu 4 Typy numerických úloh
14 Chyby výpočtu Typy reálný problém matematická úloha (matematický model) experimenty a měření chyba (matematického) modelu exaktní metody řešení problému teoretické řešení úlohy analýza modelu chyba aproximace jednodušší matematická úloha chyba metody numerická úloha numerické řešení úlohy šum v datech, zaokrouhlovací chyby přibližné metody numerické metody
15 Chyby výpočtu Relativní a absolutní chyba Číslo x v numerickém algoritmu je reprezentováno přiblížením x. Definice (Absolutní a relativní chyba) Absolutní chybou A(x) aproximace čísla x číslem x označujeme rozdíl A(x) = x x Relativní chybou R(x) aproximace čísla x číslem x označujeme podíl R(x) = A(x) = x x x x, x 0
16 Chyby výpočtu Vliv reprezentace čísel Reálná čísla nejsou v počítači většinou reprezentována přesně. Dvojnásobná přesnost (double) relativní chyba této reprezentace je o malinko větší, než (mantisa má 15,95 platných dekadických číslic). Jednoduchá přesnost (single, float) relativní chyba reprezentace o malinko nižší, než 10 7 (mantisa má 7,22 platných dekadických číslic).
17 Chyby výpočtu Důsledek zaokrouhlovacích chyb Příklad (Proč Patriot netrefí Scud) Systém počítal s hodnotami času v desetinách sekundy, jeho autoři proto systémový čas v sekundách získávali prostým vynásobením hodnotou 0,1, 0,1 (0, ) 2. Patriot pracoval pouze v jednoduché přesnosti, 0,1 (0, ) 2 0, , Systém v provozu > 100 h, A(t) 0,34 s. Scud letí okolo 1700 m/s a řídicí systém baterie jej po prvotním radarovém kontaktu hledal v bodě , m mimo.
18 Chyby výpočtu Vlastnosti A(x) a R(x) Aritmetické operace mohou mít na nepřesné reprezentace čísel devastující vliv (například podíl velkého a malého čísla, ale i odčítání dvou sobě blízkých čísel stejného znaménka). Relativní chyba se může výrazně zvětšit při odčítání dvou blízkých čísel: A(x ± y) R(x ± y) = x ± y Násobení ani dělení nemají na A(x) a R(x) výraznější vliv.
19 Chyby výpočtu Příklad Příklad Mějme čísla x 1 = , x 2 = , a nechť jsou reprezentována jako x 1 = a x 2 = Platí A(x 1 ) = 10, A(x 2 ) = 10, R(x 1 ) = , , R(x 2 ) = , Máme tedy v = x 1 x 2 = 380 a je ṽ = x 1 x 2 = 400. Proto A(v) = v ṽ = 20 a R(v) = A(v) v = ,053. Relativní chyba rozdílu v = x 1 x 2 je tedy o tři řády vyšší než relativní chyby obou operandů.
20 Obsah přednášky 1 Úvod do numerické matematiky 2 Zobrazení čísel v počítači 3 Typy chyb 4 Typy numerických úloh Matematická úloha a její formalizace
21 Matematická úloha A její formalizace Mějme dány dva vektorové prostory B x (vstupní data) a B y (výstupní data). Definice (Matematická úloha) Matematickou úlohou rozumíme relaci y = U(x), x B x, y B y Definice neříká nic jiného, než že matematická úloha transformuje posloupnost vstupních dat na posloupnost výsledků.
22 Korektní úlohy Definice Definice (Korektní úloha) Řekneme, že úloha je korektní, pokud 1 ke každému x B x existuje právě jedno y B y, 2 řešení y spojitě závisí na datech, tedy pokud x n x a U(x n ) = y n, pak také y n y = U(x). Zbylé matematické úlohy označujeme jako nekorektní. Jde například o nejednoznačně řešitelné problémy, intervalové odhady, úlohy s nevhodnou formulací zadání. Příklad (Korektní úloha) Jako příklad korektní úlohy může sloužit například výpočet integrálu z dané spojité a ohraničené funkce přes nějaký interval.
