Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012
|
|
- Daniel Marcel Jaroš
- před 8 lety
- Počet zobrazení:
Transkript
1 Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012
2 Metoda nejmenších čtverců Matematicko-statistická metoda používaná zejména při zpracování nepřesných dat (typicky experimentálních empirických dat získaných například měřením). S nejjednodušší aplikací metody nejmenších čtverců se setkáváme například při prokládání (aproximaci) naměřených dvojrozměrných dat přímkou. Nepatrně složitější aplikací je proložení dat parabolou, obecným polynomem předem daného stupně, nebo obecnou lineární kombinací předem daných bázových funkcí.
3 Metoda nejmenších čtverců Matematicko-statistická metoda používaná zejména při zpracování nepřesných dat (typicky experimentálních empirických dat získaných například měřením). S nejjednodušší aplikací metody nejmenších čtverců se setkáváme například při prokládání (aproximaci) naměřených dvojrozměrných dat přímkou. Nepatrně složitější aplikací je proložení dat parabolou, obecným polynomem předem daného stupně, nebo obecnou lineární kombinací předem daných bázových funkcí.
4 Metoda nejmenších čtverců Matematicko-statistická metoda používaná zejména při zpracování nepřesných dat (typicky experimentálních empirických dat získaných například měřením). S nejjednodušší aplikací metody nejmenších čtverců se setkáváme například při prokládání (aproximaci) naměřených dvojrozměrných dat přímkou. Nepatrně složitější aplikací je proložení dat parabolou, obecným polynomem předem daného stupně, nebo obecnou lineární kombinací předem daných bázových funkcí.
5 Prokládání dvojrozměrných dat přímkou Jako motivační úlohu si podrobně prostudujeme ukázku na adrese:
6 Proložení dat obecnou polynomickou funkcí Nyní zobecníme postup z předchozí motivační úlohy. Představme si, že chceme měřením získaná data v podobě m dvojic hodnot (x 1, y 1 ), (x 2, y 2 ),..., (x m, y m ) aproximovat polynomem n-tého stupně kde n < m 1. P n (x) = a n x n + a n 1 x n a 1 x + a 0,
7 Proložení dat obecnou polynomickou funkcí Nyní zobecníme postup z předchozí motivační úlohy. Představme si, že chceme měřením získaná data v podobě m dvojic hodnot (x 1, y 1 ), (x 2, y 2 ),..., (x m, y m ) aproximovat polynomem n-tého stupně P n (x) = a n x n + a n 1 x n a 1 x + a 0, kde n < m 1. Použijeme-li stejný princip jako v předchozí motivační úloze, pak nám půjde o nalezení konstant a 0, a 1,..., a n, které minimalizují následující výraz (součet čtverců odchylek naměřených hodnot y i od aproximovaných hodnot P n (x i )): S(a 0, a 1,..., a n ) = m (y i P n (x i )) 2.
8 Proložení dat obecnou polynomickou funkcí Nyní zobecníme postup z předchozí motivační úlohy. Představme si, že chceme měřením získaná data v podobě m dvojic hodnot (x 1, y 1 ), (x 2, y 2 ),..., (x m, y m ) aproximovat polynomem n-tého stupně P n (x) = a n x n + a n 1 x n a 1 x + a 0, kde n < m 1. Použijeme-li stejný princip jako v předchozí motivační úloze, pak nám půjde o nalezení konstant a 0, a 1,..., a n, které minimalizují následující výraz (součet čtverců odchylek naměřených hodnot y i od aproximovaných hodnot P n (x i )): S(a 0, a 1,..., a n ) = m (y i P n (x i )) 2. Pro nalezení minima tohoto výrazu vypočteme postupně parciální derivace S(a 0, a 1,..., a n )/ a j pro j = 0, 1,..., n a všechny je položíme rovny nule.
