Laboratorní úloha č.4: Elektromyogram
|
|
- Lubomír Růžička
- před 8 lety
- Počet zobrazení:
Transkript
1 Laboratorní úloha č.: Elektromyogram Úvod: Svaly jsou ke kontrakci stimulovány nervovými impulsy přicházejícími z centrální nervové soustavy (CNS) skrz míchu a motorické nervové kořeny, které obsahují jednotlivá motorická nervová vlákna. Jedno motorické nervové vlákno může inervovat několik svalových vláken. Spojení jednoho nervového vlákna a všech svalových vláken, které inervuje, se nazývá motorická jednotka (motor unit). Počet svalových vláken připadajících na jedno motorické nervové vlákno, tedy velikost motorické jednotky, se odvíjí podle umístění svalu na těle, resp. podle toho, jak jemná a precizní má být činnost daného svalu. Proces, kdy se při svalové činnosti aktivují jednotlivé motorické jednotky, nazýváme nábor motorických jednotek (motor unit recruitment). Síla stažení svalu je přitom přímo úměrná počtu zapojených motorických jednotek a dále frekvenci nervových impulsů přicházejících do každé jednotky. Amplituda elektrických impulsů přiváděných nervovými vlákny a dále vedených svalovými vlákny je velmi malá, méně než 1 µv, ale protože jsou tyto impulsy vedeny souběžně velmi mnoha vlákny, je vzniklý nasčítaný signál dostatečně velký na to, aby byl měřitelný na povrchu přiléhající pokožky pomocí páru elektrod. Elektrický signál měřitelný na povrchu pokožky a produkovaný při svalové kontrakci se nazývá elektromyografický signál (EMG) a jeho záznam se nazývá elektromyogram. Z popisovaných vlastností svalu vyplývá, že čím větší síla je od svalu požadována, tím rychleji musí do svalu přicházet impulzy z CNS a musí být zapojeno více svalových jednotek. Více svalových jednotek vytváří více myopotenciálů, tedy v součtu větší amplitudu EMG. Elektromyografie zahrnuje skupinu elektrofyziologických metod, které registrují elektrické projevy při činnosti svalového a nervového aparátu. EMG záznam poskytuje informace umožňující diferenciální diagnostiku svalových a neuromuskulárních poruch. Cíle úlohy: 1. Analyzujte vlastní nebo jeden Vámi zvolený povrchový EMG signál při různém volním úsilí: a) vypočtěte průměrné EMG z obálek signálu získaných: s použitím filtru klouzavých průměrů (MovingAverage) s použitím integrátoru vhodně zvolte parametry filtrů, diskutujte vliv délky klouzavého okna a integrační konstanty; porovnejte filtry b) vypočtěte celkovou integraci EMG za celou dobu volního úsilí c) vypočtěte integrované EMG v intervalech po např. ms d) vypočtěte integrované EMG v intervalech, kdy integrace dosáhne např. 1 mv e) zobrazte výkonová spektra jednotlivých kontrakcí: vypočtěte frekvenci mediánu výkonu ( % výkonu). Analýza únavy (stanovte parametry závislé na únavě v časové a frekvenční oblasti) vyberte dva úseky analyzovaného signálu; jeden na začátku kontrakce, druhý ke konci, kdy ale ještě nedošlo k výraznému poklesu vyvinuté síly: vypočítejte a porovnejte výkonová spektra obou úseků z analýzy celého signálu zjistěte, které konkrétní parametry poskytují informaci o únavě a zda nám více informací poskytují parametry získané z časové nebo frekvenční oblasti. Klouzavě ve zvoleném okně určete trend: směrodatná odchylka počet průchodů nulou ZCR zerocrossing rozdíl "špička-špička" medián frekvencí 1. spektrální moment těžiště spektra. spektrální moment rozprostření spektra 1