23 Korektní úlohy Definice Definice (Korektní úloha) Řekneme, že úloha je korektní, pokud 1 ke každému x B x existuje právě jedno y B y, 2 řešení y spojitě závisí na datech, tedy pokud x n x a U(x n ) = y n, pak také y n y = U(x). Zbylé matematické úlohy označujeme jako nekorektní. Jde například o nejednoznačně řešitelné problémy, intervalové odhady, úlohy s nevhodnou formulací zadání. Příklad (Nekorektní úloha) Určete matici A splňujcí rovnici Ax = b máte-li dány hodnoty x a b
24 Korektní úlohy Definice Definice (Korektní úloha) Řekneme, že úloha je korektní, pokud 1 ke každému x B x existuje právě jedno y B y, 2 řešení y spojitě závisí na datech, tedy pokud x n x a U(x n ) = y n, pak také y n y = U(x). Zbylé matematické úlohy označujeme jako nekorektní. Jde například o nejednoznačně řešitelné problémy, intervalové odhady, úlohy s nevhodnou formulací zadání. Příklad (Jiná nekorektní úloha) Určete y = 1 1 1/x dx.
25 Dobře podmíněné úlohy Definice Definice (Číslo podmíněnosti) Podíl C p = x x y y se nazývá číslo podmíněnosti úlohy. Udává vliv změn ve vstupních datech na výstupní data Definice (Dobře podmíněná úloha) Budeme říkat, že korektní úloha je dobře podmíněná, jestliže malá změna ve vstupních datech vyvolá malou změnu řešení (resp. C p 1).
26 Taxonomie úloh úloha korektní nekorektní dobře podmíněná špatně podmíněná
2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou
.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou Předpoklady: 0,, 806 Pedagogická poznámka: Opět si napíšeme na začátku hodiny na tabuli jednotlivé kroky postupu při řešení rovnic (nerovnic)
Číselné soustavy Ing. M. Kotlíková, Ing. A. Netrvalová Strana 1 (celkem 7) Číselné soustavy
Číselné soustavy Ing. M. Kotlíková, Ing. A. Netrvalová Strana (celkem 7) Polyadické - zobrazené mnohočlenem desítková soustava 3 2 532 = 5 + 3 + 2 + Číselné soustavy Číslice tvořící zápis čísla jsou vlastně
(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f.
I. Funkce dvou a více reálných proměnných 5. Lokální extrémy. Budeme uvažovat funkci f = f(x 1, x 2,..., x n ), která je definovaná v otevřené množině G R n. Řekneme, že funkce f = f(x 1, x 2,..., x n
Funkce více proměnných
Funkce více proměnných Funkce více proměnných Euklidův prostor Body, souřadnice, vzdálenost bodů Množina bodů, které mají od bodu A stejnou vzdálenost Uzavřený interval, otevřený interval Okolí bodu
Aritmetika s didaktikou I.
Katedra matematiky PF UJEP Aritmetika s didaktikou I. KM1 / 0001 Přednáška 03 Operace v množině, vlastnosti binárních operací O čem budeme hovořit: zavedení pojmu operace binární, unární a další operace
Ústav technologie, mechanizace a řízení staveb. CW01 - Teorie měření a regulace 10.5.2 ZS 2010/2011. reg-5-2. 2010 - Ing. Václav Rada, CSc.
Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 reg-5-2 10.5.2 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace
2.4.11 Nerovnice s absolutní hodnotou
.. Nerovnice s absolutní hodnotou Předpoklady: 06, 09, 0 Pedagogická poznámka: Hlavním záměrem hodiny je, aby si studenti uvědomili, že se neučí nic nového. Pouze používají věci, které dávno znají, na
Jemný úvod do numerických metod
Jemný úvod do numerických metod Matematické algoritmy (11MAG) Jan Přikryl 8. přednáška 11MAG pondělí 24. listopadu 2014 verze:2014-11-24 16:34 Obsah 1 Úvod 1 1.1 Matematické modelování................................
