11. Elektronická navigace od lodní přes leteckou po GPS principy, vlastnosti, technické prostředky

Rozměr: px
Začít zobrazení ze stránky:

Download "11. Elektronická navigace od lodní přes leteckou po GPS principy, vlastnosti, technické prostředky"

Transkript

1 Specializovaný kurs U3V Současný stav a výhledy digitálních komunikací 11. Elektronická navigace od lodní přes leteckou po GPS principy, vlastnosti, technické prostředky Jiří Šebesta Ústav radioelektroniky FEKT VUT v Brně , sebestaj@feec.vutbr.cz

2 U3V - T11: NAVIGACE I. Téma: Základy navigace Směrová navigace Kruhová navigace Kruhově směrová navigace Hyperbolická navigace Inerciální systémy U3V - T11: Navigace I. strana 2

3 U3V - T11: Základy navigace (1/18) Navigace = "navis" navigace po moři Srovnávací (mapa terén) Kompasová (siločáry mag. pole Země) Astronomická (sextant) Rádiová navigace (radionavigace) Pozemní Družicová Radionavigace je speciální odvětví obecné navigace, které pro plnění úkolů navigace používá radiové prostředky U3V - T11: Navigace I. strana 3

4 U3V - T11: Základy navigace (2/18) GEODETICKÉ (ZEMĚPISNÉ) SOUŘADNICE: ZEMĚPISNÁ DÉLKA λ - úhel ve stupních, minutách a vteřinách, měřený v rovině rovníku, mezi průsečíkem rovníku a nultého poledníku středem Země a průsečíkem rovníku s poledníkem bodu měření. Rozsah 0 až 180 východní (V, E, +) nebo západní (Z, W, -). Anglický termín je LONGITUDE. ZEMĚPISNÁ ŠÍŘKA ϕ - úhel ve stupních, minutách a vteřinách, měřený v rovině místního poledníku od roviny rovníku k zemskému poloměru, procházejícímu místní rovnoběžkou. Rozsah 0 do 90 od rovníku severní (S, N, +) nebo jižní (J, S, -). Anglický termín je LATITUDE U3V - T11: Navigace I. strana 4

5 U3V - T11: Základy navigace (3/18) NIVELAČNÍ VÝŠKA H = nadmořská výška - výška nad geoidem (plocha aproximující zemský povrh jako ekvipotenciální plochu vůči gravitaci na střední klidové hladině oceánu) U3V - T11: Navigace I. strana 5

6 U3V - T11: Základy navigace (4/18) ORTHODROMA - nejkratší spojnice dvou bodů nacházejících se na zemském povrchu. LOXODROMA - spojnice dvou bodů na zemském povrchu, která svírá stejný úhel s mezilehlými poledníky U3V - T11: Navigace I. strana 6

7 U3V - T11: Základy navigace (5/18) KURSY, SMĚRNÍKY, DEVIACE, DEKLINACE U3V - T11: Navigace I. strana 7

8 U3V - T11: Základy navigace (6/18) MAPOVÁ PROJEKCE - protože je zobrazována zakřivená plocha s projekcí do roviny vykazuje mapa zkreslení. Podle toho, které vlastnosti zemského povrchu mapa zachovává nezkreslené, mluvíme o mapách: délkojevných nezkreslují vzdálenosti podél určitého systému čar (netýká se všech délek) plochojevných zachovávají poměry ploch, silně jsou však zkresleny úhly úhlojevných věrně zachycují úhly, ale silně zkreslují plochy vyrovnávacích kompromisní zobrazení U3V - T11: Navigace I. strana 8

9 U3V - T11: Základy navigace (7/18) Příklady map s válcovou projekcí Příklad mapy s kuželovou projekcí U3V - T11: Navigace I. strana 9

10 U3V - T11: Základy navigace (8/18) Kartografická zkreslení na Mapy kilometrické (menší mapách zobrazujících velké plochy chyba v úhlech!!!!) oblasti - zobrazení kontrolních kruhů Souřadnice označeného místa v mapě: NY Příklad konvertoru na: U3V - T11: Navigace I. strana 10

11 U3V - T11: Základy navigace (9/18) TĚLESO ZEMĚ nedokonalý kulového tvaru, tzv. geoidu. Nejvhodnějším přibližujícím matematickým modelem elipsoid. Osa rotace je dlouhá 12713,7 km, rovníkový průměr je 12756,49 km. Rovník a nultý poledník jsou základními prvky pro určování zeměpisných souřadnic, které jednoznačně určují polohu jakéhokoliv bodu na zemském povrchu U3V - T11: Navigace I. strana 11

12 U3V - T11: Základy navigace (10/18) Geoid - rotace Země, nedokonale tuhé těleso - nehomogenita tělesa Země Elipsoid = elipsa rotující podle osy rotace Výška geoidu = rozdíl mezi referenčním elipsoidem a skutečným geoidem U3V - T11: Navigace I. strana 12

13 U3V - T11: Základy navigace (11/18) Referenční elipsoidy (stačí 2 parametry): U3V - T11: Navigace I. strana 13

14 U3V - T11: Základy navigace (12/18) VČR: S-42 (elipsoid Krasovského) S-JSTK - systém jednotné trigonometrické sítě katastrální (Besselův elipsoid) WGS-84 - World Geodetic System - u přijímačů GPS primárním GTRF - Galileo Terrestrial Reference Frame (v přípravě) Metody přepočtu mezi jednotlivými souřadnými systémy jsou řešeny výpočtem polohy v daném systému v pravoúhlých souřadnicích (x, y, z) dle vztahu transformací pravoúhlých souřadnic vstupního souřadného systému do pravoúhlých souřadnic cílového systému a zpětným výpočtem geodetických souřadnic U3V - T11: Navigace I. strana 14

15 U3V - T11: Základy navigace (13/18) Geodetické souřadnice získané přepočtem z pravoúhlých souřadnic jsou vztaženy k ploše příslušného referenčního elipsoidu. Vlivem nerovnoměrného rozložení hmoty Země lze pozorovat nepravidelné změny výšky odpovídající hladině moře a elipsoid je nutno nahradit geoidem. Záměna elipsoidu za přesnější definici tvaru Země nemá vliv na geodetickou šířku a délku a projevuje se pouze ve změně výšky hladiny moře (geoid) vůči elipsoidické výšce. Výška geoidu N může být definována interpolačním vztahem, který je funkcí geodetické výšky a šířky, nebo pomocí tabulek U3V - T11: Navigace I. strana 15

16 U3V - T11: Základy navigace (14/18) Vztahy mezi určovanými výškami Výška geoidu pro WGS-84 [m] U3V - T11: Navigace I. strana 16

17 U3V - T11: Základy navigace (15/18) Chyba (posuv) S-JSTK vs. WGS-84 v ČR geodetická šířka geodetická délka Konvertory s mapou na: U3V - T11: Navigace I. strana 17

