Matematické metody v kartografii. Kruhová zobrazení. Polyedrická a neklasifikovaná zobrazení (12)
|
|
- Peter Svoboda
- před 8 lety
- Počet zobrazení:
Transkript
1 Matematické metody v kartografii Kruhová zobrazení. Polyedrická a neklasifikovaná zobrazení (12)
2 Kruhová zobrazení Společné vlastnosti: Síť poledníků/rovnoběžek tvořena pouze kruhovými oblouky Středy rovnoběžkových oblouků v pólech Vycházejí z polykónických zobrazení Často vznikají konstrukční cestou Nevýhodou: velká zkreslení v polární oblastech V praxi se nepoužívají Mohou být i konformní Obraz pólu: Bod Zástupci: Van der Grintenovo zobrazení Lagrangre-Lambertovo zobrazení
3 Grintenovo zobrazení Vlastnosti: Vzniká geometrickou cestou, tj. konstrukcí Zeměpisná síť tvořena kruhovými oblouky Obvodová kružnice: r=r Nezkreslený rovník Rovnoběžky mají na základním poledníku konstantní rozestupy Zobrazuje: Celý svět do kružnice, 70% světa do kružnice(bez zkreslených oblastí), zbytek jablíčko Postup konstrukce 1) Volba rovnoběžky 2) Konstrukce rovníku (A-B) 3) Rozdělení základního poledníku na stejně dlouhé úseky (C) 4) Konstrukce rovnoběžky (D-E) 5) Spojení E-A, průsečík S-J a E-A bod F rovnoběžky 6) Spojení S-B, průsečík S-B a S-E bod G 7) Spojení A-G, průsečík A-G a S-J bod 8) Rovnoběžka s DE jdoucí H protne obvodovou kružnici, body I, J
4 Grintenovo zobrazení, konstrukce
5 Grintenovo zobrazení
6 Lambert-Lagrangeovo zobrazení Vzniká geometrickou cestou, tj. konstrukcí Konformní Obvodová kružnice: r=4r Používáno pro mapy světa Velká zkreslení v polárních oblastech Používáno v carském Rusku na zač. 20. století.
7 Polyedrická zobrazení =tzv. mnohostěnná zobrazení Společné vlastnosti: Vznikají kombinací různých zobrazení Používají se pro zobrazení velkých území po částech Snaha o zmenšení vlivu zkreslení Každá část zobrazena samostatně, vlastní souřadnicový systém Obrovská nevýhoda: takto zobrazené části nelze spojit v jeden celek: vznik spár či překrytů Dělení polyedrických zobrazení Zobrazení koule na krychli nebo mnohostěn Kompozitní zobrazení Zobrazení poledníkových pásů (Gauss, UTM) Zobrazení rovnoběžkových pásů Zobrazení sférických lichoběžníků
8 Polyedrická zobrazení sférických lichoběžníků Topografické mapy Rakouska-Uherska Mapový list: obraz sférického lichoběžníku o rozměrech 15x30. Nezkreslený střední poledník, představován úsečkou. Nezkreslené okrajové rovnoběžky Měřítko map: 1: (speciální mapa) Úhel značně velký, Rozdíl v délkách úhlopříček A-E a DF: 50 m Použité zobrazení: Mercator-Sansonovo Použití: 3. vojenské mapování Nevýhoda Skládání mapových listů: mezery ca 1 mm
9 Polyedrická zobrazení sférických lichoběžníků Mezinárodní mapa světa 1: Mapový list: obraz sférického lichoběžníku o rozměrech 6x4. Celkem 60 pásů Práce začaly v roce 1909, nedokončena Použito modifikované polykónické zobrazení 2 nezkreslené poledníky 2 od středního poledníku. Československo: NM-33 Na styku mapových listů docházelo ke vzniku spár
10 Polyedrická zobrazení rovnoběžkových pásů Kuželové konformní zobrazení Návrh Ing. Josefa Křováka pro ČSR Rozdělení území Československa na rovnoběžkové pásy. Používalo více tečných kuželů. Mezi dvěma kužely vznikaly mezery Nerealizovalo se. Letecké navigační mapy 1:50000 Jednotné pro státy NATO Používají Lambertovo kuželové konformní zobrazení Hayfordův elipsoid Šířka pásů: 4 Max. hodnota zkreslení 30cm/km
11 Neklasifikovaná zobrazení Společné vlastnosti: Poledníky i rovnoběžky obecné křivky vyšších stupňů Zobrazovací rovnice funkcí u i v Mohou být i konformní Většina z nich je vyrovnávací Velké množství zástupců Většinou nemají praktický význam Zobrazovací rovnice: x y f ( u, v) g( u, v)
12 Littrowovo zobrazení Vlastnosti: Konformní zobrazení Zobrazí pouze část zemského povrchu Obraz poledníků: konfokální hyperboly Obraz rovnoběžek: Konfokální elipsy Zobrazovací rovnice: x y R tgucos v Rsin v cos u