M - Rovnice - lineární a s absolutní hodnotou
Rovnice a jejich ekvivalentní úpravy Co je rovnice Rovnice je matematický zápis rovnosti dvou výrazů. př.: x + 5 = 7x - M - Rovnice - lineární a s absolutní hodnotou Písmeno zapsané v rovnici nazýváme
Matice a maticová algebra, soustavy lineárních rovnic, kořeny polynomu a soustava nelin.rovnic
co byste měli umět po dnešní lekci: definovat matici, přistupovat k jejím prvkům provádět základní algebraické operace spočíst inverzní matici najít řešení soustavy lineárních rovnic určit vlastní čísla
Diferenciální počet funkcí jedné proměnné
Diferenciální počet funkcí jedné proměnné 1 Diferenciální počet funkcí jedné proměnné - Úvod Diferenciální počet funkcí jedné proměnné - úvod V přírodě se neustále dějí změny. Naší snahou je nalézt příčiny
Kapitola 7: Integrál. 1/14
Kapitola 7: Integrál. 1/14 Neurčitý integrál. Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f (x) x I nazýváme primitivní funkcí k
Kvantové počítače algoritmy (RSA a faktorizace čísla) http://marble.matfyz.cz
Kvantové počítače algoritmy (RSA a faktorizace čísla) http://marble.matfyz.cz 14. 4. 2004 1. Algoritmus RSA Asymetrické šifrování. Existuje dvojice tajného a veřejného klíče, takže není nutné předat klíč
Lineární algebra. Vektorové prostory
Lineární algebra Vektorové prostory Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu:
Sekvenční logické obvody
Sekvenční logické obvody 7.přednáška Sekvenční obvod Pokud hodnoty výstupů logického obvodu závisí nejen na okamžitých hodnotách vstupů, ale i na vnitřním stavu obvodu, logický obvod se nazývá sekvenční.
= musíme dát pozor na: jmenovatel 2a, zda je a = 0 výraz pod odmocninou, zda je > 0, < 0, = 0 (pak je jediný kořen)
.8.7 Kvadratické rovnice s parametrem Předpoklady: 507, 803 Pedagogická poznámka: Na první pohled asi každého zarazí, že takřka celá hodina je psána jako příklady a studenti by ji měli vypracovat samostatně.
UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin
Pingpongový míček. Petr Školník, Michal Menkina. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií
Petr Školník, Michal Menkina TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.7/../7.47, který je spolufinancován
Umělá inteligence. Příklady využití umělé inteligence : I. konstrukce adaptivních systémů pro řízení technologických procesů
Umělá inteligence Pod pojmem umělá inteligence obvykle rozumíme snahu nahradit procesy realizované lidským myšlením pomocí prostředků automatizace a výpočetní techniky. Příklady využití umělé inteligence
3. Ve zbylé množině hledat prvky, které ve srovnání nikdy nejsou napravo (nevedou do nich šipky). Dát do třetí
DMA Přednáška Speciální relace Nechť R je relace na nějaké množině A. Řekneme, že R je částečné uspořádání, jestliže je reflexivní, antisymetrická a tranzitivní. V tom případě značíme relaci a řekneme,
Vzdělávací oblast: Matematika a její aplikace. Obor vzdělávací oblasti: Seminář z matematiky. Ročník: 7. Poznámky
Vzdělávací oblast: Matematika a její aplikace Obor vzdělávací oblasti: Seminář z matematiky Ročník: 7. Výstupy - kompetence Učivo Průřezová témata,přesahy, a další poznámky - převádí jednotky délky, času,
1. Programování, typy programovacích jazyků, historie.
1. Programování, typy programovacích jazyků, historie. třída Console metody Write, WriteLina, ReadLine, ResetColor vlastnosti ForegroundColor, Backgroundcolor třída Form objekt Label vlastnost Text význam
E-ZAK. metody hodnocení nabídek. verze dokumentu: 1.1. 2011 QCM, s.r.o.
E-ZAK metody hodnocení nabídek verze dokumentu: 1.1 2011 QCM, s.r.o. Obsah Úvod... 3 Základní hodnotící kritérium... 3 Dílčí hodnotící kritéria... 3 Metody porovnání nabídek... 3 Indexace na nejlepší hodnotu...4
Kvadratické rovnice pro učební obory
Variace 1 Kvadratické rovnice pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jkaékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratické
Systém zvukové signalizace a spouštění motoru na základě stavu světla
Systém zvukové signalizace a spouštění motoru na základě stavu světla vzorová úloha (SŠ) Jméno Třída.. Datum.. 1. Teoretický úvod Cílem této úlohy je sestavit systém sledující stav světla, které bude vyhodnocováno
Dualita v úlohách LP Ekonomická interpretace duální úlohy. Jiří Neubauer. Katedra ekonometrie FEM UO Brno
Přednáška č. 6 Katedra ekonometrie FEM UO Brno Uvažujme obecnou úlohu lineárního programování, tj. úlohu nalezení takového řešení vlastních omezujících podmínek a 11 x 1 + a 1 x +... + a 1n x n = b 1 a
Zadání bakalářské/diplomové práce
Analýza systémového chování experimentální smyčky S-ALLEGRO V rámci projektu SUSEN Udržitelná energetika bude vyprojektována a postavena experimentální heliová smyčka S-Allegro. Tato smyčka má modelově
Úvod. Analýza závislostí. Přednáška STATISTIKA II - EKONOMETRIE. Jiří Neubauer
Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Úvod Předmětem této kapitoly bude zkoumání souvislosti (závislosti) mezi
Kvadratické rovnice pro studijní obory
Variace 1 Kvadratické rovnice pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratické
PRAVDĚPODOBNOST A STATISTIKA OPAKOVÁNÍ, pro rozpoznávání
PRAVDĚPODOBNOST A STATISTIKA OPAKOVÁNÍ, pro rozpoznávání Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac
Převodníky analogových a číslicových signálů
Převodníky analogových a číslicových signálů Převodníky umožňující transformaci číslicově vyjádřené informace na analogové napětí a naopak zaujímají v řídícím systému klíčové postavení. Značná část měřených
Co je to signál? Jaké typy signálů známe? Které základní signály jsme poznali?