18 U3V - T11: Základy navigace (16/18) Využití navigačních majákových systémů Směrová navigace měření směrníku k majáku polohu tvoří průsečík směrníků (NDB) Kruhová navigace měření vzdálenosti od majáků polohu tvoří průsečík kulových ploch (GPS) Hyperbolická navigace měření rozdílu vzdáleností od majáků polohu tvoří průsečík hyperbolických ploch (DECCA) Speciální navigace specifikace účelových prosto-rových signálů polohovou souřadnici specifikuje maximální amplituda nebo shodná hloubka modulace dvou AM signálů nebo shodná fáze dvou signálů (ILS, MLS) U3V - T11: Navigace I. strana 18

19 U3V - T11: Základy navigace (17/18) Směrová navigace Kruhová navigace Hyperbolická navigace Kruhově směrová nav U3V - T11: Navigace I. strana 19

20 U3V - T11: Základy navigace (18/18) Inerciální systémy Výpočet polohy vzhledem k počátku měření pomocí měření rychlosti (akcelerometry) a kursu parciálního pohybu (gyroskopy, kompas) Určení polohy U3V - T11: Navigace I. strana 20

21 U3V - T11: Směrová navigace (1/7) Systémy směrové (kursové) navigace jsou založeny na měření směru (kursu) navigovaného objektu ke dvěma či více majákům současně. Geometrickým místem konstantních směrů od daného bodu jsou polopřímky. Pro navigaci, při níž je určována geodetická poloha je nutná znalost směru severu (nejčastěji kompasové určení). Směrovou navigaci využívají systémy NDB, ILS, MLS U3V - T11: Navigace I. strana 21

22 U3V - T11: Směrová navigace (2/7) Princip směrové navigace Pro určení kursu se užívá závislost amplitudy vysokofrekvenčního signálu na měřeném směru k majáku U3V - T11: Navigace I. strana 22

23 U3V - T11: Směrová navigace (3/7) Aktivní systém využívá směrové vyzařování elektromagnetické energie - amplitudový radiomaják. Pasivní systém se směr. příjmem - rádiový zaměřovač. Úhlovou souřadnici zjišťujeme: podle maxima nosné signálu podle minima nosné signálu vzájemným porovnáním úrovní signálu zjišťovaných pro dvě natočení antény U3V - T11: Navigace I. strana 23

24 U3V - T11: Směrová navigace (4/7) Na přesnost zaměření mají vliv podmínky šíření. Za reálných podmínek šíření v troposféře nastává výrazná změna polohového úhlu (měření se nepoužívá). Azimutální úhel bývá většinou ovlivňován šířením nad ostře ohraničenými změnami prostředí - pobřežní lom. Chyba zaměření se projevuje zejména pro letadla v malých výškách U3V - T11: Navigace I. strana 24

25 U3V - T11: Směrová navigace (5/7) Směrové antény AM navigačních systémů Pro DV, SV a KV se nejčastěji používají rámové antény (nebo s dvojice navzájem kolmo orientovaných rámových antén) konstrukčně upravených tak, aby byly otočené kolem svislé osy rámu nebo čtveřice vertikálních antén (tzv. Adcockova soustava). Na VKV se pak používají nejčastěji antény typu parabolického válce, Yagiho antény nebo logaritmicko-periodické antény U3V - T11: Navigace I. strana 25

26 U3V - T11: Směrová navigace (6/7) Profesionální ADF systém se dvěma Adcockovými anténami pro různá pásma Modifikace Adcockovy antény s osmi elementy U3V - T11: Navigace I. strana 26

27 U3V - T11: Směrová navigace (7/7) Nesměrové majáky NDB (Non-Directional Beacon) Pracují v pásmu khz s AM modulací, identifikují se pomocí dvoj až trojpísmenného kódu v Morseově abecedě (mod. frekvence 400 nebo 1020 Hz) U3V - T11: Navigace I. strana 27

28 U3V - T11: Kruhová navigace (1/2) Systémy kruhové navigace jsou založeny na měření vzdálenosti navigovaného objektu od dvou, či více majáků současně. Toto měření se uskutečňuje pomocí vyhodnocení doby šíření dotazovacího signálu od palubního dotazovače k majáku a zpět. Geometrickým místem konstantní vzdálenosti od daného bodu je kružnice při 2D měření nebo kulová plocha při 3D měření. Při měření vzdálenosti k několika majákům, je místem polohy objektu průsečík kružnic nebo kulových ploch (při malém počtu majáků více průsečíků = nejednoznačnost určení polohy) U3V - T11: Navigace I. strana 28

29 U3V - T11: Kruhová navigace (2/2) Princip kruhové navigace Pro jednoznačná měření 4 majáky nebo omezení prostoru operability, např. GPS Aplikace: systémy GNSS U3V - T11: Navigace I. strana 29

30 U3V - T11: Kruhově - směrová (1/2) Systémy kruhově směrové navigace jsou založeny na měření vzdálenosti a směru navigovaného objektu od jednoho, či více majáků současně. Aplikace: systémy VOR-DME U3V - T11: Navigace I. strana 30

31 U3V - T11: Kruhově - směrová (2/2) Princip kruhově - směrové navigace U3V - T11: Navigace I. strana 31

32 U3V - T11: Hyperbolická nav. (1/4) Systémy hyperbolické navigace jsou založeny na měření rozdílu vzdáleností navigovaného objektu od dvou dvojic, či více dvojic majáků současně. Toto měření se uskutečňuje pomocí vyhodnocení doby šíření nebo častěji rozdílů fází synchronních signálů majáku. Geometrickým místem konstantního rozdílu vzdáleností od daného bodu (ohniska) je hyperbola při 2D měření nebo hyperboloid při 3D měření. Při měření rozdílu vzdáleností k několika majákům, je místem polohy objektu průsečík hyperbol nebo hyperboloidů (nejednoznačnost určení polohy je potlačena) U3V - T11: Navigace I. strana 32

33 U3V - T11: Hyperbolická nav. (2/4) Princip hyperbolické navigace Aplikace: systémy DECCA NAVIGATOR, OMEGA, LORAN U3V - T11: Navigace I. strana 33

34 U3V - T11: Hyperbolická nav. (3/4) DECCA NAVIGATOR U3V - T11: Navigace I. strana 34

35 U3V - T11: Hyperbolická nav. (4/4) LORAN U3V - T11: Navigace I. strana 35

36 U3V - T11: Inerciální systémy (1/4) Navigační systém využívající Dopplerův jev Systémy jsou určeny pro měření traťové rychlosti a úhlu snosu a patří mezi nezávislé navigační systémy větších nákladních, civil-ních i vojenských letadel bez jakékoli spoluúčasti pozemních zařízení. Dopplerova frekvence, jež vzniká pohybem letadla s traťovou rychlostí TR vůči zemskému povrchu je: U3V - T11: Navigace I. strana 36

37 U3V - T11: Inerciální systémy (2/4) Pro měření složek rychlosti podélné, příčné a vertikální a úhlu snosu je třeba uspořádání vyzařovacích svazků antén podle tzv. Janusovy úpravy U3V - T11: Navigace I. strana 37

38 U3V - T11: Inerciální systémy (3/4) Dráha letu se obvykle počítá v pravoúhlé soustavě souřadnic, kde osy jsou rovnoběžné se směry N - S a E - W. Při jejím využití se dráha letu rozkládá na integrály vektorů rychlosti ve směru těchto os. Palubní počítač vyhodnocuje zeměpisné souřadnice aktuální polohy letadla ze složek drah letu do poledníku a rovnoběžky: U3V - T11: Navigace I. strana 38