9 Proložení dat obecnou polynomickou funkcí Nyní zobecníme postup z předchozí motivační úlohy. Představme si, že chceme měřením získaná data v podobě m dvojic hodnot (x 1, y 1 ), (x 2, y 2 ),..., (x m, y m ) aproximovat polynomem n-tého stupně P n (x) = a n x n + a n 1 x n a 1 x + a 0, kde n < m 1. Použijeme-li stejný princip jako v předchozí motivační úloze, pak nám půjde o nalezení konstant a 0, a 1,..., a n, které minimalizují následující výraz (součet čtverců odchylek naměřených hodnot y i od aproximovaných hodnot P n (x i )): S(a 0, a 1,..., a n ) = m (y i P n (x i )) 2. Pro nalezení minima tohoto výrazu vypočteme postupně parciální derivace S(a 0, a 1,..., a n )/ a j pro j = 0, 1,..., n a všechny je položíme rovny nule. Tím získáme soustavu n + 1 tzv. normálních rovnic o n + 1 neznámých a 0, a 1,..., a n.
10 Proložení dat obecnou polynomickou funkcí Tím získáme soustavu n + 1 tzv. normálních rovnic o n + 1 neznámých a 0, a 1,..., a n.
11 Proložení dat obecnou polynomickou funkcí Tím získáme soustavu n + 1 tzv. normálních rovnic o n + 1 neznámých a 0, a 1,..., a n.
12 Proložení dat obecnou polynomickou funkcí Tím získáme soustavu n + 1 tzv. normálních rovnic o n + 1 neznámých a 0, a 1,..., a n. Tato soustava má právě jedno řešení v případě, že hodnoty x 1, x 2,..., x m jsou navzájem různé.
13 Příklad proložení dat kvadratickou funkcí Daty v následující tabulce proložíme polynom druhého stupně (kvadratickou funkci) pomocí metody nejmenších čtverců. i x i 0 0,25 0,50 0,75 1,00 y i 1,0000 1,2840 1,6487 2,1170 2,1170
14 Příklad proložení dat kvadratickou funkcí Daty v následující tabulce proložíme polynom druhého stupně (kvadratickou funkci) pomocí metody nejmenších čtverců. i x i 0 0,25 0,50 0,75 1,00 y i 1,0000 1,2840 1,6487 2,1170 2,1170 Ze zadání vidíme, že n = 2 a m = 5, tomu odpovídá soustava tří normálních rovnic 5a 0 + a 1 x i + a 2 x 2 i = y i, a 0 a 0 x i + a 1 x 2 i + a 1 x 2 i + a 2 x 3 i + a 2 x 3 i = x 4 i = y i x i, y i x 2 i.
15 Příklad proložení dat kvadratickou funkcí Ze zadání vidíme, že n = 2 a m = 5, tomu odpovídá soustava tří normálních rovnic 5a 0 + a 1 x i + a 2 x 2 i = y i, a 0 a 0 x i + a 1 x 2 i + a 1 x 2 i + a 2 x 3 i + a 2 x 3 i = x 4 i = y i x i, y i x 2 i. Ze zadání příkladu postupně vypočteme jednotlivé sumy a po dosazení obdržíme soustavu tří rovnic o třech neznámých 5a 0 + 2,5a 1 + 1,875a 2 = 8, 7680, 2,5a 0 + 1,875a 1 + 1,5625a 2 = 5,4514, 1,875a 0 + 1,5625a 1 + 1,3828a 2 = 4,4015.
16 Příklad proložení dat kvadratickou funkcí Ze zadání příkladu postupně vypočteme jednotlivé sumy a po dosazení obdržíme soustavu tří rovnic o třech neznámých 5a 0 + 2,5a 1 + 1,875a 2 = 8, 7680, 2,5a 0 + 1,875a 1 + 1,5625a 2 = 5,4514, 1,875a 0 + 1,5625a 1 + 1,3828a 2 = 4,4015. Tato soustava má právě jedno řešení a 0 = 1,0051, a 1 = 0,86468 a a 2 = 0,84316 (přesnost na 6 platných číslic). Hledaný polynom druhého stupně má proto tvar P 2 (x) = 1, ,86468x + 0,84316x 2.