Opakování Co známe z minulé přednášky? Co je to signál? Co všechno může být signálem? Jaké typy signálů známe? Které základní signály jsme poznali? T. Bořil, O. Kučera, P. Sovka () Předmět A3B31TES Př.
UMÍ POČÍTAČE POČÍTAT?
UMÍ POČÍTAČE POČÍTAT? O ÚSKALÍCH POČÍTAČOVÉ ARITMETIKY RNDr. Iveta Hnětynková, PhD. Katedra numerické matematiky VÝPOČTY A SIMULACE Aplikace: chemie, fyzika, lekařství, statistika, ekonomie, stojírenství,...
Dopravní úloha. Jiří Neubauer. Katedra ekonometrie FEM UO Brno
Přednáška č. 9 Katedra ekonometrie FEM UO Brno Distribuční úlohy Budeme se zabývat 2 typy distribučních úloh dopravní úloha přiřazovací problém Dopravní úloha V dopravním problému se v typickém případě
( ) ( ) ( ) 2 ( ) 2.7.16 Rovnice s neznámou pod odmocninou II. Předpoklady: 2715
.7.6 Rovnice s neznámou pod odmocninou II Předpoklady: 75 Př. : Vyřeš rovnici y + + y = 4 y + + y = 4 / ( y + + y ) = ( 4) y + + 4 y + y + 4 y = 6 5y + 4 y + y = 8 5y + 4 y + y = 8 - v tomto stavu nemůžeme
2.7.2 Mocninné funkce se záporným celým mocnitelem
.7. Mocninné funkce se záporným celým mocnitelem Předpoklady: 70 Mocninné funkce se záporným celým mocnitelem: znamená? 3 y = = = = 3 y y y 3 = ; = ; = ;.... Co to Pedagogická poznámka: Nechávám studenty,
( ) 2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I. Předpoklady: 2401, 2208
.. Kreslení grafů funkcí metodou dělení definičního oboru I Předpoklady: 01, 08 Opakování: Pokud jsme při řešení nerovnic potřebovali vynásobit nerovnici výrazem, nemohli jsme postupovat pro všechna čísla
Důkazové metody. Teoretická informatika Tomáš Foltýnek
Důkazové metody Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Matematický důkaz Jsou dány axiomy a věta (tvrzení, teorém), o níž chceme ukázat, zda platí. Matematický důkaz je nezpochybnitelné
Řešení: ( x = (1 + 2t, 2 5t, 2 + 3t, t); X = [1, 2, 2, 0] + t(2, 5, 3, 1), přímka v E 4 ; (1, 2, 2, 0), 0, 9 )
. Vyjádřete koeficienty vektoru (, 8, 9) vzhledem k následující bázi vektorového prostoru V : (,, 5), (,, ), (5,, ). [,, ].. Určete všechny hodnoty parametru u, pro které vektor a patří do vektorového
Sada 2 - MS Office, Excel
S třední škola stavební Jihlava Sada 2 - MS Office, Excel 03. Úvod do Excelu 2007. Vkládání dat, vzorce Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284
Vztah mezi dvěma čísly, které se rovnají, se nazývá rovnost, jako například : ( 2) 3 = 8 4 = 2 ; 16 = 4 ; 1 = 1 a podobně. 2
Lineární rovnice o jedné neznámé O rovnicích obecně Vztah mezi dvěma čísly, které se rovnají, se nazývá rovnost, jako například : ( ) 8 ; 6 ; a podobně. ; Na rozdíl od rovností obsahuje rovnice kromě čísel
když n < 100, n N, pak r(n) = n,
Zúžená aritmetika úvod Nad a Stehlíková Autorem netradiční aritmetické struktury, v rámci které se budeme nadále pohybovat, je Prof. Milan Hejný. Nejdříve si zavedeme základní pojmy. Základem zúžené aritmetiky
http://www.zlinskedumy.cz
Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor Ročník 2, 3 Obor Anotace CZ.1.07/1.5.00/34.0514 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Elektronické obvody, vy_32_inovace_ma_42_06