2 Data potřebná k vypracování úlohy: Pořízení biologických signálů: 1. Snímání povrchového EMG při volním úsilí. Síla se snímá dynamometrem; EMG aktivita s použitím povrchových elektrod. Během záznamu trvajícím 1 sekund se tiskne třikrát dynamometr a to vždy za užití větší síly. Dynamometr stiskněte třikrát za sebou: nejprve slabě, poté středně a nakonec silně. snímací elektrody sila [kg] 6 dynamometr dynamometr EMG [mv] Analýza únavy. Snímání vyvinuté síly a EMG aktivity se provádí stejným způsobem jako v předcházejícím bodě. Stiskněte dynamometr při co největším volním úsilí po co nejdelší dobu. Snažte se udržet konstantní sílu stisku. dynamometr sila [kg] EMG [mv]
3 Struktura dat: 1. Snímání povrchového EMG při volním úsilí Př.: emg_3xr.txt fs= 1 Hz 1. sloupec... síla na dynamometru [kg]. sloupec... EMG [mv]. Analýza únavy Př.: emg_vydrz.txt fs= 1 Hz 1. sloupec... síla na dynamometru [kg]. sloupec... EMG [mv] Nápověda k některým úkolům: 1) Průměrné EMG (obálka): integrátor, viz 3. úloha klouzavé průměry: % např. MA-filtr. řádu % b=ones(,1)/; % a=1; obálky je třeba časově posunout a nanormovat vhodně zvolenou konstantou Obrázek 1: Obálky EMG signálu s různým volním úsilím, porovnání obálek s úsilím (normovaně k EMG) obálky emg signálu emg MA-filter integrator síla MA-filter integrator vzorky [-] Celková integrace energie kumulativní součet absolutních hodnot EMG v diskrétním čase EMG v časových intervalech: postupné sčítání absolutních amplitud EMG, v ms se čítač nuluje: counter=zeros(size(emg,1)-1,1); % vytvoření čítače for i=1:size(emg,1)-1; if mod(i,.*fs)== % když je pozice na ms counter(i)=; % vynuluj čítač end counter(i+1)=counter(i)+abs(emg(i+1,)); % čítač + emg end 3
4 EMG v intervalech po dosažení 1 mv: obdobně jako v časových intervalech, změňte jen podmínku nulování Obrázek : EMG, celková integrace, integrace po ms, integrace do 1 mv EMG U [mv] cumsum EMG integrace po ms [mv.s -1 ] integrace do 1 mv čas [s] Spektra jednotlivých kontrakcí: ručně vyberte úseky EMG signálu jednostranné spektrum: S=abs(fft(usek_emg)); % oboustranné S=S(1:round(end/)); % jednostranné kumulativní součet výkonového spektra: f=linspace(,fs/,length(s)); % frekvence spektra med_f=f(find(cumsum(s)>=.*sum(s),1)); % frekvence, kde kumulativní součet výkonového spektra dosáhne % Obrázek 3: Odhad výkonových spekter a mediány frekvencí úseků volního úsilí - EMG PSD x x 1-3 vzorky [-] 1 1 PSD PSD cumsum PSD [%] k. = 6Hz cumsum PSD [%] k. = 9Hz cumsum PSD [%] k. = 71Hz
5 ) Parametry signálů: - vyberte dva úseky analyzovaného signálu; jeden na začátku kontrakce, druhý ke konci, kdy ale ještě nedošlo k výraznému poklesu vyvinuté síly. Vypočítejte a porovnejte výkonová spektra obou úseků. Obrázek : Odhad spektra dvou rozdílných úseků U [mv] EMG síla [kg] [µw] PSD-pwelch a) pro celý signál EMG, kde můžeme pozorovat reálné hodnoty naměřené síly (poz: odstraňte zhruba prvních a posledních vzorků signálu), nejprve segmentujte signál a poté pro každý segment spočítejte následující parametry průchody nulou ZCR: segmentujte úsek signálu, zvolte vhodné okno a překryv (winsize, noverlap) zcr=[]; index=1:winsize-noverlap:length(usek)-winsize+1; usek=usek-mean(usek); % odstranění stejnosměrné s. for i=index; segment=usek(i:i+winsize-1); polarita=sign(segment); % jen znamínka signálu (+1,-1) pruchody=diff(polarita); % změna polarity pocet_nul=sum(pruchody~=); % součet změn = zcr zcr=[zcr,pocet_nul]; % uložení zrc daného segmentu end rozdíl "špička-špička", myšleno rozdíl mezi maximální a minimální hodnotou amplitudy v signálu medián frekvence: f=linspace(,fs/,length(s)); % frekvence spektra med_f=f(find(cumsum(s)>=.*sum(s),1)); % frekvence, kde kumulativní součet spektra dosáhne %