17 Příklad proložení dat kvadratickou funkcí
18 Příklad proložení dat kvadratickou funkcí Pro posouzení kvality proložení zvolené funkce danými daty se využívá tzv. reziduální součet čtverců m (y i P n (x i )) 2.
19 Příklad proložení dat kvadratickou funkcí Pro posouzení kvality proložení zvolené funkce danými daty se využívá tzv. reziduální součet čtverců m (y i P n (x i )) 2. Pro právě získaný polynom P 2 (x) v našem příkladu vychází (y i P 2 (x i )) 2 = 0,
20 Příklad proložení dat kvadratickou funkcí Pro posouzení kvality proložení zvolené funkce danými daty se využívá tzv. reziduální součet čtverců m (y i P n (x i )) 2. Pro právě získaný polynom P 2 (x) v našem příkladu vychází (y i P 2 (x i )) 2 = 0, Polynom P 2 (x) aproximuje data v našem příkladu nejlépe ze všech polynomů druhého stupně ve smyslu metody nejmenších čtverců, tj. reziduální součet čtverců je pro něj minimální (nejmenší možný).
Aplikovaná matematika I
Metoda nejmenších čtverců Aplikovaná matematika I Dana Říhová Mendelu Brno c Dana Říhová (Mendelu Brno) Metoda nejmenších čtverců 1 / 8 Obsah 1 Formulace problému 2 Princip metody nejmenších čtverců 3
VíceAplikovaná numerická matematika
Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních
VíceInterpolace Lagrangeovy polynomy. 29. října 2012
Interpolace Lagrangeovy polynomy Michal Čihák 29. října 2012 Problematika interpolace V praxi máme často k dispozici údaje z různých měření tzv. data. Data mohou mít například podobu n uspořádaných dvojic
VíceInterpolace, aproximace
11 Interpolace, aproximace Metoda nejmenších čtverců 11.1 Interpolace Mějme body [x i,y i ], i =0, 1,...,n 1. Cílem interpolace je najít funkci f(x), jejíž graf prochází všemi těmito body, tj. f(x i )=y
Vícef(x) = ax + b mocnin (čili čtverců, odtud název metody) odchylek proložených hodnot od naměřených hodnot byl co (ax i + b y i ) 2 2(ax i + b y i ).
Úvod Metoda nejmenších čtverců Metodu nejmenších čtverců používáme, chceme-li naměřenými (nebo jinak získanými) body proložit křivku, např. přímku. Tedy hledáme taková reálná čísla a, b, aby graf funkce
VíceRegresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel
Regresní analýza Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 1 / 23
VíceTéma je podrobně zpracováno ve skriptech [1], kapitola 6, strany
3 Metoda nejmenších čtverců 3 Metoda nejmenších čtverců Břetislav Fajmon, UMAT FEKT, VUT Brno Téma je podrobně zpracováno ve skriptech [1], kapitola 6, strany 73-80. Jedná se o třetí možnou metodu aproximace,
VícePolynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení
Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení Polynom nad R = zobrazení f : R R f(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, kde a i R jsou pevně daná
Více2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení
2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků
VíceRegresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
VíceStatistika (KMI/PSTAT)
Statistika (KMI/PSTAT) Cvičení dvanácté aneb Regrese a korelace Statistika (KMI/PSTAT) 1 / 18 V souboru 25 jedinců jsme měřili jejich výšku a hmotnost. Výsledky jsou v tabulce a grafu. Statistika (KMI/PSTAT)
VíceRegresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
VíceMetoda nejmenších čtverců.