KIV/ZI Základy informatiky. MS Excel maticové funkce a souhrny
KIV/ZI Základy informatiky MS Excel maticové funkce a souhrny cvičící: Michal Nykl zimní semestr 2012 MS Excel matice (úvod) Vektor: (1D) v = [1, 2, 3, 5, 8, 13] Např.: matice sousednosti Matice: (2D)
Matematika - Tercie Matematika tercie Výchovné a vzdělávací strategie Učivo ŠVP výstupy
- Tercie Matematika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k učení Kompetence pracovní Učivo
Finanční matematika Vypracovala: Mgr. Zuzana Kopečková
Finanční matematika Vypracovala: Mgr. Zuzana Kopečková Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace žáků ke studiu technických
{ } 9.1.9 Kombinace II. Předpoklady: 9108. =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce.
9.1.9 Kombinace II Předpoklady: 9108 Př. 1: Je dána pěti prvková množina: M { a; b; c; d; e} =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce. Vypisujeme
AUTORKA Barbora Sýkorová
ČÍSLO SADY III/2 AUTORKA Barbora Sýkorová NÁZEV SADY: Číslo a proměnná číselné označení DUM NÁZEV DATUM OVĚŘENÍ DUM TŘÍDA ANOTACE PLNĚNÉ VÝSTUPY KLÍČOVÁ SLOVA FORMÁT (pdf,, ) 1 Pracovní list číselné výrazy
Energetický regulační
Energetický regulační ENERGETICKÝ REGULAČNÍ ÚŘAD ROČNÍK 16 V JIHLAVĚ 25. 5. 2016 ČÁSTKA 4/2016 OBSAH: str. 1. Zpráva o dosažené úrovni nepřetržitosti přenosu nebo distribuce elektřiny za rok 2015 2 Zpráva
Isingův model. H s J s s h s
Ising Isingův model H s J s s h s i, j Motivován studiem fázových přechodů a kritických jevů Užíva se popis pomocí magnetických veličin i j i i Vlastnosti pomocí partiční sumy počítej: měrné teplo, susceptibilitu
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009. Číselné soustavy
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ..7/..8/3.9 Číselné soustavy Použitá literatura: Kantnerová, I.: Sbírka příkladů z číslicové techniky, IDEA SERVIS, Praha 2 http://programujte.com
Základní škola Kaznějov, příspěvková organizace, okres Plzeň-sever
Základní škola Kaznějov, příspěvková organizace, okres Plzeň-sever DIGITÁLNÍ UČEBNÍ MATERIÁL Název projektu Registrační číslo projektu UČENÍ JE SKRYTÉ BOHATSTVÍ INOVACE VÝUKY ZŠ KAZNĚJOV CZ.1.07/1.1.12/02.0029
SWI120 ZS 2010/2011. hookey.com/digital/
Principy cpypočítačů počítačů a operačních systémů Číslicové systémy Literatura http://www.play hookey.com/digital/ Digitální počítač Dnes obvykle binární elektronický 2 úrovně napětí, 2 logické hodnoty
Soustavy lineárních rovnic
Soustavy lineárních rovnic Buď (T, +, ) těleso. Pak soustava rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1, a 21 x 1 + a 22 x 2 + + a 2n x n = b 2,................................... a m1 x 1 + a m2 x
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice
Vítězslav Bártl. březen 2013
VY_32_INOVACE_VB07_K Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, vzdělávací obor, tematický okruh, téma Anotace Vítězslav
Výrazy lze též zavést v nečíselných oborech, pak konstanty označuji jeden určitý prvek a obor proměnné není množina čísel.