13 Littrowovo zobrazení Ekvideformáty m p -1, krok 0.5
14 Littrowovo zobrazení Tissotovy indikatrix
15 Pierceovo zobrazení Vlastnosti Konformní Severní pól: bod Jižní pól: 4 body
16 Eisenlohrovo zobrazení Vlastnosti: Připomíná polykónické zobrazení Obrysový poledník, konstantní zkreslení Poledníky i rovnoběžky křivky Konformní
17 Augustovo zobrazení Vlastnosti Rovnoběžky tvoří cykloidy Konformní
18 Guyou zobrazení Vlastnosti: Konformní zobrazení Hemisféra se zobrazí jako čtverec
19 Leeovo zobrazení Vlastnosti: Zobrazení světa do rovnostranného trojúhelníka Konformní Poledníky i rovnoběžky jsou obecné křivky
20 Xaraxovo zobrazení Vlastnosti: Zobrazení země do 6 úhelníku Konformní
21 Colignovo zobrazení Vlastnosti Ekvivalentní Severní pól=bod Jižní pól úsečka Poledníky: svazek úseček ze severního pólu Rovnoběžky: rovnoběžky
22 Armadillovo zobrazení Vlastnosti: Vyrovnávací zobrazení, Pro znázornění světa Zobrazení na povrch toroidu Logo ČKS
Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015
Kartografie 1 - přednáška 9 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Polykónická zobrazení někdy také mnohokuželová zobecnění kuželových zobrazení použito je nekonečně mnoho
Matematické metody v kartografii. Volba a identifikace zobrazení. Zobrazení použitá v ČR. Kritéria pro hodnocení kartografických zobrazení(13)
Matematické metody v kartografii Volba a identifikace zobrazení. Zobrazení použitá v ČR. Kritéria pro hodnocení kartografických zobrazení(3) Volba kartografického zobrazení Parametry ovlivňující volbu
Matematické metody v kartografii. Nepravá zobrazení. Polykónická zobrazení. (11.)
Matematické metody v kartografii Nepravá zobrazení. Polykónická zobrazení. (11.) 1. Společné vlastnosti nepravých zobrazení Jedna ze souřadnicových funkcí je funkcí zeměpisné šířky i délky Obrazy rovnoběţek:
Matematická kartografie. Černý J., Kočandrlová M.: Konstruktivní geometrie, ČVUT. Referenční plochy
Matematická kartografie Buchar.: Matematická kartografie 10, ČVUT; Černý J., Kočandrlová M.: Konstruktivní geometrie, ČVUT Referenční plochy referenční elipsoid (sféroid) zploštělý rotační elipsoid Besselův
Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015
Kartografie 1 - přednáška 8 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Nepravá zobrazení zachovávají některé charakteristiky jednoduchých zobrazení (tvar rovnoběžek) některé
Matematické metody v kartografii. Jednoduchá azimutální zobrazení. Azimutální projekce. UPS. (10.)
Matematické metody v kartografii Jednoduchá azimutální zobrazení. Azimutální projekce. UPS. (10.) 1. Jednoduchá azimutální zobrazení Společné vlastnosti: Jednoduché zobrazení, zobrazuje na tečnou rovinu
Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015
Kartografie 1 - přednáška 6 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Kartografická zobrazení použitá na našem území důležitá jsou zejména zobrazení pro státní mapová díla v
Matematické metody v kartografii. Členění kartografických zobrazení. Zobrazení z elipsoidu na kouli (5.)
Matematické metody v kartografii Členění kartografických zobrazení. Zobrazení z elipsoidu na kouli (5.) 1. Členění kartografických zobrazení: Existuje velkémnožstvíkarografických zobrazení. Lze je členit
SPŠ STAVEBNÍ České Budějovice MAPOVÁNÍ. JS pro 3. ročník S3G
SPŠ STAVEBNÍ České Budějovice MAPOVÁNÍ JS pro 3. ročník S3G ROZPIS TÉMAT PRO ŠK. ROK 2018/2019 1) Kartografické zobrazení na území ČR Cassiny-Soldnerovo zobrazení Obecné konformní kuželové zobrazení Gauss-Krügerovo
Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015
Kartografie 1 - přednáška 5 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Válcová zobrazení obrazem poledníků jsou úsečky, které mají konstantní rozestupy obrazem rovnoběžek jsou
Základy kartografie. RNDr. Petra Surynková, Ph.D.