Metoda nejmenších čtverců. Robert Mařík 22. ledna 2006 Obsah 1 Motivace a geometrický význam 2 2 Vzorec 12 3 Příklad použití 13 4 Odvození vzorce 21 5 Otázky pozorného čtenáře 23 c Robert Mařík, 2006 1
VíceOdhad parametrů N(µ, σ 2 )
Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný
Více1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou
VíceIterační metody řešení soustav lineárních rovnic. 27. prosince 2011
Iterační metody řešení soustav lineárních rovnic Michal Čihák 27. prosince 2011 Přímé metody řešení soustav lineárních rovnic V přednáškách z lineární algebry jste se seznámili s několika metodami řešení
VícePozn. 1. Při návrhu aproximace bychom měli aproximační funkci vybírat tak, aby vektory ϕ (i) byly lineárně
9. Řešení typických úloh diskrétní metodou nejmenších čtverců. DISKRÉTNÍ METODA NEJMENŠÍCH ČTVERCŮ použití: v případech, kdy je nevhodná interpolace využití: prokládání dat křivkami, řešení přeurčených
VíceExtrémy funkce dvou proměnných
Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže
VíceRegresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
VíceUNIVERZITA PARDUBICE. 4.4 Aproximace křivek a vyhlazování křivek
UNIVERZITA PARDUBICE Licenční Studium Archimedes Statistické zpracování dat a informatika 4.4 Aproximace křivek a vyhlazování křivek Mgr. Jana Kubátová Endokrinologický ústav V Praze, leden 2012 Obsah
VíceAVDAT Nelineární regresní model
AVDAT Nelineární regresní model Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Nelineární regresní model Ey i = f (x i, β) kde x i je k-členný vektor vysvětlujících proměnných
VícePříklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar
Řešte v : má rovnice tvar takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar takže rovnice v zadání má v tomto případě opět jedno řešení. Sjednocením obou případů dostaneme úplné
VíceAproximace a interpolace
Aproximace a interpolace Aproximace dat = náhrada nearitmetické veličiny (resp. složité funkce) pomocí aritmetických veličin. Nejčastěji jde o náhradu hodnot složité funkce g(x) nebo funkce zadané pouze
Více1 Polynomiální interpolace
Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,
VíceÚloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté
Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0
VíceČebyševovy aproximace
Čebyševovy aproximace Čebyševova aproximace je tzv hledání nejlepší stejnoměrné aproximace funkce v daném intervalu Hledáme funkci h x, která v intervalu a,b minimalizuje maximální absolutní hodnotu rozdílu
VíceTéma je podrobně zpracováno ve skriptech [1], kapitola
Břetislav Fajmon, UMAT FEKT, VUT Brno Téma je podrobně zpracováno ve skriptech [1], kapitola 6. Základní aproximační úlohu lze popsat následovně: Jsou dány body [x 0, y 0 ], [x 1, y 1 ],..., [x n, y n
VíceŘešení 1D vedení tepla metodou sítí a metodou
ENumerická analýza transportních procesů - NTP2 Přednáška č. 9 Řešení 1D vedení tepla metodou sítí a metodou konečných objemů Metoda sítí (metoda konečných diferencí - MKD) Metoda sítí Základní myšlenka
VíceInterpolace pomocí splajnu
Interpolace pomocí splajnu Interpolace pomocí splajnu Připomenutí U interpolace požadujeme, aby graf aproximující funkce procházel všemi uzlovými body. Interpolační polynom aproximující funkce je polynom
VíceRegresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Více8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice
9. Lineární diferenciální rovnice 2. řádu Cíle Diferenciální rovnice, v nichž hledaná funkce vystupuje ve druhé či vyšší derivaci, nazýváme diferenciálními rovnicemi druhého a vyššího řádu. Analogicky
VíceLINEÁRNÍ REGRESE. Lineární regresní model
LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)