Výrazy. Rovnice a nerovnice. Výraz je matematický pojem používaný ve školské matematice. Prvním druhem matematických ů jsou konstanty. Konstanty označují právě jedno číslo z množiny reálných čísel. Například
EU peníze středním školám digitální učební materiál
EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast,
Využití EduBase ve výuce 2
B.I.B.S., a. s. Využití EduBase ve výuce 2 Projekt Vzdělávání pedagogů v prostředí cloudu reg. č. CZ.1.07/1.3.00/51.0011 Mgr. Jitka Kominácká, Ph.D. a kol. 2015 1 Obsah 1 Obsah... 2 2 Úvod... 3 3 Aktivita:
Datové formáty 21.9.2014. Obsah. Datové formáty (datové typy) Radim Farana Podklady pro výuku
Datové formáty Radim Farana Podklady pro výuku Obsah Datové formáty (datové typy). Textové formáty, vlastnosti zdroje zpráv. Číselné formáty, číselné soustavy. Přesnost uložení čísel. Numerické chyby.
1.1.1 Kvadratické rovnice (dosazení do vzorce) I
.. Kvadratické rovnice (dosazení do vzorce) I Předpoklady: základní početní operace Rovnicí se nazývá vztah rovnosti mezi dvěma výrazy obsahujícími jednu nebo více neznámých. V této kapitole se budeme
SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 2: Statistika a pravděpodobnost
SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 2: Statistika a pravděpodobnost Drahomír Novák Jan Eliáš 2012 Spolehlivost konstrukcí, Drahomír Novák & Jan Eliáš 1 část 2 Statistika a pravděpodobnost
IMPORT A EXPORT MODULŮ V PROSTŘEDÍ MOODLE
Nové formy výuky s podporou ICT ve školách Libereckého kraje IMPORT A EXPORT MODULŮ V PROSTŘEDÍ MOODLE Podrobný návod Autor: Mgr. Michal Stehlík IMPORT A EXPORT MODULŮ V PROSTŘEDÍ MOODLE 1 Úvodem Tento
PROCESY V TECHNICE BUDOV 3
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 3 (2.část) Dagmar Janáčová, Hana Charvátová Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského
Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.
Kapitola 9 Skalární součin Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Definice 9.1 Je-li x = (x 1,..., x n ) T R n 1 reálný
Metodika - Postupy optimálního využití moderních komunikačních kanálů
Informatika v telemedicíně FBMI ČVUT Metodika - Postupy optimálního využití moderních komunikačních kanálů Kolektiv autorů: David Gillar, Jiří Brada, Mikuláš Miček, Miroslav Poledňák, Marie Tichá, Martin
EXPONENCIÁLNÍ A LOGARITMICKÁ FUNKCE
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol EXPONENCIÁLNÍ
MODEL MECHANISMU STĚRAČE SE TŘENÍM. Inženýrská mechanika a mechatronika Martin Havlena
MODEL MECHANISMU STĚRAČE SE TŘENÍM Inženýrská mechanika a mechatronika Martin Havlena Osnova 2/17 Obsah prezentace Cíle práce Požadavky společnosti PAL International s.r.o. Souprava stěrače čelního skla
3. Souřadnicové výpočty
3. Souřadncové výpočty 3.1 Délka. 3.2 Směrník. 3.3 Polární metoda. 3.4 Protínání vpřed z úhlů. 3.5 Protínání vpřed z délek. 3.6 Polygonové pořady. 3.7 Protínání zpět. 3.8 Transformace souřadnc. 3.9 Volné
Sekvenční logické obvody
Sekvenční logické obvody Sekvenční logické obvody - úvod Sledujme chování jednoduchého logického obvodu se zpětnou vazbou Sekvenční obvody - paměťové členy, klopné obvody flip-flop Asynchronní klopné obvody
4. Výčtem prvků f: {[2,0],[3,1],[4,2],[5,3]}
1/27 FUNKCE Základní pojmy: Funkce, definiční obor, obor hodnot funkce Kartézská soustava souřadnic, graf funkce Opakování: Číselné množiny, úpravy výrazů, zobrazení čísel na reálné ose Funkce: Zápis:
LABORATORNÍ CVIČENÍ Elektrotechnika a elektronika
VUT FSI BRNO ÚVSSaR, ODBOR ELEKTROTECHNIKY JMÉNO: ŠKOLNÍ ROK: 2010/2011 PŘEDNÁŠKOVÁ SKUPINA: 1E/95 LABORATORNÍ CVIČENÍ Elektrotechnika a elektronika ROČNÍK: 1. KROUŽEK: 2EL SEMESTR: LETNÍ UČITEL: Ing.