39 U3V - T11: Inerciální systémy (4/4) Názorný přehled dosažitelné přesnosti určení 2D polohy pro různé navigační systémy U3V - T11: Navigace I. strana 39

40 Děkuji za vaši pozornost Téma příští přednášky: Radionavigační systémy pro řízení letového provozu Výborně Higginsi, vidím, že máš všechno pod kontrolou U3V - T11: Navigace I. strana 40

Referenční plochy a souřadnice na těchto plochách Zeměpisné, pravoúhlé, polární a kartografické souřadnice

Referenční plochy a souřadnice na těchto plochách Zeměpisné, pravoúhlé, polární a kartografické souřadnice Referenční plochy a souřadnice na těchto plochách Zeměpisné, pravoúhlé, polární a kartografické souřadnice Kartografie přednáška 5 Referenční plochy souřadnicových soustav slouží k lokalizaci bodů, objektů

Více

4. Matematická kartografie

4. Matematická kartografie 4. Země má nepravidelný tvar, který je dán půsoením mnoha sil, zejména gravitační a odstředivé (vzhledem k rotaci Země). Odstředivá síla způsouje, že tvar Země je zploštělý, tj. zemský rovník je dále od

Více

GIS Geografické informační systémy

GIS Geografické informační systémy GIS Geografické informační systémy Kartografie Glóbus představuje zmenšený a zjednodušený, 3rozměrný model zemského povrchu; všechny délky na glóbu jsou zmenšeny v určitém poměru; úhly a tvary a velikosti

Více

SPŠ STAVEBNÍ České Budějovice MAPOVÁNÍ. JS pro 2. ročník S2G 1. ročník G1Z

SPŠ STAVEBNÍ České Budějovice MAPOVÁNÍ. JS pro 2. ročník S2G 1. ročník G1Z SPŠ STAVEBNÍ České Budějovice MAPOVÁNÍ JS pro 2. ročník S2G 1. ročník G1Z Všeobecné základy MAP Mapování řeší problém znázornění nepravidelného zemského povrchu do roviny Vychází se z: 1) geometrických

Více

Matematická kartografie. Černý J., Kočandrlová M.: Konstruktivní geometrie, ČVUT. Referenční plochy

Matematická kartografie. Černý J., Kočandrlová M.: Konstruktivní geometrie, ČVUT. Referenční plochy Matematická kartografie Buchar.: Matematická kartografie 10, ČVUT; Černý J., Kočandrlová M.: Konstruktivní geometrie, ČVUT Referenční plochy referenční elipsoid (sféroid) zploštělý rotační elipsoid Besselův

Více

GEOGRAFICKÁ SLUŽBA ARMÁDY ČESKÉ REPUBLIKY

GEOGRAFICKÁ SLUŽBA ARMÁDY ČESKÉ REPUBLIKY GEOGRAFICKÁ SLUŽBA ARMÁDY ČESKÉ REPUBLIKY VOJENSKÝ GEOGRAFICKÝ A HYDROMETEOROLOGICKÝ ÚŘAD Popis a zásady používání světového geodetického referenčního systému 1984 v AČR POPIS A ZÁSADY POUŽÍVÁNÍ V AČR

Více

MAPOVÁNÍ. Všeobecné základy map JS pro 2. ročník S2G 1. ročník G1Z

MAPOVÁNÍ. Všeobecné základy map JS pro 2. ročník S2G 1. ročník G1Z MAPOVÁNÍ Všeobecné základy map JS pro 2. ročník S2G 1. ročník G1Z Všeobecné základy MAP Mapování řeší problém znázornění nepravidelného zemského povrchu do roviny Vychází se z: 1) geometrických základů

Více

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015 Kartografie 1 - přednáška 1 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Úvod přednášky, cvičení, zápočty, zkoušky Jiří Cajthaml (přednášky, cvičení) potřebné znalosti: vzorce

Více

Základy kartografie. RNDr. Petra Surynková, Ph.D.

Základy kartografie. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta RNDr., Ph.D. petra.surynkova@mff.cuni.cz www.surynkova.info Kartografie Vědní obor zabývající se znázorněním zemského povrchu a nebeských těles

Více

Leoš Liška.

Leoš Liška. Leoš Liška 1) Tvar a rozměry zeměkoule, rovnoběžky a poledníky. 2) Zeměpisná šířka a délka, druhy navigace při létání. 3) Časová pásma na zemi, používání času v letectví, UTC, SEČ, SELČ. 4) Východ a západ

Více

Geodézie pro architekty. Úvod do geodézie

Geodézie pro architekty. Úvod do geodézie Geodézie pro architekty Úvod do geodézie Geodézie pro architekty Ing. Tomáš Křemen, Ph.D. B905 http://k154.fsv.cvut.cz/~kremen/ tomas.kremen@fsv.cvut.cz Doporučená literatura: Hánek, P. a kol.: Stavební

Více

Transformace dat mezi různými datovými zdroji

Transformace dat mezi různými datovými zdroji Transformace dat mezi různými datovými zdroji Zpracovali: Datum prezentace: BUČKOVÁ Dagmar, BUC061 MINÁŘ Lukáš, MIN075 09. 04. 2008 Obsah Základní pojmy Souřadnicové systémy Co to jsou transformace Transformace

Více

Geodézie a pozemková evidence

Geodézie a pozemková evidence 2012, Brno Ing.Tomáš Mikita, Ph.D. Geodézie a pozemková evidence Přednáška č.2 - Kartografická zobrazení, souřadnicové soustavy Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské

Více

GIS a pozemkové úpravy. Data pro využití území (DPZ)

GIS a pozemkové úpravy. Data pro využití území (DPZ) GIS a pozemkové úpravy Data pro využití území (DPZ) Josef Krása Katedra hydromeliorací a krajinného inženýrství, Fakulta stavební ČVUT v Praze 1 Papírová mapa Nevymizela v době GIS systémů (Stále základní

Více

POROVNÁNÍ JEDNOTLIVÝCH SYSTÉMŮ

POROVNÁNÍ JEDNOTLIVÝCH SYSTÉMŮ RUP 01b POROVNÁNÍ JEDNOTLIVÝCH SYSTÉMŮ Časoměrné systémy: Výhody: Vysoká přesnost polohy (metry) (díky vysoké přesnosti měření časového zpoždění signálů), nenáročné antény, nízké výkony vysílačů Nevýhoda:

Více

Přednášející: Ing. M. Čábelka Katedra aplikované geoinformatiky a kartografie PřF UK v Praze

Přednášející: Ing. M. Čábelka Katedra aplikované geoinformatiky a kartografie PřF UK v Praze Seminář z geoinformatiky Úvod do geodézie Seminář z geo oinform matiky Přednášející: Ing. M. Čábelka cabelka@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie PřF UK v Praze Úvod do geodézie