VíceSEMESTRÁLNÍ PRÁCE X. Aproximace křivek Numerické vyhlazování
KATEDRA ANALYTICKÉ CHEMIE FAKULTY CHEMICKO TECHNOLOGICKÉ UNIVERSITA PARDUBICE - Licenční studium chemometrie LS96/1 SEMESTRÁLNÍ PRÁCE X. Aproximace křivek Numerické vyhlazování Praha, leden 1999 0 Úloha
VíceOdhad parametrů N(µ, σ 2 )
Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný
VíceKalibrace a limity její přesnosti
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat Kalibrace a limity její přesnosti Zdravotní ústav se sídlem v Ostravě
VíceRegresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Více1 Linearní prostory nad komplexními čísly
1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)
VíceVlastní (charakteristická) čísla a vlastní (charakteristické) Pro zadanou čtvercovou matici A budeme řešit maticovou
1 Vlastní (charakteristická) čísla a vlastní (charakteristické) vektory matice Pro zadanou čtvercovou matici A budeme řešit maticovou rovnici A x = λ x, kde x je neznámá matice o jednom sloupci (sloupcový
VíceEUKLIDOVSKÉ PROSTORY
EUKLIDOVSKÉ PROSTORY Necht L je lineární vektorový prostor nad tělesem reálných čísel R. Zobrazení (.,.) : L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx,
VíceREGRESNÍ ANALÝZA V PROSTŘEDÍ MATLAB
62 REGRESNÍ ANALÝZA V PROSTŘEDÍ MATLAB BEZOUŠKA VLADISLAV Abstrakt: Text se zabývá jednoduchým řešením metody nejmenších čtverců v prostředí Matlab pro obecné víceparametrové aproximační funkce. Celý postup
VícePOLYNOMICKÁ REGRESE. Jedná se o regresní model, který je lineární v parametrech, ale popisuje nelineární závislost mezi proměnnými.
POLYNOMICKÁ REGRESE Jedná se o regresní model, který je lineární v parametrech, ale popisuje nelineární závislost mezi proměnnými. y = b 0 + b 1 x + b 2 x 2 + + b n x n kde b i jsou neznámé parametry,
VíceRegresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
Více9.4. Rovnice se speciální pravou stranou
Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta
Vícealgoritmus»postup06«p e t r B y c z a n s k i Ú s t a v g e o n i k y A V
Hledání lokálního maxima funkce algoritmus»postup06«p e t r B y c z a n s k i Ú s t a v g e o n i k y A V Č R Abstrakt : Lokální maximum diferencovatelné funkce je hledáno postupnou změnou argumentu. V
VíceMĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ
MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ v praxi u jednoho prvku souboru se často zkoumá více veličin, které mohou na sobě různě záviset jednorozměrný výběrový soubor VSS X vícerozměrným výběrovým souborem VSS
Více13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách
13 Regrese 13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách znaku X. Přitom je třeba vyřešit jednak volbu funkcí k vystižení dané závislosti a dále stanovení konkrétních
VíceTERMINOLOGIE ... NAMĚŘENÁ DATA. Radek Mareček PŘEDZPRACOVÁNÍ DAT. funkční skeny
PŘEDZPRACOVÁNÍ DAT Radek Mareček TERMINOLOGIE Session soubor skenů nasnímaných během jednoho běhu stimulačního paradigmatu (řádově desítky až stovky skenů) Sken jeden nasnímaný objem... Voxel elementární
VícePRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOS A SAISIKA Regresní analýza - motivace Základní úlohou regresní analýzy je nalezení vhodného modelu studované závislosti. Je nutné věnovat velkou pozornost tomu aby byla modelována REÁLNÁ
VíceÚvod do optimalizace, metody hladké optimalizace
Evropský sociální fond Investujeme do vaší budoucnosti Úvod do optimalizace, metody hladké optimalizace Matematika pro informatiky, FIT ČVUT Martin Holeňa, 13. týden LS 2010/2011 O čem to bude? Příklady
Více7. Analýza rozptylu.
7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a
VíceLiteratura: Kapitola 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.