Matematika ve 4. ročníku
Matematika ve 4. ročníku září Čte a zapisuje přirozená čísla. učebnice strana 3 9 Počítá po stovkách a desítkách. chvilky strana 1 8 Čte, píše a zobrazuje čísla na číselné ose, teploměru, modelu. kalkulačka
Lokální a globální extrémy funkcí jedné reálné proměnné
Lokální etrémy Globální etrémy Použití Lokální a globální etrémy funkcí jedné reálné proměnné Nezbytnou teorii naleznete Breviáři vyšší matematiky (odstavec 1.). Postup při hledání lokálních etrémů: Lokální
Rostislav Horčík. 13. října 2006
3. přednáška Rostislav Horčík 13. října 2006 1 Lineární prostory Definice 1 Lineárním prostorem nazýváme každou neprázdnou množinu L, na které je definováno sčítání + : L L L a násobení reálným číslem
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice
2.8.10 Rovnice s neznámou pod odmocninou a parametrem
.8.10 Rovnie s neznámou pod odmoninou a parametrem Předpoklady: 806, 808 Budeme postupovat stejně jako v předhozíh hodináh. Nejdříve si zopakujeme obený postup při řešení rovni s neznámou pod odmoninou
Tvorba trendové funkce a extrapolace pro roční časové řady
Tvorba trendové funkce a extrapolace pro roční časové řady Příklad: Základem pro analýzu je časová řada živě narozených mezi lety 1970 a 2005. Prvním úkolem je vybrat vhodnou trendovou funkci pro vystižení
Plán předmětu Název předmětu: Školní rok: Ročník: Semestr: Typ předmětu: Rozsah předmětu: Počet kreditů: Přednášející: Cvičící: Cíl předmětu
Plán předmětu Název předmětu: Algoritmizace a programování (PAAPP) Školní rok: 2009/2010 Ročník: I Semestr: II. (letní) Typ předmětu: povinný Rozsah předmětu: 3 3 z, zk Počet kreditů: 6 Přednášející: RNDr.
Fourierovy řady. EO2 Přednáška 1. X31EO2 - Pavel Máša - Fourierovy řady. X31EO2 - Pavel Máša - Přednáška 1
Fourierovy řady EO2 Přednáška Pavel Máša Filtr RLC defibrilátor MOTIVACE CO ZATÍM NEUMÍME VYSVĚTLIT Napětí zdroje obdélníkový časový průběh Napětí na rezistoru harmonický časový průběh MOTIVACE MATEMATICKÁ
4.6.6 Složený sériový RLC obvod střídavého proudu
4.6.6 Složený sériový LC obvod střídavého proudu Předpoklady: 41, 4605 Minulá hodina: odpor i induktance omezují proud ve střídavém obvodu, nemůžeme je však sčítat normálně, ale musíme použít Pythagorovu
(1.1) (1.2) vektorovým prostorem. Prvky tohoto prostoru, tj. uspořádané n-tice reálných čísel nazýváme
1. Algebraický vektorový prostor Definice 1.1 (algebraický vektorový prostor). Množinu R n všech uspořádaných n-tic reálných čísel (a 1, a 2,..., a n ) s operacemi sčítání a násobení reálným číslem definovanými
GRAFY A GRAFOVÉ ALGORITMY
KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO GRAFY A GRAFOVÉ ALGORITMY ARNOŠT VEČERKA VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ
Základní chemické pojmy a zákony
Základní chemické pojmy a zákony LRR/ZCHV Základy chemických výpočtů Jiří Pospíšil Relativní atomová (molekulová) hmotnost A r (M r ) M r číslo udávající, kolikrát je hmotnost daného atomu (molekuly) větší
Exponent. Integer 4 bajty až Double Integer 8 bajtů až
1. Opakování teorie 1.1. Reprezentace čísel v počítači Celá čísla (přesné výpočty, velmi omezený rozsah): INTEGER => 2 byty = 16 bitů => 2 16 čísel LONGINT => 4 byty = 32 bitů => 2 32 čísel
Povinná literatura: [1] ČASTORÁL, Z. Strategický znalostní management a učící se organizace. Praha : EUPRESS, 2007.