Více

SPŠ STAVEBNÍ České Budějovice MAPOVÁNÍ. JS pro 3. ročník S3G

SPŠ STAVEBNÍ České Budějovice MAPOVÁNÍ. JS pro 3. ročník S3G SPŠ STAVEBNÍ České Budějovice MAPOVÁNÍ JS pro 3. ročník S3G ROZPIS TÉMAT PRO ŠK. ROK 2018/2019 1) Kartografické zobrazení na území ČR Cassiny-Soldnerovo zobrazení Obecné konformní kuželové zobrazení Gauss-Krügerovo

Více

MODERNÍ GLOBÁLNÍ GEODETICKÝ REFERENČNÍ GEOCENTRICKÝ SYSTÉM

MODERNÍ GLOBÁLNÍ GEODETICKÝ REFERENČNÍ GEOCENTRICKÝ SYSTÉM WORLD GEODETIC SYSTEM 1984 - WGS 84 MODERNÍ GLOBÁLNÍ GEODETICKÝ REFERENČNÍ GEOCENTRICKÝ SYSTÉM Pro projekt CTU 0513011 (2005) s laskavou pomocí Ing. D. Dušátka, CSc. Soustava základních geometrických a

Více

Zobrazování zemského povrchu

Zobrazování zemského povrchu Zobrazování zemského povrchu Země je kulatá Mapy jsou placaté Zemský povrch je zvlněný a země není kulatá Fyzický povrch potřebuji promítnout na nějaký matematicky popsatelný povrch http://photojournal.jpl.nasa.gov/jpeg/pia03399.jpg

Více

Úvod do předmětu geodézie

Úvod do předmětu geodézie 1/1 Úvod do předmětu geodézie Ing. Hana Staňková, Ph.D. IGDM, HGF, VŠB-TU Ostrava hana.stankova@vsb.cz A911, 5269 1 Geodézie 1/2 vědní obor o měření části zemského povrchu, o určování vzájemných vztahů

Více

Geoinformatika. IV Poloha v prostoru

Geoinformatika. IV Poloha v prostoru Geoinformatika IV Poloha v prostoru jaro 2017 Petr Kubíček kubicek@geogr.muni.cz Laboratory on Geoinformatics and Cartography (LGC) Institute of Geography Masaryk University Czech Republic Složky geografických

Více

GIS Geografické informační systémy. Daniela Ďuráková, Jan Gaura Katedra informatiky, FEI

GIS Geografické informační systémy. Daniela Ďuráková, Jan Gaura Katedra informatiky, FEI GIS Geografické informační systémy Daniela Ďuráková, Jan Gaura Katedra informatiky, FEI jan.gaura@vsb.cz http://mrl.cs.vsb.cz/people/gaura Kartografie Stojí na pomezí geografie a geodezie. Poskytuje vizualizaci

Více

Základy rádiové navigace

Základy rádiové navigace Základy rádiové navigace Obsah Definice pojmů Způsoby navigace Principy rádiové navigace Pozemské navigační systémy Družicové navigační systémy Definice pojmů Navigace Vedení prostředku po stanovené trati

Více

MAPY VELKÉHO A STŘEDNÍHO MĚŘÍTKA

MAPY VELKÉHO A STŘEDNÍHO MĚŘÍTKA MAPA A GLÓBUS Tento nadpis bude stejně velký jako nadpis Planeta Země. Můžeš ho napsat přes půl nebo klidně i přes celou stranu. GLÓBUS Glóbus - zmenšený model Země - nezkresluje tvary pevnin a oceánů

Více

SOUŘADNICOVÉ SYSTÉMY. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 3.ročník

SOUŘADNICOVÉ SYSTÉMY. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 3.ročník SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 3.ročník SOUŘADNICOVÉ SYSTÉMY GEOID, REFERENČNÍ ELIPSOID, REFERENČNÍ KOULE S JTSK S - 42 WGS 84 TRANSFORMACE SUŘADNICOVÝCH SYSTÉMŮ REFERENČNÍ SYSTÉMY

Více

Pro mapování na našem území bylo použito následujících souřadnicových systémů:

Pro mapování na našem území bylo použito následujících souřadnicových systémů: SOUŘADNICOVÉ SYSTÉMY Pro mapování na našem území bylo použito následujících souřadnicových systémů: 1. SOUŘADNICOVÉ SYSTÉMY STABILNÍHO KATASTRU V první polovině 19. století bylo na našem území mapováno

Více

Geodézie Přednáška. Souřadnicové systémy Souřadnice na referenčních plochách

Geodézie Přednáška. Souřadnicové systémy Souřadnice na referenčních plochách Geodézie Přednáška Souřadnicové systémy Souřadnice na referenčních plochách strana 2 každý stát nebo skupina států si volí pro souvislé zobrazení celého území vhodný souřadnicový systém slouží k lokalizaci

Více

Stavební geodézie. Úvod do geodézie. Ing. Tomáš Křemen, Ph.D.

Stavební geodézie. Úvod do geodézie. Ing. Tomáš Křemen, Ph.D. Stavební geodézie Úvod do geodézie Ing. Tomáš Křemen, Ph.D. Stavební geodézie SG01 Ing. Tomáš Křemen, Ph.D. B905 http://k154.fsv.cvut.cz/~kremen/ tomas.kremen@fsv.cvut.cz Doporučená literatura: Hánek,

Více

GEODETICKÉ VÝPOČTY I.

GEODETICKÉ VÝPOČTY I. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. PRAVOÚHLÉ SOUŘADNICE V ČR ZOBRAZOVÁNÍ POLOHY BODŮ (SOUSTAVY) Soustavu souřadnic lze označit jako vzájemně jednoznačné

Více

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015 Kartografie 1 - přednáška 6 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Kartografická zobrazení použitá na našem území důležitá jsou zejména zobrazení pro státní mapová díla v

Více

14. Elektronická navigace od lodní přes leteckou po GPS principy, vlastnosti, technické prostředky

14. Elektronická navigace od lodní přes leteckou po GPS principy, vlastnosti, technické prostředky Specializovaný kurs U3V Současný stav a výhledy digitálních komunikací 14. Elektronická navigace od lodní přes leteckou po GPS principy, vlastnosti, technické prostředky 5.5.2016 Jiří Šebesta Ústav radioelektroniky

Více

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník SOUŘADNICOVÉ SOUSTAVY VE FOTOGRAMMETRII

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník SOUŘADNICOVÉ SOUSTAVY VE FOTOGRAMMETRII SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník SOUŘADNICOVÉ SOUSTAVY VE FOTOGRAMMETRII SOUŘADNICOVÉ SOUSTAVY VE FTM hlavní souřadnicové soustavy systém snímkových souřadnic systém modelových

Více

Obr. 4 Změna deklinace a vzdálenosti Země od Slunce v průběhu roku

Obr. 4 Změna deklinace a vzdálenosti Země od Slunce v průběhu roku 4 ZÁKLADY SFÉRICKÉ ASTRONOMIE K posouzení proslunění budovy nebo oslunění pozemku je vždy nutné stanovit polohu slunce na obloze. K tomu slouží vztahy sférické astronomie slunce. Pro sledování změn slunečního

Více

Souřadnicové systémy v geodatech resortu ČÚZK a jejich transformace

Souřadnicové systémy v geodatech resortu ČÚZK a jejich transformace Souřadnicové systémy v geodatech resortu ČÚZK a jejich transformace Zeměměřický úřad, Jan Řezníček Praha, 2018 Definice matematická pravidla (rovnice) jednoznačné přidružení souřadnic k prostorovým informacím

Více

Úvodní ustanovení. Geodetické referenční systémy

Úvodní ustanovení. Geodetické referenční systémy 430/2006 Sb. NAŘÍZENÍ VLÁDY ze dne 16. srpna 2006 o stanovení geodetických referenčních systémů a státních mapových děl závazných na území státu a zásadách jejich používání ve znění nařízení vlády č. 81/2011

Více

GEODETICKÉ VÝPOČTY I.