Předmět: MA4 Dnešní látka: Metoda sítí v 1D. Myšlenka náhrada derivací diferenčními podíly Přibližné řešení okrajových úloh Aproximace vlastních čísel Literatura: Kapitola 2 d) ze skript Karel Rektorys:
VíceVstupní signál protne zvolenou úroveň. Na základě získaných údajů se dá spočítat perioda signálu a kmitočet. Obrázek č.2
2. Vzorkovací metoda Určení kmitočtu z vzorkovaného průběhu. Tato metoda založena na pozorování vstupního signálu pomocí osciloskopu a nastavení určité úrovně, pro zjednodušování považujeme úroveň nastavenou
VíceM - Příprava na 1. zápočtový test - třída 3SA
M - Příprava na 1. zápočtový test - třída 3SA Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento
VíceM - Příprava na pololetní písemku č. 1
M - Příprava na pololetní písemku č. 1 Určeno pro třídy 3SA, 3SB. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete
VíceUNIVERZITA PARDUBICE
UNIVERZITA PARDUBICE Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie na téma Kalibrace a limity její přesnosti Vedoucí licenčního studia Prof. RNDr. Milan Meloun,
Více8 Střední hodnota a rozptyl
Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení
VíceGEODETICKÉ VÝPOČTY I.
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. TABELACE FUNKCE LINEÁRNÍ INTERPOLACE TABELACE FUNKCE Tabelace funkce se v minulosti často využívala z důvodu usnadnění
Více1 Přesnost metody konečných prvků
1 PŘESNOST METODY KONEČNÝCH PRVKŮ 1 1 Přesnost metody konečných prvků Metoda konečných prvků je založena na diskretizaci původní spojité konstrukce soustavou prvků (nebo obecněji na diskretizaci slabé
VíceMÍRY ZÁVISLOSTI (KORELACE A REGRESE)
zhanel@fsps.muni.cz MÍRY ZÁVISLOSTI (KORELACE A REGRESE) 2.5 MÍRY ZÁVISLOSTI 2.5.1 ZÁVISLOST PEVNÁ, VOLNÁ, STATISTICKÁ A KORELAČNÍ Jednorozměrné soubory - charakterizovány jednotlivými statistickými znaky
VíceRegrese. 28. listopadu Pokud chceme daty proložit vhodnou regresní křivku, musíme obvykle splnit tři úkoly:
Regrese 28. listopadu 2013 Pokud chceme daty proložit vhodnou regresní křivku, musíme obvykle splnit tři úkoly: 1. Ukázat, že data jsou opravdu závislá. 2. Provést regresi. 3. Ukázat, že zvolená křivka
VíceSoustavy nelineárních rovnic pomocí systému Maple. Newtonova metoda.
Úvod Soustavy nelineárních rovnic pomocí systému Maple. Newtonova metoda. Mnoho technických problémů vede na řešení matematických úloh, které se následně převedou na úlohy řešení soustav nelineárních rovnic
VíceDiferenciál a Taylorův polynom
Diferenciál a Taylorův polynom Základy vyšší matematiky lesnictví LDF MENDELU c Simona Fišnarová (MENDELU) Diferenciál a Taylorův polynom ZVMT lesnictví 1 / 11 Aproximace funkce v okoĺı bodu Danou funkci
VíceStatistika. Regresní a korelační analýza Úvod do problému. Roman Biskup
Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009
Více5. Interpolace a aproximace funkcí
5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x
VíceNUMERICKÉ METODY. Problematika num. řešení úloh, chyby, podmíněnost, stabilita algoritmů. Aproximace funkcí.