Univerzita Karlova v Praze Matematicko-fyzikální fakulta RNDr., Ph.D. petra.surynkova@mff.cuni.cz www.surynkova.info Kartografie Vědní obor zabývající se znázorněním zemského povrchu a nebeských těles
Matematické metody v kartografii. Jednoduchá válcová zobrazení. Válcové projekce. Gaussovo zobrazení. (6.+7.)
Matematické metody v kartografii Jednoduchá válcová zobrazení. Válcové projekce. Gaussovo zobrazení. (6.+7.) 1. Jednoduchá zobrazení Společné vlastnosti: Zobrazovací plocha představována pláštěm kužele,
Zobrazení. Geografická kartografie Přednáška 4
Zobrazení Geografická kartografie Přednáška 4 kartografické zobrazení způsob, který každému bodu na referenční ploše přiřazuje právě jeden bod na zobrazovací ploše (výjimkou jsou ovšem singulární body)
Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015
Kartografie 1 - přednáška 7 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 válcové konformní zobrazení v transverzální poloze někdy také nazýváno transverzální Mercatorovo nebo Gauss-Krügerovo
Geodézie a pozemková evidence
2012, Brno Ing.Tomáš Mikita, Ph.D. Geodézie a pozemková evidence Přednáška č.2 - Kartografická zobrazení, souřadnicové soustavy Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské
Srovnání konformních kartografických zobrazení pro zvolené
Srovnání konformních kartografických zobrazení pro zvolené území (návod na cvičení) 1 Úvod Cílem úlohy je srovnání vlastnosti jednoduchých konformních zobrazení a jejich posouzení z hlediska vhodnosti
Referenční plochy a souřadnice na těchto plochách Zeměpisné, pravoúhlé, polární a kartografické souřadnice
Referenční plochy a souřadnice na těchto plochách Zeměpisné, pravoúhlé, polární a kartografické souřadnice Kartografie přednáška 5 Referenční plochy souřadnicových soustav slouží k lokalizaci bodů, objektů
Pro mapování na našem území bylo použito následujících souřadnicových systémů:
SOUŘADNICOVÉ SYSTÉMY Pro mapování na našem území bylo použito následujících souřadnicových systémů: 1. SOUŘADNICOVÉ SYSTÉMY STABILNÍHO KATASTRU V první polovině 19. století bylo na našem území mapováno
Základy kartografie, topografické plochy
Základy kartografie, topografické plochy morava@karlin.mff.cuni.cz Katedra didaktiky matematiky MFF UK, Praha Aplikace matematiky pro učitele, 3. ledna 2012 Základní pojmy Kartografie věda zabývající se
Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah Křovákovo zobrazení 1 Křovákovo zobrazení Obsah Křovákovo zobrazení 1 Křovákovo zobrazení Podpořeno z projektu FRVŠ 584/2011. Křovákovo zobrazení Křovákovo zobrazení
GIS Geografické informační systémy
GIS Geografické informační systémy Kartografie Glóbus představuje zmenšený a zjednodušený, 3rozměrný model zemského povrchu; všechny délky na glóbu jsou zmenšeny v určitém poměru; úhly a tvary a velikosti
MAPOVÁNÍ. Všeobecné základy map JS pro 2. ročník S2G 1. ročník G1Z
MAPOVÁNÍ Všeobecné základy map JS pro 2. ročník S2G 1. ročník G1Z Všeobecné základy MAP Mapování řeší problém znázornění nepravidelného zemského povrchu do roviny Vychází se z: 1) geometrických základů
1 Nepravá zobrazení. 4 Zobrazení odvozené z jednoduchých azimutálních (modifikované. Obsah. 3 Nepravá azimutální zobrazení.
Obsah 1 Nepravá zobrazení 2 3 4 Zobrazení odvozené z jednoduchých azimutálních (modifikované zobrazení) 5 Zobrazení Evropy Nepravá zobrazení: jednoduché nepravé kuželové ρ = f (U), ɛ = g(v ) = nv ρ = f
Stavební geodézie. Úvod do geodézie. Ing. Tomáš Křemen, Ph.D.