GEODETICKÉ VÝPOČTY I. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. PRAVOÚHLÉ SOUŘADNICE V ČR ZOBRAZOVÁNÍ POLOHY BODŮ (SOUSTAVY) Soustavu souřadnic lze označit jako vzájemně jednoznačné

Více

LETECKÉ MAPY. Přednášející: LUKAS WÜNSCH

LETECKÉ MAPY. Přednášející: LUKAS WÜNSCH LETECKÉ MAPY Přednášející: LUKAS WÜNSCH LICENCE SOUKROMÉHO PILOTA, ZKOUŠKY DOPRAVNÍHO PILOTA KLUZÁKY (VĚTRONĚ) OD ROKU 1989, UL LETOUNY, MOTOROVÉ LETOUNY AEROKLUB ROUDNICE NAD LABEM 2003-2014 ČESKÉ AEROLINIE

Více

Matematické metody v kartografii. Jednoduchá azimutální zobrazení. Azimutální projekce. UPS. (10.)

Matematické metody v kartografii. Jednoduchá azimutální zobrazení. Azimutální projekce. UPS. (10.) Matematické metody v kartografii Jednoduchá azimutální zobrazení. Azimutální projekce. UPS. (10.) 1. Jednoduchá azimutální zobrazení Společné vlastnosti: Jednoduché zobrazení, zobrazuje na tečnou rovinu

Více

Matematické metody v kartografii. Volba a identifikace zobrazení. Zobrazení použitá v ČR. Kritéria pro hodnocení kartografických zobrazení(13)

Matematické metody v kartografii. Volba a identifikace zobrazení. Zobrazení použitá v ČR. Kritéria pro hodnocení kartografických zobrazení(13) Matematické metody v kartografii Volba a identifikace zobrazení. Zobrazení použitá v ČR. Kritéria pro hodnocení kartografických zobrazení(3) Volba kartografického zobrazení Parametry ovlivňující volbu

Více

GPSnavigator. mija. Jednoduchý návod na postavení GPS navigátoru z MLAB modulů a GPS modulu LEADTEK LR9552

GPSnavigator. mija. Jednoduchý návod na postavení GPS navigátoru z MLAB modulů a GPS modulu LEADTEK LR9552 mija Jednoduchý návod na postavení GPS navigátoru z modulů a GPS modulu LEADTEK LR9552 1. Seznam použitých modulů... 1 2. Konstrukce u... 2 2.1. Úvodem... 2 2.2. Popis GPS modulu LEADTEK LR9552...2 2.3.

Více

Základní kurz pro nováčky plachtařského výcviku. Letecká navigace

Základní kurz pro nováčky plachtařského výcviku. Letecká navigace Základní kurz pro nováčky plachtařského výcviku Letecká navigace neboli nauka o vedení letadel po plánovaných tratích a určování zeměpisných poloh za letu Jacek Kerum ČVUT 2013 Navigační metody Srovnávací

Více

Zeměpisné souřadnice Zeměpisná šířka rovnoběžce poledníky Zeměpisná délka

Zeměpisné souřadnice Zeměpisná šířka rovnoběžce poledníky Zeměpisná délka Zeměpisné souřadnice Pro určení polohy na zemském povrchu používáme souřadnicovou soustavu. Počátek souřadnic leží ve středu Země S. Rovina proložená středem Země kolmo na osu otáčení je rovina rovníku

Více

GEODÉZIE VYŠŠÍ ODBORNÁ ŠKOLA STAVEBNÍ STŘEDNÍ ŠKOLA STAVEBNÍ VYSOKÉ MÝTO. Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství

GEODÉZIE VYŠŠÍ ODBORNÁ ŠKOLA STAVEBNÍ STŘEDNÍ ŠKOLA STAVEBNÍ VYSOKÉ MÝTO. Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství GEODÉZIE Ing. Bc. Pavel Voříšek (úředně oprávněný zeměměřický inženýr). Vysoké Mýto 16. 12. 2016 VYŠŠÍ ODBORNÁ ŠKOLA STAVEBNÍ A

Více

REKONSTRUKCE ASTROLÁBU POMOCÍ STEREOGRAFICKÉ PROJEKCE

REKONSTRUKCE ASTROLÁBU POMOCÍ STEREOGRAFICKÉ PROJEKCE REKONTRUKCE ATROLÁBU POMOCÍ TEREOGRAFICKÉ PROJEKCE Václav Jára 1 1 tereografická projekce a její vlastnosti tereografická projekce kulové plochy je středové promítání z bodu této kulové plochy do tečné

Více

KARTOGRAFIE. Rovinné projekce. Gnómické projekce. 1. Pólová gnómonická projekce

KARTOGRAFIE. Rovinné projekce. Gnómické projekce. 1. Pólová gnómonická projekce KARTOGRAFIE Kartografie se zabývá zobrazováním zemského povrchu. Zemský povrch (geoid) nahrazujeme plochou kulovou a tu zobrazujeme. Délky zmenšujeme v daném měřítku. Na kulové ploše zavádíme souřadný

Více

Téma: Geografické a kartografické základy map

Téma: Geografické a kartografické základy map Topografická příprava Téma: Geografické a kartografické základy map Osnova : 1. Topografické mapy, měřítko mapy 2. Mapové značky 3. Souřadnicové systémy 2 3 1. Topografické mapy, měřítko mapy Topografická

Více

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník MĚŘICKÝ SNÍMEK PRVKY VNITŘNÍ A VNĚJŠÍ ORIENTACE CHYBY SNÍMKU

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník MĚŘICKÝ SNÍMEK PRVKY VNITŘNÍ A VNĚJŠÍ ORIENTACE CHYBY SNÍMKU SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník MĚŘICKÝ SNÍMEK PRVKY VNITŘNÍ A VNĚJŠÍ ORIENTACE CHYBY SNÍMKU MĚŘICKÝ SNÍMEK Základem měření je fotografický snímek, který je v ideálním případě

Více

Sada 1 Geodezie I. 15. Podrobné měření polohopisné

Sada 1 Geodezie I. 15. Podrobné měření polohopisné S třední škola stavební Jihlava Sada 1 Geodezie I 15. Podrobné měření polohopisné Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2