NUMERICKÉ METODY. Problematika num. řešení úloh, chyby, podmíněnost, stabilita algoritmů. Aproximace funkcí. RNDr. Radovan Potůček, Ph.D., K-15, FVT UO, KŠ 5B/11, Radovan.Potucek@unob.cz, tel. 443056 -----
Více9 INTERPOLACE A APROXIMACE
1 9 INTERPOLACE A APROXIMACE Vzorová úloha 9.1 Náhrada funkce exp(x) Nalezněte interpolační polynom, který aproximuje funkci exp(x) v intervalu {0, 1} tak, že v krajních bodech x 1 = 0 a x = 1 souhlasí
Vícea počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:
Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se
VíceMODEL TVÁŘECÍHO PROCESU
MODEL TVÁŘECÍHO PROCESU Zkouška tlakem na válcových vzorcích 2 Vyhodnocení tlakové zkoušky Síla F způsobí změnu výšky H a průměru D válce. V každém okamžiku při stlačování je přetvárný odpor definován
VíceMěření závislosti statistických dat
5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě
VíceEXPERIMENTÁLNÍ METODY I. 2. Zpracování měření
FSI VUT v Brně, Energetický ústav Odbor termomechanik a technik prostředí prof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I OSNOVA. KAPITOLY. Zpracování měření Zpracování výsledků měření (nezávislých
Více7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,
VíceHledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky
6. Vázané a absolutní extrémy. 01-a3b/6abs.tex Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky jednoduché, vyřešíme
VíceOBECNÉ METODY VYROVNÁNÍ
OBECNÉ METODY VYROVNÁNÍ HYNČICOVÁ TEREZA, H2IGE1 2014 ÚVOD Z DŮVODU VYLOUČENÍ HRUBÝCH CHYB A ZVÝŠENÍ PŘESNOSTI NIKDY NEMĚŘÍME DANOU VELIČINU POUZE JEDNOU VÝSLEDKEM OPAKOVANÉHO MĚŘENÍ NĚKTERÉ VELIČINY JE
VíceMATEMATIKA III V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 10 Mgr. Petr Otipka Ostrava 01 Mgr. Petr Otipka Vysoká škola báňská Technická univerzita Ostrava ISBN
VícePseudospektrální metody
Pseudospektrální metody Obecně: založeny na rozvoji do bázových funkcí s globálním nosičem řešení diferenciální rovnice aproximuje sumou kde jsou např. Čebyševovy polynomy nebo trigonometrické funkce tyto
Vícepracovní list studenta
Výstup RVP: Klíčová slova: pracovní list studenta Funkce kvadratická funkce Mirek Kubera žák načrtne grafy požadovaných funkcí, formuluje a zdůvodňuje vlastnosti studovaných funkcí, modeluje závislosti
VíceHledání extrémů funkcí
Hledání extrémů funkcí Budeme se zabývat téměř výhradně hledáním minima. Přes nost nalezeného extrému Obecně není hledání extrému tak přesné jako řešení rovnic. Demonstrovat to můžeme na příkladu hledání
Více9.3. Úplná lineární rovnice s konstantními koeficienty
Úplná lineární rovnice s konstantními koeficienty Cíle Nyní přejdeme k řešení úplné lineární rovnice druhého řádu. I v tomto případě si nejprve ujasníme, v jakém tvaru můžeme očekávat řešení, poté se zaměříme
VíceŘešení 1b Máme najít body, v nichž má funkce (, ) vázané extrémy, případně vázané lokální extrémy s podmínkou (, )=0, je-li: (, )= +,
Příklad 1 Najděte body, v nichž má funkce (,) vázané extrémy, případně vázané lokální extrémy s podmínkou (,)=0, je-li: a) (,)= + 1, (,)=+ 1 lok.max.v 1 2,3 2 b) (,)=+, (,)= 1 +1 1 c) (,)=, (,)=+ 1 lok.max.v
VíceYou created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik
Vícef (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad.