Stavební geodézie Úvod do geodézie Ing. Tomáš Křemen, Ph.D. Stavební geodézie SG01 Ing. Tomáš Křemen, Ph.D. B905 http://k154.fsv.cvut.cz/~kremen/ tomas.kremen@fsv.cvut.cz Doporučená literatura: Hánek,
PŘEHLED JEVNOSTI ZOBRAZENÍ
Úhlojevná (konformní Plochojevná (ekvivalentní Délkojevná (ekvidistatntí Vyrovnávací (kompenzační PŘEHLED JEVNOSTI ZOBRAZENÍ (azimutální Stereografická (cylindické Mercatorovo zobrazení (loodroma jako
Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015
Kartografie 1 - přednáška 1 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Úvod přednášky, cvičení, zápočty, zkoušky Jiří Cajthaml (přednášky, cvičení) potřebné znalosti: vzorce
Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015
Kartografie 1 - přednáška 2 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Kartografické zobrazení kartografické zobrazení vzájemné přiřazení polohy bodů na dvou různých referenčních
Geodézie pro architekty. Úvod do geodézie
Geodézie pro architekty Úvod do geodézie Geodézie pro architekty Ing. Tomáš Křemen, Ph.D. B905 http://k154.fsv.cvut.cz/~kremen/ tomas.kremen@fsv.cvut.cz Doporučená literatura: Hánek, P. a kol.: Stavební
APROXIMACE KŘOVÁKOVA ZOBRAZENÍ PRO GEOGRAFICKÉ ÚČELY
APROXIMACE KŘOVÁKOVA ZOBRAZENÍ PRO GEOGRAFICKÉ ÚČELY Radek Dušek, Jan Mach Katedra fyzické geografie a geoekologie, Přírodovědecká fakulta, Ostravská univerzita, Ostrava Gymnázium Omská, Praha Abstrakt
MATEMATICKÁ KARTOGRAFIE
VYSOKÉ UENÍ TECHNICKÉ V BRN FAKULTA STAVEBNÍ MILOSLAV ŠVEC MATEMATICKÁ KARTOGRAFIE MODUL 5 NEPRAVÁ ZOBRAZENÍ STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Matematická kartografie Modul
Topografické mapování KMA/TOMA
Topografické mapování KMA/TOMA ZÁPADOČESKÁ UNIVERZITA V PLZNI Fakulta aplikovaných věd - KMA oddělení geomatiky Ing. Martina Vichrová, Ph.D. vichrova@kma.zcu.cz Vytvoření materiálů bylo podpořeno prostředky
GIS Geografické informační systémy. Daniela Ďuráková, Jan Gaura Katedra informatiky, FEI
GIS Geografické informační systémy Daniela Ďuráková, Jan Gaura Katedra informatiky, FEI jan.gaura@vsb.cz http://mrl.cs.vsb.cz/people/gaura Kartografie Stojí na pomezí geografie a geodezie. Poskytuje vizualizaci
Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah Jednoduchá zobrazení 1 Jednoduchá zobrazení 2 Obsah Jednoduchá zobrazení 1 Jednoduchá zobrazení 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref.
Transformace dat mezi různými datovými zdroji
Transformace dat mezi různými datovými zdroji Zpracovali: Datum prezentace: BUČKOVÁ Dagmar, BUC061 MINÁŘ Lukáš, MIN075 09. 04. 2008 Obsah Základní pojmy Souřadnicové systémy Co to jsou transformace Transformace
Nová topografická mapování období 1952 až 1968
Nová topografická mapování období 1952 až 1968 Miroslav Mikšovský 1. Topografické mapování v měřítku 1:25 000 V souladu s usnesením vlády ČSR č.35/1953 Sb. bylo v roce 1952 zahájeno nové topografické mapování
Úvodní ustanovení. Geodetické referenční systémy
430/2006 Sb. NAŘÍZENÍ VLÁDY ze dne 16. srpna 2006 o stanovení geodetických referenčních systémů a státních mapových děl závazných na území státu a zásadách jejich používání ve znění nařízení vlády č. 81/2011
Celkem existuje asi 300 zobrazení, používá se jen několik desítek.