Více

2012, Brno Ing.Tomáš Mikita, Ph.D. Geodézie a pozemková evidence

2012, Brno Ing.Tomáš Mikita, Ph.D. Geodézie a pozemková evidence 2012, Brno Ing.Tomáš Mikita, Ph.D. Geodézie a pozemková evidence Přednáška č.10 GNSS GNSS Globální navigační satelitní systémy slouží k určení polohy libovolného počtu uživatelů i objektů v reálném čase

Více

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Kartografické projekce

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Kartografické projekce Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Kartografické projekce Vypracoval: Jiří Novotný Třída: 4.C Školní rok: 2013/2014 Seminář: Deskriptivní geometrie Prohlašuji, že jsem

Více

Astronavigace. Zdeněk Halas KDM MFF UK, Aplikace matem. pro učitele

Astronavigace. Zdeněk Halas KDM MFF UK, Aplikace matem. pro učitele Základní princip Zdeněk Halas KDM MFF UK, 2011 Aplikace matem. pro učitele Zdeněk Halas (KDM MFF UK, 2011) Aplikace matem. pro učitele 1 / 13 Tradiční metody Tradiční navigační metody byly v nedávné době

Více

Matematické metody v kartografii. Kruhová zobrazení. Polyedrická a neklasifikovaná zobrazení (12)

Matematické metody v kartografii. Kruhová zobrazení. Polyedrická a neklasifikovaná zobrazení (12) Matematické metody v kartografii Kruhová zobrazení. Polyedrická a neklasifikovaná zobrazení (12) Kruhová zobrazení Společné vlastnosti: Síť poledníků/rovnoběžek tvořena pouze kruhovými oblouky Středy rovnoběžkových

Více

N Á V R H. OPATŘENÍ OBECNÉ POVAHY ze dne 2005, o rozsahu požadovaných údajů v žádosti o udělení oprávnění k využívání rádiových kmitočtů

N Á V R H. OPATŘENÍ OBECNÉ POVAHY ze dne 2005, o rozsahu požadovaných údajů v žádosti o udělení oprávnění k využívání rádiových kmitočtů N Á V R H OPATŘENÍ OBECNÉ POVAHY ze dne 2005, o rozsahu požadovaných údajů v žádosti o udělení oprávnění k využívání rádiových kmitočtů Český telekomunikační úřad vydává podle 108 odst. 1 písm. b) zákona

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Kosmická geodézie 4/003 Průběh geoidu z altimetrických měření

Více

Ing. Jiří Fejfar, Ph.D. Souřadné systémy

Ing. Jiří Fejfar, Ph.D. Souřadné systémy Ing. Jiří Fejfar, Ph.D. Souřadné systémy SRS (Spatial reference system) CRS (Coordinate Reference system) Kapitola 1: Základní pojmy Základní prostorové pojmy Geografický prostor Prostorové vztahy (geometrie,

Více

DRUHY VÝŠEK A JEJICH TEORETICKÝ PRINCIP. Hynčicová Tereza, H2IGE1 2014

DRUHY VÝŠEK A JEJICH TEORETICKÝ PRINCIP. Hynčicová Tereza, H2IGE1 2014 DRUHY VÝŠEK A JEJICH TEORETICKÝ PRINCIP Hynčicová Tereza, H2IGE1 2014 ÚVOD o Pro určení výšky bodu na zemském povrchu je nutné definovat vztažnou (nulovou) plochu a jeho výškovou polohu nad touto plochou

Více

154GUI1 Geodézie pro UIS 1

154GUI1 Geodézie pro UIS 1 154GUI1 Geodézie pro UIS 1 Přednášející: Ing. Tomáš Křemen, Ph.D; Místnost: B905 Email: tomas.kremen@fsv.cvut.cz WWW: k154.fsv.cvut.cz/~kremen Literatura: [1] Ratiborský, J.: Geodézie 10. 2. vyd. Praha:

Více

Sférická trigonometrie v matematické geografii a astronomii

Sférická trigonometrie v matematické geografii a astronomii Sférická trigonometrie v matematické geografii a astronomii Mgr. Hana Lakomá, Ph.D., Mgr. Veronika Douchová 00 Tento učební materiál vznikl v rámci grantu FRVŠ F1 066. 1 Základní pojmy sférické trigonometrie

Více

Název projektu OPVK: Podpora výuky a vzdělávání na GVN J. Hradec CZ.1.07/1.5.00/34.0766 Klíčová aktivita: V/2

Název projektu OPVK: Podpora výuky a vzdělávání na GVN J. Hradec CZ.1.07/1.5.00/34.0766 Klíčová aktivita: V/2 Název projektu OPVK: Podpora výuky a vzdělávání na GVN J. Hradec CZ.1.07/1.5.00/34.0766 Klíčová aktivita: V/2 Číslo dokumentu: VY_52_INOVACE_ZE.S4.04 Typ výukového materiálu: Pracovní list pro žáka Název

Více

Principy GPS mapování

Principy GPS mapování Principy GPS mapování Irena Smolová GPS GPS = globální družicový navigační systém určení polohy kdekoliv na zemském povrchu, bez ohledu na počasí a na dobu, kdy se provádí měření Vývoj systému GPS původně

Více

Registrační číslo projektu: CZ.1.07/1.5.00/ Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost

Registrační číslo projektu: CZ.1.07/1.5.00/ Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost Projekt je realizován v rámci Operačního programu Vzdělávání pro konkurence

Více

Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství. Ing. Pavel Voříšek MĚŘENÍ VZDÁLENOSTÍ. VOŠ a SŠS Vysoké Mýto leden 2008

Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství. Ing. Pavel Voříšek MĚŘENÍ VZDÁLENOSTÍ. VOŠ a SŠS Vysoké Mýto leden 2008 Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství Ing. Pavel Voříšek MĚŘENÍ VZDÁLENOSTÍ VOŠ a SŠS Vysoké Mýto leden 2008 METODY MĚŘENÍ DÉLEK PŘÍMÉ (měřidlo klademe přímo do měřené

Více

Souřadnicové systémy Souřadnice na referenčních plochách

Souřadnicové systémy Souřadnice na referenčních plochách Geodézie přednáška 2 Souřadnicové systémy Souřadnice na referenčních plochách Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.: 545134015 Souřadnicové systémy na území

Více

OBSAH 1 Úvod Fyzikální charakteristiky Zem Referen ní plochy a soustavy... 21

OBSAH 1 Úvod Fyzikální charakteristiky Zem Referen ní plochy a soustavy... 21 OBSAH I. ČÁST ZEMĚ A GEODÉZIE 1 Úvod... 1 1.1 Historie měření velikosti a tvaru Země... 1 1.1.1 První určení poloměru Zeměkoule... 1 1.1.2 Středověké měření Země... 1 1.1.3 Nové názory na tvar Země...