6 spektrální momenty: = / () / = () mom1=sum(f.*s)/sum(s); % frekvence těžiště spektra mom=sqrt(sum((f.^).*s)/sum(s)-mom1.^); % rozprostření spektra b) v dalším kroku určete trend proložením přímkou a vykreslete graf viz. obrázek. (polynomem 1. stupně): % t_start je čas začátku úseku t=linspace(t_start,(index(end)+winsize-1)/fs,length(index)); p=polyfit(t,zcr,1); % nalezne koeficienty lineární rovnice trend_zcr=polyval(p,t); % dopočte hodnoty y ze zadaných koeficientů rovnice, dále s pomocí funkce linspace vykreslete přímku. Obrázek : EMG při zkoumání svalové únavy; parametry EMG v závislosti na čase proložené přímkou. STD [mv] max-min [mv] ZCR med 1. mom [Hz]. mom segmentace, parametrizace - proložení přímkou Užitečné funkce: fft,pwelch, cumsum, linspace, sign, polyfit, polyval, diff, filter, sum, mean,median, mod, std, abs 6
Laboratorní úloha č. 8: Elektroencefalogram
Laboratorní úloha č. 8: Elektroencefalogram Cíle úlohy: Rozložení elektrod při snímání EEG signálu Filtrace EEG v časové oblasti o Potlačení nf a vf rušení o Alfa aktivita o Artefakty Spektrální a korelační
diogram III. II. Úvod: Elektrokardiografie elektrod) potenciálu mezi danou a svorkou Amplituda [mv] < 0,25 0,8 1,2 < 0,5 Elektrická
Laboratorní úloha č.6: Elektrokardiogram a vektorkardv diogram Úvod: Elektrokardiografie je velmi jednoduché, neinvazivní vyšetření. Každý stahh srdečního svalu je doprovázen vznikem slabého elektrického
Laboratorní úloha č. 8: Polykardiografie
pletys. dech FKG EKG-II. [mv] Laboratorní úloha č. 8: Polykardiografie Úvod: Polykardiografie je současný záznam několika metod sledujících různé projevy srdečního cyklu. Základem jsou elektrokardiografie,
4. PŘEDNÁŠKA 15. března 2018
EMG 4. PŘEDNÁŠKA 15. března 2018 nativní EMG (jehlová EMG) stimulační (konduktivní studie) EMG při funkčním zatěžování svalů Motorická jednotka model generování EMG Záznam EMG signálu Zpracování EMG signálu
Úloha č. 2 - Kvantil a typická hodnota. (bodově tříděná data): (intervalově tříděná data): Zadání úlohy: Zadání úlohy:
Úloha č. 1 - Kvantily a typická hodnota (bodově tříděná data): Určete typickou hodnotu, 40% a 80% kvantil. Tabulka hodnot: Varianta Četnost 0 4 1 14 2 17 3 37 4 20 5 14 6 7 7 11 8 20 Typická hodnota je
A7B31ZZS 4. PŘEDNÁŠKA 13. října 2014
A7B31ZZS 4. PŘEDNÁŠKA 13. října 214 A-D převod Vzorkování aliasing vzorkovací teorém Kvantování Analýza reálných signálů v časové oblasti řečové signály biologické signály ---> x[n] Analogově-číslicový
Signál v čase a jeho spektrum
Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě
Statistika pro geografy
Statistika pro geografy 2. Popisná statistika Mgr. David Fiedor 23. února 2015 Osnova 1 2 3 Pojmy - Bodové rozdělení četností Absolutní četnost Absolutní četností hodnoty x j znaku x rozumíme počet statistických
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 3. Vzduchová dráha - ZZE, srážky, impuls síly Autor David Horák Datum měření 21. 11. 2011 Kruh 1 Skupina 7 Klasifikace 1. PRACOVNÍ ÚKOLY: 1) Elastické srážky:
7. Elektromyografie - EMG.
1 7. Elektromyografie - EMG. Cílem cvičení je seznámit se s elektromyografickým záznamem elektrické aktivity svalu při volní i vyvolané svalové kontrakci, a stanovit rychlost vedení v periferním nervu.
Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla.