Metodické listy pro kombinované studium Anotace : Studijní předmět poskytuje základní informace spojené se strategickým znalostním managementem a učícími se organizacemi, které jsou společensky významné.
INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV Černoleská 1997, 256 01 Benešov. Tematický okruh. Ročník 1. Inessa Skleničková. Datum výroby 21.8.
Číslo projektu Název školy Předmět CZ.107/1.5.00/34.0425 INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV Černoleská 1997, 256 01 Benešov IKT Tematický okruh Téma Ročník 1. Autor Počítač Datum výroby 21.8.2013
( ) 2.5.7 Neúplné kvadratické rovnice. Předpoklady: 020501
..7 Neúplné kvadratické rovnice Předpoklady: Pedagogická poznámka: Tato hodina patří mezi vzácné výjimky, kdy naprostá většina studentů skončí více než pět minut před zvoněním. Nechávám je dělat něco jiného
1.2.26 Přepočet přes jednotku - podruhé II
1.2.26 Přepočet přes jednotku - podruhé II Předpoklady: 010225 Pedagogická poznámka: První příklad nechávám řešit žáky, pak diskutujeme důvodech dělení. Př. 1: Za 0,85 hodiny zalévání spotřebovalo zavlažovací
Soustavy lineárních rovnic
1 Soustavy lineárních rovnic Příklad: Uvažujme jednoduchý příklad soustavy dvou lineárních rovnic o dvou neznámých x, y: x + 2y = 5 4x + y = 6 Ze střední školy známe několik metod, jak takové soustavy
Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa
2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace
Sekvenční obvody. S R Q(t+1) 0 0? 0 1 0 1 0 1 1 1 Q(t)
Sekvenční obvody Pokud hodnoty výstupů logického obvodu závisí nejen na okamžitých hodnotách vstupů, ale i na vnitřním stavu obvodu, logický obvod se nazývá sekvenční. Sekvenční obvody mění svůj vnitřní
. Určete hodnotu neznámé x tak, aby
Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 015 Kód uchazeče ID:.................. Varianta: 1 1. Původní cena knihy byla 50 Kč. Pak byla zdražena o 15 %. Jelikož nešla
Numerická integrace. 6. listopadu 2012
Numerická integrace Michal Čihák 6. listopadu 2012 Výpočty integrálů v praxi V přednáškách z matematické analýzy jste se seznámili s mnoha metodami výpočtu integrálů. V praxi se ale poměrně často můžeme
Paradigmata kinematického řízení a ovládání otevřených kinematických řetězců.
Přednáška 6 Inovace výuky předmětu Robotika v lékařství Paradigmata kinematického řízení a ovládání otevřených kinematických řetězců. Kinematickým zákonem řízení rozumíme předpis, který na základě direktiv
Jednoduché úročení. Centrum pro virtuální a moderní metody a formy vzdělávání na Obchodní akademii T. G. Masaryka, Kostelec nad Orlicí
Jednoduché úročení Centrum pro virtuální a moderní metody a formy vzdělávání na Obchodní akademii T. G. Masaryka, Kostelec nad Orlicí Jednoduché úročení Úroky se počítají ze stále stejného základu, tzn.
INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY
INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY FUNKCÍ DVOU PROMĚNNÝCH Robert Mařík 2. října 2009 Obsah z = x 4 +y 4 4xy + 30..................... 3 z = x 2 y 2 x 2 y 2........................ 18 z = y ln(x 2 +y)..........................
PRAKTIKUM II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: XIV Název: Relaxační kmity Pracoval: Pavel Brožek stud. skup. 12 dne 5.12.2008 Odevzdal
Pro vš echny body platí U CC = ± 15 V (pokud není uvedeno jinak). Ke kaž dému bodu nakreslete jednoduché schéma zapojení.
OPEAČNÍ ZESILOVAČ 304 4 Pro vš echny body platí U CC = ± 15 V (pokud není uvedeno jinak). Ke kaž dému bodu nakreslete jednoduché schéma zapojení. 1. Ověřte měření m některé katalogové údaje OZ MAC 157
125 MOEB ČVUT v Praze FSv K125 2008/2009
Modelování energetických systémů budov 125MOEB 2 3.9. 1 14.1. 2 Téma přednášky Základy - budova a energie, základy termodynamiky, solární procesy, psychrometrie Modelování a simulace energetického chování