Více

Souřadnicové systémy a stanovení magnetického severu. Luděk Krtička, Jan Langr

Souřadnicové systémy a stanovení magnetického severu. Luděk Krtička, Jan Langr Souřadnicové systémy a stanovení magnetického severu Luděk Krtička, Jan Langr Workshop Příprava mapových podkladů Penzion Školka, Velké Karlovice 9.-11. 2. 2018 Upozornění Tato prezentace opomíjí některé

Více

KONTROLNÍ SEZNAM STRAN PŘEDPIS O CIVILNÍ LETECKÉ TELEKOMUNIKAČNÍ SLUŽBĚ SVAZEK I RADIONAVIGAČNÍ PROSTŘEDKY (L 10/I) Strana Datum Strana Datum

KONTROLNÍ SEZNAM STRAN PŘEDPIS O CIVILNÍ LETECKÉ TELEKOMUNIKAČNÍ SLUŽBĚ SVAZEK I RADIONAVIGAČNÍ PROSTŘEDKY (L 10/I) Strana Datum Strana Datum KONTROLNÍ SEZNAM STRAN PŘEDPIS O CIVILNÍ LETECKÉ TELEKOMUNIKAČNÍ SLUŽBĚ SVAZEK I RADIONAVIGAČNÍ PROSTŘEDKY (L 10/I) Strana Datum Strana Datum i / ii 23.11.2006 Změna č. 81 iii / iv 8.11.2018 v 10.11.2016

Více

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem Analytická geometrie - kružnice Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A = ; 5 [ ] Napište středový i obecný tvar rovnice kružnice, která má střed

Více

Podpořeno z projektu FRVŠ 584/2011.

Podpořeno z projektu FRVŠ 584/2011. Podpořeno z projektu FRVŠ 584/2011. Obsah Křovákovo zobrazení 1 Křovákovo zobrazení Obsah Křovákovo zobrazení 1 Křovákovo zobrazení Podpořeno z projektu FRVŠ 584/2011. Křovákovo zobrazení Křovákovo zobrazení

Více

Kartografie - úvod, historie a rozdělení Matematická kartografie Kartografická zobrazení

Kartografie - úvod, historie a rozdělení Matematická kartografie Kartografická zobrazení Kartografie - úvod, historie a rozdělení Matematická kartografie Kartografická zobrazení Kartografie přednáška 1 Kartografie obor zabývající se zobrazováním zakřivené části Zemského povrchu do rovinné

Více

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník RELATIVNÍ A ABSOLUTNÍ ORIENTACE AAT ANALYTICKÁ AEROTRIANGULACE

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník RELATIVNÍ A ABSOLUTNÍ ORIENTACE AAT ANALYTICKÁ AEROTRIANGULACE SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník RELATIVNÍ A ABSOLUTNÍ ORIENTACE AAT ANALYTICKÁ AEROTRIANGULACE PŘÍPRAVA STEREODVOJICE PRO VYHODNOCENÍ Příprava stereodvojice pro vyhodnocení

Více

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015 Kartografie 1 - přednáška 2 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Kartografické zobrazení kartografické zobrazení vzájemné přiřazení polohy bodů na dvou různých referenčních

Více

APROXIMACE KŘOVÁKOVA ZOBRAZENÍ PRO GEOGRAFICKÉ ÚČELY

APROXIMACE KŘOVÁKOVA ZOBRAZENÍ PRO GEOGRAFICKÉ ÚČELY APROXIMACE KŘOVÁKOVA ZOBRAZENÍ PRO GEOGRAFICKÉ ÚČELY Radek Dušek, Jan Mach Katedra fyzické geografie a geoekologie, Přírodovědecká fakulta, Ostravská univerzita, Ostrava Gymnázium Omská, Praha Abstrakt

Více

GA06 Deskriptivní geometrie pro obor Geodézie a kartografie Úvod do kartografie.

GA06 Deskriptivní geometrie pro obor Geodézie a kartografie Úvod do kartografie. GA06 Deskriptivní geometrie pro obor Geodézie a kartografie Úvod do kartografie. Květoslava Prudilová Jan Šafařík přednášková skupina P-G1G1, učebna C311 zimní semestr 2018-2019 21. listopad 2018 Základní

Více

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015 Kartografie 1 - přednáška 7 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 válcové konformní zobrazení v transverzální poloze někdy také nazýváno transverzální Mercatorovo nebo Gauss-Krügerovo

Více

O výškách a výškových systémech používaných v geodézii

O výškách a výškových systémech používaných v geodézii O výškách a výškových systémech používaných v geodézii Pavel Novák 1. Západočeská univerzita v Plzni 2. Výzkumný ústav geodetický, topografický a kartografický, v.v.i. Setkání geodetů 2012 ve Skalském

Více

Ochranné pásmo leteckých VHF vysílačů a přijímačů Přijímací a vysílací středisko Kopec Praha. Seznam příloh a technická zpráva GENERÁLNÍ PROJEKTANT:

Ochranné pásmo leteckých VHF vysílačů a přijímačů Přijímací a vysílací středisko Kopec Praha. Seznam příloh a technická zpráva GENERÁLNÍ PROJEKTANT: 02 01 / 2015 Ing. P. Hodík Ing. P. Hodík Ing. M. Šulc Zapracování připomínek OVL MO Č. REVIZE DATUM VYPRACOVAL KONTROLOVAL SCHVÁLIL POZNÁMKA INVESTOR: ŘLP ČR s.p. Navigační č.p. 787, 252 61 Jeneč tel:

Více

ZÁKLADNÍ PARAMETRY GYROSKOPU

ZÁKLADNÍ PARAMETRY GYROSKOPU ZÁKLADNÍ PARAMETRY GYROSKOPU v Vektor obvodové rchlosti Moment hbnosti r Hlavní osa otáčení Vektor úhlové rchlosti SLEDOVÁNÍ OTÁČENÍ ZEMĚKOULE POMOCÍ GYROSKOPU t hlavní osa t = 0 rovník Groskop je na rovníku,

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 1 2/3 GPS - Výpočet drah družic školní rok

Více

Souřadnicov. Cassini Soldnerovo zobrazení. Cassini-Soldnerovo. b) Evropský terestrický referenční systém m (ETRS), adnicové systémy

Souřadnicov. Cassini Soldnerovo zobrazení. Cassini-Soldnerovo. b) Evropský terestrický referenční systém m (ETRS), adnicové systémy Závazné referenční systémy dle 430/2006 Sb. Souřadnicov adnicové systémy na území Nařízen zení vlády o stanovení geodetických referenčních systémů a státn tních mapových děl d l závazných z na území státu

Více

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015 Kartografie 1 - přednáška 5 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Válcová zobrazení obrazem poledníků jsou úsečky, které mají konstantní rozestupy obrazem rovnoběžek jsou

Více

Matematické metody v kartografii. Členění kartografických zobrazení. Zobrazení z elipsoidu na kouli (5.)