ÁKLADY KARTOGRAFIE RO SŠ KARTOGRAFICKÉ OBRAENÍ Kartografické zobrazení je způsob, který každému bodu na referenčním elipsoidu resp. referenční kouli přiřazuje body v rovině. Určení věrných obrazů bodů
MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce
MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ BAKALÁŘSKÁ PRÁCE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ BAKALÁŘSKÁ PRÁCE PRAHA 2014 Sandra PÁNKOVÁ ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE STUDIJNÍ OBOR
Zobrazování zemského povrchu
Zobrazování zemského povrchu Země je kulatá Mapy jsou placaté Zemský povrch je zvlněný a země není kulatá Fyzický povrch potřebuji promítnout na nějaký matematicky popsatelný povrch http://photojournal.jpl.nasa.gov/jpeg/pia03399.jpg
Téma: Geografické a kartografické základy map
Topografická příprava Téma: Geografické a kartografické základy map Osnova : 1. Topografické mapy, měřítko mapy 2. Mapové značky 3. Souřadnicové systémy 2 3 1. Topografické mapy, měřítko mapy Topografická
GIS a pozemkové úpravy. Data pro využití území (DPZ)
GIS a pozemkové úpravy Data pro využití území (DPZ) Josef Krása Katedra hydromeliorací a krajinného inženýrství, Fakulta stavební ČVUT v Praze 1 Papírová mapa Nevymizela v době GIS systémů (Stále základní
Kartografie - úvod, historie a rozdělení Matematická kartografie Kartografická zobrazení
Kartografie - úvod, historie a rozdělení Matematická kartografie Kartografická zobrazení Kartografie přednáška 1 Kartografie obor zabývající se zobrazováním zakřivené části Zemského povrchu do rovinné
REKONSTRUKCE ASTROLÁBU POMOCÍ STEREOGRAFICKÉ PROJEKCE
REKONTRUKCE ATROLÁBU POMOCÍ TEREOGRAFICKÉ PROJEKCE Václav Jára 1 1 tereografická projekce a její vlastnosti tereografická projekce kulové plochy je středové promítání z bodu této kulové plochy do tečné
1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem
Analytická geometrie - kružnice Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A = ; 5 [ ] Napište středový i obecný tvar rovnice kružnice, která má střed
Geoinformatika. IV Poloha v prostoru
Geoinformatika IV Poloha v prostoru jaro 2017 Petr Kubíček kubicek@geogr.muni.cz Laboratory on Geoinformatics and Cartography (LGC) Institute of Geography Masaryk University Czech Republic Složky geografických
SPŠ STAVEBNÍ České Budějovice MAPOVÁNÍ. JS pro 2. ročník S2G 1. ročník G1Z
SPŠ STAVEBNÍ České Budějovice MAPOVÁNÍ JS pro 2. ročník S2G 1. ročník G1Z Všeobecné základy MAP Mapování řeší problém znázornění nepravidelného zemského povrchu do roviny Vychází se z: 1) geometrických
Maturitní témata od 2013
1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy
MAPY VELKÉHO A STŘEDNÍHO MĚŘÍTKA
MAPA A GLÓBUS Tento nadpis bude stejně velký jako nadpis Planeta Země. Můžeš ho napsat přes půl nebo klidně i přes celou stranu. GLÓBUS Glóbus - zmenšený model Země - nezkresluje tvary pevnin a oceánů
Geodézie Přednáška. Souřadnicové systémy Souřadnice na referenčních plochách
Geodézie Přednáška Souřadnicové systémy Souřadnice na referenčních plochách strana 2 každý stát nebo skupina států si volí pro souvislé zobrazení celého území vhodný souřadnicový systém slouží k lokalizaci
Česká a československá kartografie
Česká a československá kartografie 1918 1938 Miroslav Mikšovský 1. Úvod Bezprostředně po vzniku Československé republiky v roce 1918 bylo v Praze zřízeno při Vrchním velitelství čs. branné moci oddělení
154GUI1 Geodézie pro UIS 1
154GUI1 Geodézie pro UIS 1 Přednášející: Ing. Tomáš Křemen, Ph.D; Místnost: B905 Email: tomas.kremen@fsv.cvut.cz WWW: k154.fsv.cvut.cz/~kremen Literatura: [1] Ratiborský, J.: Geodézie 10. 2. vyd. Praha:
Kartografie I. RNDr. Ladislav Plánka, CSc. Institut geodézie a důlního měřictví, Hornicko-geologická fakulta, VŠB TU Ostrava
Kartografie I Matematické a geometrické základy kartografických děl RNDr. Ladislav Plánka, CSc. Institut geodézie a důlního měřictví, Hornicko-geologická fakulta, VŠB TU Ostrava Podkladové materiály pro
4. Matematická kartografie
4. Země má nepravidelný tvar, který je dán půsoením mnoha sil, zejména gravitační a odstředivé (vzhledem k rotaci Země). Odstředivá síla způsouje, že tvar Země je zploštělý, tj. zemský rovník je dále od
GEODETICKÉ VÝPOČTY I.