8. Taylorova řada. V urzu matematiy jsme uázali, že je možné funci f, terá má v oolí bodu x derivace aproximovat polynomem, jehož derivace se shodují s derivacemi aproximované funce v bodě x. Poud má funce
VíceOdhady Parametrů Lineární Regrese
Odhady Parametrů Lineární Regrese Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké
VíceStanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace )
Příklad č. 1 Stanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace ) Zadání : Stanovení manganu ve vodách se provádí oxidací jodistanem v kyselém prostředí až na manganistan. (1) Sestrojte
Více4. Aplikace matematiky v ekonomii
4. Aplikace matematiky v ekonomii 1 Lineární algebra Soustavy 1) Na základě statistických údajů se zjistilo, že závislost množství statku z poptávaného v průběhu jednoho týdne lze popsat vztahem q d =
VíceBodové a intervalové odhady parametrů v regresním modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e
VíceI. 7. Diferenciál funkce a Taylorova věta
I. 7. Diferenciál funkce a Taylorova věta 343 I. 7. Diferenciál funkce a Taylorova věta Věta 26. Funkce f má v bodě x 0 diferenciál (je diferencovatelná v x 0 ) právě tehdy, když existuje vlastní derivace
VíceAproximace a vyhlazování křivek
Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Autor: Přednášející: Prof. Ing. Jiří Militký, Csc 1. SLEDOVÁNÍ ZÁVISLOSTI HODNOTY SFM2 NA BARVIVOSTI
VíceMgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -
VíceSoustavy lineárních a kvadratických rovnic o dvou neznámých
Soustavy lineárních a kvadratických rovnic o dvou neznámých obsah 1.a) x + y = 5 x 2 + y 2 = 13 3 b) x - y = 7 x 2 + y 2 = 65 5 c) x - y = 3 x 2 + y 2 = 5 6 3. a) x + 2y = 9 x. y = 10 12 b) x - 3y = 1
VíceNumerické řešení diferenciálních rovnic
Numerické řešení diferenciálních rovnic Omezení: obyčejné (nikoli parciální) diferenciální rovnice, Cauchyho počáteční úloha, pouze jedna diferenciální rovnice 1. řádu 1/1 Numerické řešení diferenciálních
VíceFyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Speciální praktikum z abc
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Speciální praktikum z abc Zpracoval: Jan Novák Naměřeno: 1. ledna 2001 Obor: F Ročník: IV Semestr: IX Testováno:
VícePŘÍKLAD PŘECHODNÝ DĚJ DRUHÉHO ŘÁDU ŘEŠENÍ V ČASOVÉ OBLASTI A S VYUŽITÍM OPERÁTOROVÉ ANALÝZY
PŘÍKLAD PŘECHODNÝ DĚJ DRHÉHO ŘÁD ŘEŠENÍ V ČASOVÉ OBLASTI A S VYŽITÍM OPERÁTOROVÉ ANALÝZY A) Časová oblast integro-diferenciální rovnice K obvodu na obrázku je v čase t 0 napětí u b (t). t 0 připojen zdroj
VíceAbstrakt. Bairstowovy iterační metody. V práci je odvozena Bairstowova metoda
Hledání kořenů algebraické rovnice Michaela Kožuchová 1,MichaelaSládková 2,Vojtěch Pék 3 Abstrakt Práce se zabývá hledáním kořenů algebraické rovnice za pomoci Bairstowovy iterační metody. V práci je odvozena
VíceVariace. Lineární rovnice
Variace 1 Lineární rovnice Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Rovnice Co je rovnice Rovnice je
Více2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2
Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací
VíceDobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
VíceDiferenciální rovnice 3
Diferenciální rovnice 3 Lineární diferenciální rovnice n-tého řádu Lineární diferenciální rovnice (dále jen LDR) n-tého řádu je rovnice tvaru + + + + = kde = je hledaná funkce, pravá strana a koeficienty
VíceNumerické metody a programování
Projekt: Inovace výuky optiky se zaměřením na získání experimentálních dovedností Registrační číslo: CZ.1.7/2.2./28.157 Numerické metody a programování Lekce 4 Tento projekt je spolufinancován Evropským
VícePrůhyb ocelového nosníku. Nezatížený a rovnoměrně zatížený nosník
EVROPSKÝ SOCIÁLNÍ FOND Průhyb ocelového nosníku. Nezatížený a rovnoměrně zatížený nosník PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI České vysoké učení technické v Praze, Fakulta stavební, Katedra matematiky
Více