Lineární funkce Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla. Číslo b je hodnota funkce f v bodě 0. Definičním oborem lineární funkce je množina
Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté
Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0
1 Zpracování a analýza tlakové vlny
1 Zpracování a analýza tlakové vlny 1.1 Cíl úlohy Prostřednictvím této úlohy se naučíte a zopakujete: analýzu biologických signálů v časové oblasti, analýzu biologických signálů ve frekvenční oblasti,
Náhodné signály. Honza Černocký, ÚPGM
Náhodné signály Honza Černocký, ÚPGM Signály ve škole a v reálném světě Deterministické Rovnice Obrázek Algoritmus Kus kódu } Můžeme vypočítat Málo informace! Náhodné Nevíme přesně Pokaždé jiné Především
Merkur perfekt Challenge Studijní materiály
Merkur perfekt Challenge Studijní materiály T: 541 146 120 IČ: 00216305, DIČ: CZ00216305 / www.feec.vutbr.cz/merkur / steffan@feec.vutbr.cz 1 / 10 Název úlohy: Svalem na robota Anotace: Úkolem týmu je
Číslicové zpracování signálů a Fourierova analýza.
Číslicové zpracování signálů a Fourierova analýza www.kme.zcu.cz/kmet/exm 1 Obsah prezentace 1. Úvod a motivace 2. Data v časové a frekvenční oblasti 3. Fourierova analýza teoreticky 4. Fourierova analýza
1. Navrhněte a prakticky realizujte pomocí odporových a kapacitních dekáda derivační obvod se zadanou časovou konstantu: τ 2 = 320µs
1 Zadání 1. Navrhněte a prakticky realizujte pomocí odporových a kapacitních dekáda integrační obvod se zadanou časovou konstantu: τ 1 = 62µs derivační obvod se zadanou časovou konstantu: τ 2 = 320µs Možnosti
fluktuace jak dob trvání po sobě jdoucích srdečních cyklů, tak hodnot Heart Rate Variability) je jev, který
BIOLOGICKÉ A LÉKAŘSKÉ SIGNÁLY VI. VARIABILITA SRDEČNÍHO RYTMU VARIABILITA SRDEČNÍHO RYTMU VARIABILITA SRDEČNÍHO RYTMU, tj. fluktuace jak dob trvání po sobě jdoucích srdečních cyklů, tak hodnot okamžité
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)
Úloha D - Signál a šum v RFID
1. Zadání: Úloha D - Signál a šum v RFID Změřte úrovně užitečného signálu a šumu v přenosovém řetězci systému RFID v závislosti na čtecí vzdálenosti. Zjistěte maximální čtecí vzdálenost daného RFID transpondéru.
Obr. 1 Činnost omezovače amplitudy
. Omezovače Čas ke studiu: 5 minut Cíl Po prostudování tohoto odstavce budete umět definovat pojmy: jednostranný, oboustranný, symetrický, nesymetrický omezovač popsat činnost omezovače amplitudy a strmosti
Ukázka závěrečného testu
Okruhy otázek pro závěrečný test ) Vlastnosti funkce ) Graf funkce ) Definiční obor funkce ) imita funkce ) Derivace funkce 6) Užití derivace 7) Matice 8) Řešení soustavy lineárních rovnic 9) Určitý integrál
Merkur perfekt Challenge Studijní materiály
Merkur perfekt Challenge Studijní materiály T: 541 146 120 IČ: 00216305, DIČ: CZ00216305 / www.feec.vutbr.cz/merkur / steffan@feec.vutbr.cz 1 / 11 Název úlohy: Svalem na robota Anotace: Úkolem týmu je
Číslicový Voltmetr s ICL7107
České vysoké učení technické v Praze Fakulta elektrotechnická Analogové předzpracování signálu a jeho digitalizace Číslicový Voltmetr s ICL7107 Ondřej Tomíška Petr Česák Petr Ornst 2002/2003 ZADÁNÍ: 1)
Diferenciální rovnice 3
Diferenciální rovnice 3 Lineární diferenciální rovnice n-tého řádu Lineární diferenciální rovnice (dále jen LDR) n-tého řádu je rovnice tvaru + + + + = kde = je hledaná funkce, pravá strana a koeficienty
Matematika I A ukázkový test 1 pro 2014/2015
Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)
Snímání biologických signálů. A6M31LET Lékařská technika Zdeněk Horčík Katedra teorie obvodů
Snímání biologických signálů A6M31LET Lékařská technika Zdeněk Horčík Katedra teorie obvodů horcik@fel.cvut.cz Snímání biologických signálů problém: převést co nejvěrněji spojitý signál do číslicové podoby
Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,
Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se
TEPELNÉ ÚČINKY EL. PROUDU
Univerzita Pardubice Fakulta elektrotechniky a informatiky Materiály pro elektrotechniku Laboratorní cvičení č. 1 TEPELNÉ ÚČINKY EL. POUDU Jméno(a): Mikulka oman, Havlíček Jiří Stanoviště: 6 Datum: 19.
Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a
Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy
Binární data. Číslicový systém. Binární data. Klávesnice Snímače polohy, dotykové displeje, myš Digitalizovaná data odvozená z analogového signálu
5. Obvody pro číslicové zpracování signálů 1 Číslicový systém počítač v reálném prostředí Klávesnice Snímače polohy, dotykové displeje, myš Digitalizovaná data odvozená z analogového signálu Binární data
31ZZS 9. PŘEDNÁŠKA 24. listopadu 2014
3ZZS 9. PŘEDNÁŠKA 24. listopadu 24 SPEKTRÁLNÍ ANALÝZA Fourierovy řady Diskrétní Fourierovy řady Fourierova transformace Diskrétní Fourierova transformace Spektrální analýza Zobrazení signálu ve frekvenční
8. Normální rozdělení
8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, 2 ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) 2 e 2 2, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá
pracovní list studenta
Výstup RVP: Klíčová slova: pracovní list studenta Funkce kvadratická funkce Mirek Kubera žák načrtne grafy požadovaných funkcí, formuluje a zdůvodňuje vlastnosti studovaných funkcí, modeluje závislosti
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cziba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické či jiné
Střední průmyslová škola elektrotechnická a informačních technologií Brno
Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu: CZ.1.7/1.5./34.521 Investice do vzdělání nesou nejvyšší úrok Autor: Ing. Bohumír Jánoš Tematická sada:
Laboratorní úloha č. 4 - Kmity II
Laboratorní úloha č. 4 - Kmity II Úkoly měření: 1. Seznámení s měřením na přenosném dataloggeru LabQuest 2 základní specifikace přístroje, způsob zapojení přístroje, záznam dat a práce se senzory, vyhodnocování
Střední průmyslová škola elektrotechnická a informačních technologií Brno
Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu: CZ.1.07/1.5.00/34.0521 Investice do vzdělání nesou nejvyšší úrok Autor: Ing. Bohumír Jánoš Tématická sada:
Komplexní obálka pásmového signálu
České vysoké učení technické v Praze, Fakulta elektrotechnická X37SGS Signály a systémy Komplexní obálka pásmového signálu Daniel Tureček 8.11.8 1 Úkol měření Nalezněte vzorky komplexní obálky pásmového
r Odvoď te přenosovou funkci obvodů na obr.2.16, je-li vstupem napě tí u 1 a výstupem napě tí u 2. Uvaž ujte R = 1Ω, L = 1H a C = 1F.
Systé my, procesy a signály I - sbírka příkladů NEŘ EŠENÉPŘ ÍKADY r 223 Odvoď te přenosovou funkci obvodů na obr26, je-li vstupem napě tí u a výstupem napě tí Uvaž ujte Ω, H a F u u u a) b) c) u u u d)
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
MKI Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0.
MKI -00 Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0. V jakém rozmezí se může pohybovat poloměr konvergence regulární
Střední průmyslová škola elektrotechnická a informačních technologií Brno
Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu: CZ.1.7/1.5./34.521 Investice do vzdělání nesou nejvyšší úrok Autor: Ing. Bohumír Jánoš Tématická sada:
Převodníky fyzikálních veličin (KKY/PFV)
Fakulta aplikovaných věd Katedra kybernetiky Převodníky fyzikálních veličin (KKY/PFV) 1. semestrální práce Měření statických charakteristik snímačů a soustav pro účely regulace Jméno, Příjmení Ivan Pirner,
Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.
3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě
8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.
8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované
Systém vykonávající tlumené kmity lze popsat obyčejnou lineární diferenciální rovnice 2. řadu s nulovou pravou stranou:
Pracovní úkol: 1. Sestavte obvod podle obr. 1 a změřte pro obvod v periodickém stavu závislost doby kmitu T na velikosti zařazené kapacity. (C = 0,5-10 µf, R = 0 Ω). Výsledky měření zpracujte graficky
Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami.