Matematické metody v kartografii. Členění kartografických zobrazení. Zobrazení z elipsoidu na kouli (5.) Matematické metody v kartografii Členění kartografických zobrazení. Zobrazení z elipsoidu na kouli (5.) 1. Členění kartografických zobrazení: Existuje velkémnožstvíkarografických zobrazení. Lze je členit

Více

Geodézie a pozemková evidence

Geodézie a pozemková evidence 2012, Brno Ing.Tomáš Mikita, Ph.D. Geodézie a pozemková evidence Přednáška č.1 - Úvod do geodézie a kartografie Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU

Více

2. Pilotážní přístroje a Navigační systémy. Pavel Kovář

2. Pilotážní přístroje a Navigační systémy. Pavel Kovář 2. Pilotážní přístroje a Navigační systémy Pavel Kovář kovar@fel.cvut.cz Obsah Základní pojmy Letecké mapy Pilotážní přístroje Světelné majáky Principy rádiové navigace Rádiové navigační systémy Řízení

Více

Další plochy technické praxe

Další plochy technické praxe Další plochy technické praxe Dosud studované plochy mají široké využití jak ve stavební tak ve strojnické praxi. Studovali jsme možnosti jejich konstrukcí, vlastností i využití v praxi. Kromě těchto ploch

Více

Základy kartografie, topografické plochy

Základy kartografie, topografické plochy Základy kartografie, topografické plochy morava@karlin.mff.cuni.cz Katedra didaktiky matematiky MFF UK, Praha Aplikace matematiky pro učitele, 3. ledna 2012 Základní pojmy Kartografie věda zabývající se

Více

2012, Brno Ing.Tomáš Mikita, Ph.D. Geodézie a pozemková evidence

2012, Brno Ing.Tomáš Mikita, Ph.D. Geodézie a pozemková evidence 2012, Brno Ing.Tomáš Mikita, Ph.D. Geodézie a pozemková evidence Přednáška č.7 Vytyčování, souřadnicové výpočty, podélné a příčné profily Vytyčování Geodetická činnost uskutečněná odborně a nestranně na

Více

Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162

Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162 ZŠ Určeno pro Sekce Předmět Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162 Téma / kapitola ZŠ Dělnická žáky 6. a 7. ročníků

Více

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015 Kartografie 1 - přednáška 9 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Polykónická zobrazení někdy také mnohokuželová zobecnění kuželových zobrazení použito je nekonečně mnoho

Více

ÚŘAD PRO CIVILNÍ LETECTVÍ

ÚŘAD PRO CIVILNÍ LETECTVÍ ÚŘAD PRO CIVILNÍ LETECTVÍ Letiště Ruzyně 160 08 PRAHA 6 Sp. zn.: 10/730/0068/LKVO/01/11 Č. j.: 3854-10-730 V Praze dne 24. 6. 2011 VEŘEJNÁ VYHLÁŠKA NÁVRH OPATŘENÍ OBECNÉ POVAHY Úřad pro civilní letectví

Více

Obsah. Obsah. 2.3 Pohyby v radiálním poli Doplňky 16. F g = κ m 1m 2 r 2 Konstantu κ nazýváme gravitační konstantou.

Obsah. Obsah. 2.3 Pohyby v radiálním poli Doplňky 16. F g = κ m 1m 2 r 2 Konstantu κ nazýváme gravitační konstantou. Obsah Obsah 1 Newtonův gravitační zákon 1 2 Gravitační pole 3 2.1 Tíhové pole............................ 5 2.2 Radiální gravitační pole..................... 8 2.3..................... 11 3 Doplňky 16

Více

BUDOVÁNÍ PŘESNÉHO BODOVÉHO POLE A GEOMETRICKÉ VLASTNOSTI VIRTUÁLNÍCH REALIZACÍ S-JTSK

BUDOVÁNÍ PŘESNÉHO BODOVÉHO POLE A GEOMETRICKÉ VLASTNOSTI VIRTUÁLNÍCH REALIZACÍ S-JTSK GNSS SEMINÁŘ 2018 BUDOVÁNÍ PŘESNÉHO BODOVÉHO POLE A GEOMETRICKÉ VLASTNOSTI VIRTUÁLNÍCH REALIZACÍ S-JTSK 21. ročník semináře Družicové metody v geodézii a katastru Brno, GNSS SEMINÁŘ 2018 Úvod Problematika:

Více

VŠB-TU Ostrava Referát do předmětu GIS Zpracoval: Petr Heinz DIGITÁLNÍ FOTOGRAMMETRIE

VŠB-TU Ostrava Referát do předmětu GIS Zpracoval: Petr Heinz DIGITÁLNÍ FOTOGRAMMETRIE VŠB-TU Ostrava Referát do předmětu GIS Zpracoval: Petr Heinz DIGITÁLNÍ FOTOGRAMMETRIE Obsah Úvod do fotogrammetrie Základy fotogrammetrie Rozdělení fotogrammetrie Letecká fotogrammetrie Úvod do fotogrammetrie

Více

ω JY je moment setrvačnosti k ose otáčení y

ω JY je moment setrvačnosti k ose otáčení y ZÁKLADNÍ USPOŘÁDÁNÍ MECHANICKÝCH GYROSKOPŮ POUŽITÝCH NA LETADLE 3 2 1 ω 3 2 1 ω 3 ω Kardanův ávěs ω a) 4 Groskop se dvěma stupni volnosti 3 b) Groskop se třemi stupni volnosti Groskop se otáčí úhlovou

Více

Zdroje dat GIS. Digitální formy tištěných map. Vstup dat do GISu:

Zdroje dat GIS. Digitální formy tištěných map. Vstup dat do GISu: Zdroje dat GIS Primární Sekundární Geodetická měření GPS DPZ (RS), fotogrametrie Digitální formy tištěných map Kartografické podklady (vlastní nákresy a měření) Vstup dat do GISu: Data přímo ve potřebném

Více

Modelování blízkého pole soustavy dipólů

Modelování blízkého pole soustavy dipólů 1 Úvod Modelování blízkého pole soustavy dipólů J. Puskely, Z. Nováček Ústav radioelektroniky, Fakulta elektrotechniky a komunikačních technologií, VUT v Brně Purkyňova 118, 612 00 Brno Abstrakt Tento

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

3.3 Seznamte se s principem systému ADS-B a ovládáním přijímače odpovědí ADS-B Kinetic Avionic SBS-1.

3.3 Seznamte se s principem systému ADS-B a ovládáním přijímače odpovědí ADS-B Kinetic Avionic SBS-1. MRAR-L ZADÁNÍ Č. úlohy 3 Navigační systémy pro civilní letectví 3.1 Seznamte se s navigačními službami řízení letového provozu. 3.2 Sledujte provoz hlasových služeb ŘLP Brno - Tuřany. 3.3 Seznamte se s

Více

K154SG01 Stavební geodézie

K154SG01 Stavební geodézie K154SG01 Stavební geodézie Přednášející: Doc. Ing. Martin Štroner, Ph.D; Místnost: B912 Email: martin.stroner@fsv.cvut.cz Literatura: [1] Hánek, P. a kol.: Stavební geodézie. Česká technika -nakladatelství

Více

Zobrazování těles. problematika geometrického modelování. základní typy modelů. datové reprezentace modelů základní metody geometrického modelování

Zobrazování těles. problematika geometrického modelování. základní typy modelů. datové reprezentace modelů základní metody geometrického modelování problematika geometrického modelování manifold, Eulerova rovnost základní typy modelů hranový model stěnový model objemový model datové reprezentace modelů základní metody geometrického modelování těleso

Více

Určování středu území. KGI/KAMET Alena Vondráková

Určování středu území. KGI/KAMET Alena Vondráková Určování středu území KGI/KAMET Alena Vondráková Určování středu území tzv. centrografické metody úkolem je vyhledat střed území vzhledem k určitému jevu za střed jednoho území může být považováno i více

Více