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. PRAVOÚHLÉ SOUŘADNICE V ČR ZOBRAZOVÁNÍ POLOHY BODŮ (SOUSTAVY) Soustavu souřadnic lze označit jako vzájemně jednoznačné
SPŠSTAVEBNÍČeskéBudějovice MAPOVÁNÍ. Gauss-Krügerovo zobrazení UTM
SPŠSTAVEBNÍČeskéBudějovice MAPOVÁNÍ Gauss-Krügerovo zobrazení UTM 1 Předmluva Mapování v novém Křovákově kuželovém konformním zobrazení mělo dobrou přesnost a značné výhody, ale ty měly využití jen lokální
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Kartografické projekce
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Kartografické projekce Vypracoval: Jiří Novotný Třída: 4.C Školní rok: 2013/2014 Seminář: Deskriptivní geometrie Prohlašuji, že jsem
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos
Ing. Jiří Fejfar, Ph.D. Souřadné systémy
Ing. Jiří Fejfar, Ph.D. Souřadné systémy SRS (Spatial reference system) CRS (Coordinate Reference system) Kapitola 1: Základní pojmy Základní prostorové pojmy Geografický prostor Prostorové vztahy (geometrie,
Souřadnicové systémy v geodatech resortu ČÚZK a jejich transformace
Souřadnicové systémy v geodatech resortu ČÚZK a jejich transformace Zeměměřický úřad, Jan Řezníček Praha, 2018 Definice matematická pravidla (rovnice) jednoznačné přidružení souřadnic k prostorovým informacím
Zeměpisné souřadnice Zeměpisná šířka rovnoběžce poledníky Zeměpisná délka
Zeměpisné souřadnice Pro určení polohy na zemském povrchu používáme souřadnicovou soustavu. Počátek souřadnic leží ve středu Země S. Rovina proložená středem Země kolmo na osu otáčení je rovina rovníku
MATEMATICKÁ KARTOGRAFIE
VYSOKÉ UENÍ TECHNICKÉ V BN FAKULTA STAVEBNÍ MILOSLAV ŠVEC MATEMATICKÁ KATOGAFIE MODUL 3 KATOGAFICKÉ ZOBAZENÍ STUDIJNÍ OPOY PO STUDIJNÍ POGAMY S KOMBINOVANOU FOMOU STUDIA Matematická kartografie Modul 3
Maturitní otázky z předmětu MATEMATIKA
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti
K154SG01 Stavební geodézie
K154SG01 Stavební geodézie Přednášející: Doc. Ing. Martin Štroner, Ph.D; Místnost: B912 Email: martin.stroner@fsv.cvut.cz Literatura: [1] Hánek, P. a kol.: Stavební geodézie. Česká technika -nakladatelství
System Projection Aplikace pro souřadnicové přepočty a základní geodetické úlohy (Uživatelský manuál) Jan Ježek, Radek Sklenička červen 2004
System Projection Aplikace pro souřadnicové přepočty a základní geodetické úlohy (Uživatelský manuál) Jan Ježek, Radek Sklenička červen 2004 1 Obsah Úvod 3 1 Základní ovládání 4 1.1 Výběr zobrazení a jeho
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Cvičení z matematiky geometrie (CZMg) Systematizace a prohloubení učiva matematiky Planimetrie, Stereometrie, Analytická geometrie, Kombinatorika, Pravděpodobnost a statistika Třída: 4.
SOUŘADNICOVÉ SYSTÉMY. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 3.ročník
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 3.ročník SOUŘADNICOVÉ SYSTÉMY GEOID, REFERENČNÍ ELIPSOID, REFERENČNÍ KOULE S JTSK S - 42 WGS 84 TRANSFORMACE SUŘADNICOVÝCH SYSTÉMŮ REFERENČNÍ SYSTÉMY
KONFORMITA GAUSS-KRÜGEROVA ZOBRAZENÍ Radek Hampl Stručný pohled do historie vzniku Gauss-Krügerova zobrazení
KONFORMITA GAUSS-KRÜGEROVA ZOBRAZENÍ Radek Hampl 1 Abstrakt: Příspěvek se týká problematiky konormity Gauss-Krügerova zobrazení. Ukazuje se, že toto zobrazení není ve své reálné podobě konormní a lépe
Sada 1 Geodezie I. 15. Podrobné měření polohopisné
S třední škola stavební Jihlava Sada 1 Geodezie I 15. Podrobné měření polohopisné Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2
GEODÉZIE. Co je vlastně geodézie?