3.1. 3.2. Třikrát vystřelíme na cíl. Pravděpodobnost zásahu při každém výstřelu je p = 0,7. Určete: a) pravděpodobnostní funkci počtu zásahů při třech nezávislých výsledcích, b) distribuční funkci a její
Polykardiografie. Cíle. Pulsní pletysmografie měří optickou transparentnost/odrazivost, která se mění se změnou pulzního tlaku v cévkách měkkých tkání
Polykardiografie Úvod Polykardiografie je současný záznam několika metod sledujících různé projevy srdečního cyklu. Základem jsou elektrokardiografie (EKG), pulsní pletysmografie (PPG), fonokardiografie
UNIVERZITA PARDUBICE. 4.4 Aproximace křivek a vyhlazování křivek
UNIVERZITA PARDUBICE Licenční Studium Archimedes Statistické zpracování dat a informatika 4.4 Aproximace křivek a vyhlazování křivek Mgr. Jana Kubátová Endokrinologický ústav V Praze, leden 2012 Obsah
íta ové sít baseband narrowband broadband
Každý signál (diskrétní i analogový) vyžaduje pro přenos určitou šířku pásma: základní pásmo baseband pro přenos signálu s jednou frekvencí (není transponován do jiné frekvence) typicky LAN úzké pásmo
Optimální trvanlivost nástroje
Ústav Strojírenské technologie Speciální technologie výroby Cvičení Optimální trvanlivost nástroje č. zadání: Zadání: Z naměřených hodnot opotřebení vyměnitelné břitové destičky určete optimální trvanlivost
10. PŘEDNÁŠKA 27. dubna 2017 Artefakty v EEG Abnormální EEG abnormality základní aktivity paroxysmální abnormality epileptiformní interiktální
10. PŘEDNÁŠKA 27. dubna 2017 Artefakty v EEG Abnormální EEG abnormality základní aktivity paroxysmální abnormality epileptiformní interiktální iktální periodické Evokované potenciály sluchové (AEP) zrakové
oblasti je znázorněn na obr Komplexní obálku můžeme rozepsat na její reálnou a
Fakulta elektrotechniky a komunikačních technologií VUT v Brně 5 2 Komplexníobálka Zadání 1. Mějme dán pásmový signál s(t) =[1 0.5cos (2π5t)] cos (2π100t) (a) Zobrazte tento signál a odhad jeho modulového
2. MĚŘENÍ TEPLOTY TERMOČLÁNKY
2. MĚŘENÍ TEPLOTY TERMOČLÁNKY Otázky k úloze (domácí příprava): Jaká je teplota kompenzačního spoje ( studeného konce ), na kterou koriguje kompenzační krabice? Dá se to zjistit jednoduchým měřením? Čemu
Číslicové filtry. Honza Černocký, ÚPGM
Číslicové filtry Honza Černocký, ÚPGM Aliasy Digitální filtry Diskrétní systémy Systémy s diskrétním časem atd. 2 Na co? Úprava signálů Zdůraznění Potlačení Detekce 3 Zdůraznění basy 4 Zdůraznění výšky
8 Střední hodnota a rozptyl
Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení
Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1
Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu
pracovní list studenta
Výstup RVP: Klíčová slova: pracovní list studenta Funkce Petra Směšná žák chápe funkci jako vyjádření závislosti veličin, umí vyjádřit funkční vztah tabulkou, rovnicí i grafem, dovede vyjádřit reálné situace
9. Motorické funkce. Úvod.
1 9. Motorické funkce. Úvod. Cílem cvičení je obeznámit se prakticky s činností svalu. Provedeme experimenty s elektrickou stimulací nervů předloktí a ukážeme si jevy náboru, sumace a tetanické kontrakce.
ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup
MĚŘENÍ TEPLOTY TERMOČLÁNKY
MĚŘENÍ TEPLOTY TERMOČLÁNKY Úkoly měření: 1. Změřte napětí termočlánku a) přímo pomocí ručního multimetru a stolního multimetru U3401A. Při výpočtu teploty uvažte skutečnou teplotu srovnávacího spoje termočlánku,
Diskrétní náhodná veličina
Lekce Diskrétní náhodná veličina Výsledek náhodného pokusu může být vyjádřen slovně to vede k zavedení pojmu náhodného jevu Výsledek náhodného pokusu můžeme někdy vyjádřit i číselně, což vede k pojmu náhodné
Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012
Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012 Metoda nejmenších čtverců Matematicko-statistická metoda používaná zejména při zpracování nepřesných dat (typicky experimentálních empirických
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Fyzikální geodézie 2/7 Gravitační potenciál a jeho derivace
MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ
MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ v praxi u jednoho prvku souboru se často zkoumá více veličin, které mohou na sobě různě záviset jednorozměrný výběrový soubor VSS X vícerozměrným výběrovým souborem VSS
pracovní list studenta
Výstup RVP: Klíčová slova: pracovní list studenta Dynamika Vojtěch Beneš žák měří vybrané veličiny vhodnými metodami, zpracuje a vyhodnotí výsledky měření, určí v konkrétních situacích síly působící na
pracovní list studenta
ýstup RP: Klíčová slova: pracovní list studenta Funkce nepřímá úměrnost Mirek Kubera žák načrtne grafy požadovaných funkcí, formuluje a zdůvodňuje vlastnosti studovaných funkcí, modeluje závislosti reálných
Laboratorní práce č. 1: Určení voltampérových charakteristik spotřebičů
Přírodní vědy moderně a interaktivně FYZIKA 5. ročník šestiletého a 3. ročník čtyřletého studia Laboratorní práce č. 1: Určení voltampérových charakteristik spotřebičů G Gymnázium Hranice Přírodní vědy
Elektronické vážící zařízení s analogovým výstupem C2AX Cod.511710 Elektronická řídící jednotka Cod.511720 Al snímač 100x80 NÁVOD NA POUŽITÍ A ÚDRŽBU
Elektronické vážící zařízení s analogovým výstupem C2AX Cod.511710 Elektronická řídící jednotka Cod.511720 Al snímač 100x80 NÁVOD NA POUŽITÍ A ÚDRŽBU Červenec 2010 1. Dovozce: Global Elevators s.r.o. IČO:
ADA Semestrální práce. Harmonické modelování signálů
České vysoké učení technické v Praze ADA Semestrální práce Harmonické modelování signálů Jiří Kořínek 31.12.2005 1. Zadání Proveďte rozklad signálu do harmonických komponent (řeč, hudba). Syntetizujte
2. Číslicová filtrace
Żpracování signálů a obrazů 2. Číslicová filtrace.......... Petr Česák Zimní semestr 2002/2003 . 2. Číslicová filtrace FIR+IIR ZADÁNÍ Účelem cvičení je seznámit se s průběhem frekvenčních charakteristik
Jméno a příjmení. Ročník. Měřeno dne. 11.3.2013 Příprava Opravy Učitel Hodnocení. Charakteristiky optoelektronických součástek
FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Petr Švaňa Ročník 1 Předmět IFY Kroužek 38 ID 155793 Spolupracoval Měřeno dne Odevzdáno dne Ladislav Šulák 25.2.2013 11.3.2013 Příprava Opravy
Časové řady - Cvičení
Časové řady - Cvičení Příklad 2: Zobrazte měsíční časovou řadu míry nezaměstnanosti v obci Rybitví za roky 2005-2010. Příslušná data naleznete v souboru cas_rada.xlsx. Řešení: 1. Pro transformaci dat do
MATEMATIKA I - vybrané úlohy ze zkoušek v letech
MATEMATIKA I - vybrané úlohy ze zkoušek v letech 008 0 doplněné o další úlohy. část DIFERENCIÁLNÍ POČET funkcí jedné proměnné Další část ( integrální počet) bude vydána na konci listopadu 9. 9. 0 Případné
3a. Elektromyografie. Sestava ke snímání polyelektromyogramu svalů předloktí
3a. Elektromyografie ZÁKLADNÍ POJMY Elektromyografie (EMG) je metoda zaznamenávání akčního potenciálu svalů. Provádí se přístrojem, který se nazývá elektromyograf a získaný záznam označujeme jako elektromyogram.