Co je vlastně geodézie? Doslovný význam řeckého slova GEODESIE je dělení půdy, země. Geodesie se zabývá měřením, výpočtem a zobrazením částí povrchu zemského, určením tvaru a velikosti země. Základní úlohou
Souřadnicov. Cassini Soldnerovo zobrazení. Cassini-Soldnerovo. b) Evropský terestrický referenční systém m (ETRS), adnicové systémy
Závazné referenční systémy dle 430/2006 Sb. Souřadnicov adnicové systémy na území Nařízen zení vlády o stanovení geodetických referenčních systémů a státn tních mapových děl d l závazných z na území státu
Topografické mapování KMA/TOMA
Topografické mapování KMA/TOMA ZÁPADOČESKÁ UNIVERZITA V PLZNI Fakulta aplikovaných věd - KMA oddělení geomatiky Ing. Martina Vichrová, Ph.D. vichrova@kma.zcu.cz Vytvoření materiálů bylo podpořeno prostředky
Kartografie I. RNDr. Ladislav Plánka, CSc. Institut geodézie a důlního měřictví, Hornicko-geologická fakulta, VŠB TU Ostrava
Kartografie I Státní/úřední kartografická zobrazení na území ČR RNDr. Ladislav Plánka, CSc. Institut geodézie a důlního měřictví, Hornicko-geologická fakulta, VŠB TU Ostrava Podkladové materiály pro přednáškový
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory
GEODETICKÉ VÝPOČTY I.
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. PRAVOÚHLÉ SOUŘADNICE V ČR ZOBRAZOVÁNÍ POLOHY BODŮ (SOUSTAVY) Soustavu souřadnic lze označit jako vzájemně jednoznačné
Témata absolventského klání z matematiky :
Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný
GEODETICKÁ A KARTOGRAFICKÁ INTEGRACE. Pro projekt CTU (2005) s laskavou pomocí Ing. D. Dušátka, CSc.
GEODETICKÁ A KARTOGRAFICKÁ INTEGRACE Pro projekt CTU 0513011 (2005) s laskavou pomocí Ing. D. Dušátka, CSc. Uvedení do problematiky Cílem integrace je vytvoření jednotného souřadného systému pro tvorbu
PODROBNÉ MĚŘENÍ POLOHOPISNÉ
Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství MAPOVÉ PODKLADY Ing. Bc. Pavel Voříšek (úředně oprávněný zeměměřický inženýr). Vysoké Mýto 7. 4. 2017 PODROBNÉ MĚŘENÍ POLOHOPISNÉ
Mapová provizoria po roce 1945
Mapová provizoria po roce 1945 Miroslav Mikšovský 1. Úvod Po ukončení 2.světové války v r.1945 bylo území Československa pokryto ve středních měřítkách pouze reambulovanými mapami ze III.vojenského mapování
5. P L A N I M E T R I E
5. P L A N I M E T R I E 5.1 Z Á K L A D N Í P L A N I M E T R I C K É P O J M Y Bod (definice, značení, znázornění) Přímka (definice, značení, znázornění) Polopřímka (definice, značení, znázornění, počáteční
SPŠSTAVEBNÍČeskéBudějovice MAPOVÁNÍ. JS pro 4. ročník G4
SPŠSTAVEBNÍČeskéBudějovice MAPOVÁNÍ JS pro 4. ročník G4 ROZPIS TÉMAT PRO ŠK. ROK 2018/2019 1) Druhy map velkých měřítek Mapy stabilního katastru Mapy pozemkového katastru Technickohospodářské mapy Základní
Vojenské mapy. Určování souřadnic na mapách. Encyklopedie vojenské geografie. Zpracovali: Ing. Libor Laža, Ing. Petr Janus. GeoSl AČR.
Encyklopedie vojenské geografie Vojenské mapy Určování souřadnic na mapách Zpracovali: Ing. Libor Laža, Ing. Petr Janus Dobruška 008 Osnova. Určení zeměpisných souřadnic WGS8. Určení rovinných souřadnic
Rovnice, soustavy rovnic, funkce, podobnost a funkce úhlů, jehlany a kužely
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika (MAT) Rovnice, soustavy rovnic, funkce, podobnost a funkce úhlů, jehlany a kužely Kvarta 4 hodiny týdně Učebna s PC a dataprojektorem (interaktivní
Digitalizace mapových sbírek a archivů (4.11.2011)
Digitalizace mapových sbírek a archivů (4.11.2011) Struktura a obsah mapové sbírky zahraničních topografických map při katedře mapování a kartografie ČVUT autoři Prof.ing. Bohuslav Veverka, DrSc. ČVUT
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -
Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky Systematizace a prohloubení učiva matematiky 4. ročník 2 hodiny Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné
Seminář z geoinformatiky
Seminář z geoinformatiky Úvod Přednášející: Ing. M. Čábelka cabelka@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie PřF UK v Praze Úvod - Přednášející: Ing. Miroslav Čábelka, - rozsah hodin:
AXONOMETRIE. Rozměry ve směru os (souřadnice bodů) jsou násobkem příslušné jednotky.
AXONOMETRIE 1) Princip, základní pojmy Axonometrie je rovnoběžné promítání do průmětny různoběžné se souřadnicovými rovinami. Kvádr v axonometrii : {O,x,y,z} souřadnicový systém XYZ - axonometrická průmětna
Průmyslová střední škola Letohrad Komenského 472, Letohrad
Geodézie (profilová část maturitní zkoušky formou ústní zkoušky před zkušební komisí) 1) Měření délek 2) Teodolity 3) Zaměření stavebních objektů 4) Odečítací pomůcky 5) Nivelační přístroje a pomůcky 6)
Kartografické projekce
GYMNÁZIUM CHRISTIANA DOPPLERA Zborovská 45, Praha 5 Ročníková práce z deskriptivní geometrie Kartografické projekce Vypracoval: Nguyen, Viet Bach, 4.C Školní rok: 2011/2012 Zadavatel: Mgr. Ondřej Machů
9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b
008 verze 0A. Řešeními nerovnice x + 4 0 jsou právě všechna x R, pro která je x ( 4, 4) b) x = 4 c) x R x < 4 e) nerovnice nemá řešení b. Rovnice x + y x = je rovnicí přímky b) dvojice přímek c) paraboly
Topografické mapy nové koncepce
Topografické mapy nové koncepce Státní mapová díla (9) po r. 1989 změna vojensko-politické situace rozhodnutí státní reprezentace k připojení NATO (přistupuje stát a vláda, ne armáda) nařízení náčelníka
Matematické metody v kartografii. Přednáška 3. Důležité křivky na kouli a elipsoidu. Loxodroma a ortodroma.
Matematické metody v kartografii Přednáška 3. Důležité křivky na kouli a elipsoidu. Loxodroma a ortodroma. . Přehled důležitých křivek V matematické kartografii existují důležité křivky, které jdou po
VY_06_Vla5E_45. Operační program Vzdělávání pro konkurenceschopnost Inovativní metody v prvouce, vlastivědě a zeměpisu
Materiál pro domácí přípravu žáků: Název programu: Název projektu: Registrační číslo projektu: Předmět: Ročník: Autor: Téma učivo: Učební pomůcky: Zápis z vyučovací hodiny: VY_06_Vla5E_45 Operační program
Průmyslová střední škola Letohrad Komenského 472, Letohrad
Geodézie (profilová část maturitní zkoušky formou ústní zkoušky před zkušební komisí) 1) Měření délek 2) Teodolity 3) Zaměření stavebních objektů 4) Odečítací pomůcky 5) Nivelační přístroje a pomůcky 6)
Kartografické stupnice. Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita
Kartografické stupnice Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita Datum vytvoření dokumentu: 20. 9. 2004 Datum poslední aktualizace: 16. 10. 2012 Stupnice
Předpokládané znalosti žáka 1. stupeň:
Předpokládané znalosti žáka 1. stupeň: ČÍSLO A POČETNÍ OPERACE používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje
KARTOGRAFIE. Vývoj kartografie. Mapa a glóbus. Vznik mapy. Kapitola 3
Kapitola 3 KARTOGRAFIE Vývoj kartografie Kartografie je vědní obor, který se zabývá tvorbou a zpracování map, technikou jejich výroby a jejich využíváním. Tvorba map provází člověka odpradávna. Z prehistorické
Úvod do předmětu geodézie
1/1 Úvod do předmětu geodézie Ing. Hana Staňková, Ph.D. IGDM, HGF, VŠB-TU Ostrava hana.stankova@vsb.cz A911, 5269 1 Geodézie 1/2 vědní obor o měření části zemského povrchu, o určování vzájemných vztahů
10. SOUDOBÉ TOPOGRAFICKÉ MAPY
102 10. Soudobé topografické mapy 10. SOUDOBÉ TOPOGRAFICKÉ MAPY V této kapitole se seznámíme se dvěmi soudobými státními mapovými díly topografické povahy. Bude se jednat o vojenskou topografickou mapu