Osnova. Idea ASK/FSK/PSK ASK Amplitudové... Strana 1 z 16. Celá obrazovka. Konec Základy radiotechniky
Pulsní kódová modulace, amplitudové, frekvenční a fázové kĺıčování Josef Dobeš 24. října 2006 Strana 1 z 16 Základy radiotechniky 1. Pulsní modulace Strana 2 z 16 Pulsní šířková modulace (PWM) PAM, PPM,
Operace s vektory a maticemi + Funkce
+ Funkce 9. března 2010 Operátory Operátory Aritmetické: Operátory Operátory Aritmetické: maticové + (sčítání), (odčítání), (násobení), / (dělení matematicky je maticové delení násobení inverzní maticí),
Měření vlastností optického vlákna
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická LABORATORNÍ ÚLOHA Č. 1 Měření vlastností optického vlákna Vypracovali: Jan HLÍDEK & Lukáš TULACH V rámci předmětu: Telekomunikační systémy
Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,
Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),
A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou
Aplikovaná matematika I
Metoda nejmenších čtverců Aplikovaná matematika I Dana Říhová Mendelu Brno c Dana Říhová (Mendelu Brno) Metoda nejmenších čtverců 1 / 8 Obsah 1 Formulace problému 2 Princip metody nejmenších čtverců 3
MATEMATIKA III V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 8 Statistický soubor s jedním argumentem Mgr. Petr Otipka Ostrava 2013 Mgr. Petr Otipka Vysoká škola
LABORATORNÍ CVIČENÍ Z MST KATEDRA TELEK. TECHNIKY. Měření nf charakteristik. ŠTĚPÁN Lukáš 2006/2007. Datum měření
Vypracoval Stud. rok Skupina ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA TELEK. TECHNIKY LABORATORNÍ CVIČENÍ Z MST 2006/2007 ŠTĚPÁN Lukáš Ročník 3. Datum měření 29.05.2007 Datum odevz. 29.05.2007 Klasifikace
PŘECHODOVÁ CHARAKTERISTIKA
PŘECHODOVÁ CHARAKTERISTIKA Schéma Obr. 1 Schéma úlohy Popis úlohy Dynamická soustava na obrázku obr. 1 je tvořena stejnosměrným motorem M, který je prostřednictvím spojky EC spojen se stejnosměrným generátorem
KTE/TEVS - Rychlá Fourierova transformace. Pavel Karban. Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni
KTE/TEVS - Rychlá Fourierova transformace Pavel Karban Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni 10.11.011 Outline 1 Motivace FT Fourierova transformace
Otázky k měření centrální tendence. 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení?
Otázky k měření centrální tendence 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení? 2. Určete průměr, medián a modus u prvních čtyř rozložení (sad dat): a.
pracovní list studenta
Výstup RVP: Klíčová slova: pracovní list studenta Elektrická energie Vojtěch Beneš žák měří vybrané fyzikální veličiny vhodnými metodami, zpracuje a vyhodnotí výsledky měření, aplikuje s porozuměním termodynamické
5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole
5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole 5.1. Zadání úlohy 1. Určete velikost tíhového zrychlení pro Prahu reverzním kyvadlem.. Stanovte chybu měření tíhového zrychlení.
Kalibrace a limity její přesnosti
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat Kalibrace a limity její přesnosti Zdravotní ústav se sídlem v Ostravě
Analyzátor vibrací Adash 4300 - VA3 Dvoukanálová měření
! Uživatelský manuál Analyzátor vibrací Adash 4300 - VA3 Dvoukanálová měření FW 03.07 BETA Ref: 18022005 KM Obsah Před prvním zapnutím analyzátoru... 3 Indikace slabých napájecích článků... 3 Odkazy...
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Základy fyzikální geodézie 3/19 Legendreovy přidružené funkce
9.2. Zkrácená lineární rovnice s konstantními koeficienty
9.2. Zkrácená lineární rovnice s konstantními koeficienty Cíle Řešíme-li konkrétní aplikace, které jsou popsány diferenciálními rovnicemi, velmi často zjistíme, že fyzikální nebo další parametry (hmotnost,
4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE
FBI VŠB-TUO 28. března 2014 4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y
Návrh frekvenčního filtru
Návrh frekvenčního filtru Vypracoval: Martin Dlouhý, Petr Salajka 25. 9 2010 1 1 Zadání 1. Navrhněte co nejjednodušší přenosovou funkci frekvenčního pásmového filtru Dolní propusti typu Bessel, která bude
Elektronické praktikum EPR1
Elektronické praktikum EPR1 Úloha číslo 4 název Záporná zpětná vazba v zapojení s operačním zesilovačem MAA741 Vypracoval Pavel Pokorný PINF Datum měření 9. 12. 2008 vypracování protokolu 14. 12. 2008