MATEMATIKA I - vybrané úlohy ze zkoušek v letech

Rozměr: px
Začít zobrazení ze stránky:

Download "MATEMATIKA I - vybrané úlohy ze zkoušek v letech"

Transkript

1 MATEMATIKA I - vybrané úlohy ze zkoušek v letech doplněné o další úlohy. část DIFERENCIÁLNÍ POČET funkcí jedné proměnné Další část ( integrální počet) bude vydána na konci listopadu Případné nesrovnalosti ve výsledcích, jakož i připomínky k tomuto souboru sdělte laskavě F. Mrázovi ( Frantisek.Mraz@fs.cvut.cz ) Některé úlohy jsou převzaty z tetů [], [] a []. [] J. Neustupa: Matematika I. Skriptum Strojní fakulty. Vydavatelství ČVUT, Praha 00 (též 008,...). [] J.Neustupa, S.Kračmar: Vybrané příklady ze skript Sbírka příkladů z Matematiky I. Firma Copia a webové stránky Ústavu technické matematiky pod odkazem Matematika I. [] E.Brožíková, M.Kittlerová: Diferenciální počet funkcí jedné proměnné. Řešené příklady. Skriptum Strojní fakulty. Vydavatelství ČVUT, Praha 004. Následující výčet nelze chápat jako jednoznačné zařazení uvedené úlohy do zkoušky úrovně A (alfa), resp. úrovně B, ale jako orientační rozlišení. Zaměřením a náročností odpovídají požadavkům zkoušky úrovně B např. úlohy,, 5, 8, 9, 0, a, a,, 4, 6, 7, 0. Požadavkům zkoušky úrovně A odpovídají např. úlohy až 7, 9 až,, 5, 8, 9,. Další doporučené úlohy k samostatnému počítání, a to ze sbírky [] jsou uvedeny na webu ÚTM pod odkazem Matematika I v souboru Základní informace (v části Cvičení ).. a) Definujte, kdy posloupnost reálných čísel {a n } n= nazýváme rostoucí, resp. klesající. { } n b) Napište prvních pět členů posloupnosti. Je tato posloupnost rostoucí nebo klesající? Odpověd n n= zdůvodněte podle definice. [Výsl.: rostoucí] (n )( n) c) Vypočítejte lim n 5n. [Výsl.: 4/5] n. a) Vypočítejte limitu posloupnosti lim n 4n (n + ). b) Užitím l Hospitalova pravidla vypočítejte limitu funkce lim [Výsl.: /4]. [Výsl.: /] ln( 5) Varianty předchozí úlohy: a) výpočet limity posloupnosti, b) výpočet limity funkce pomocí l Hospitalova pravidla): ( n n ) [Výsl.: 0] 6n 7n + (n ) 9n [Výsl.: ] (0 5n)(n + 5) n 0n 5 [Výsl.: 0] e [Výsl.: /] + sin 9 [Výsl.: /] sin() [Výsl.: /] e cos [Výsl.: /9]. a) Vypočítejte limitu posloupnosti lim ( n n + n) b) Uved te větu o limitě vybrané posloupnosti. c) Sestavte posloupnost, která nemá limitu. Zdůvodněte! [Výsl.: /] n + cos(n!) 4. a) Vypočítejte limitu posloupnosti lim. [Výsl.: /] n b) Definujte co to znamená, že posloupnost {a n } je klesající. c) Sestavte klesající posloupnost, která má limitu rovnou. Ověřte, že tato posloupnost má zmíněné vlastnosti. 5. a) Definujte pojem limita posloupnosti {a n } n=. (n ) (n + ) b) Vypočítejte limitu posloupnosti lim 6n (n )(n + ). { } 00n + c) Vyšetřete, zda posloupnost je rostoucí nebo klesající. [Výsl. b) +, c) klesající] n

2 6. a) Vypočítejte limitu posloupnosti lim n( n n + 4 ). [Výsl.: -] cos b) Vypočítejte limitu funkce lim ln( + ). Pokud se rozhodnete pro l Hospitalovo pravidlo, ověřte, zda ho lze použít. [Výsl.: /] Další varianty předchozí úlohy: a) výpočet limity posloupnosti, b) výpočet limity funkce s pomocí l Hospitalova pravidla (pokud lze): (n + 4) 8n 4n. [Výsl.: ] (n + ) n n(n ). [Výsl.: / ] n! + (n + )! (n )! + (n + )! cos + 4. [Výsl.: 4/] [Výsl.: ] π/ 7. a) Určete definiční obor D(f) funkce f : f() = ( ) sin. [Výsl.: ] tg cos. [Výsl.: ] cos sin ( π. [Výsl.: /] ) +. Je funkce sudá, resp. lichá? (Odpověd zdůvodněte.) b) Vypočítejte limity f() pro + a pro. Vyšetřete jednostranné limity v bodě 0 = 0. c) Napište rovnici tečny ke grafu funkce f v bodě [ 0, f( 0 )], je-li 0 =. [Výsl.: D(f) = (, ) (0, + ), funkce není sudá ani lichá, lim = pro +, zatímco pro je lim = - (nebot = ), limita pro 0 neeistuje, limita pro 0 + je rovna 0, oboustranná limita pro 0 neeistuje, rovnice tečny: y = + ( )] 6 8. a) Určete definiční obory a do jednoho obrázku načrtněte grafy funkcí f () =, f () = +, f () =. b) Určete definiční obor funkce f() = ln(4 ). Je tato funkce sudá, resp. lichá? (Odpověd zdůvodněte.) c) Určete průsečíky grafu funkce f s oběma osami. d) Najděte všechny body 0, ve kterých je derivace funkce f nulová. Jakou polohu má tečna sestrojená ke grafu funkce f v těchto bodech [ 0, f( 0 )]? [Výsl.: D(f) = (, ), funkce je sudá, průsečíky [0, ln 4], [, 0], [, 0], derivace nulová pouze v bodě = 0, tečna v bodě [0, ln 4] je rovnoběžná s osou ] Varianty této úlohy s jinými funkcemi f, f, f : a) f () = ln, f () = ln( ), f () = ln +. a) f () = ln, f () = log 0, f () = log /. 9. a) Definujte pojem derivace funkce f v bodě 0. b) Vypočítejte derivaci funkce f : f() = ( ). Určete definiční obory D(f) a D(f ). c) Napište rovnici tečny a rovnici normály ke grafu funkce f v bodě [ 0, f( 0 )], je-li 0 = 4. d) Pomocí rovnice tečny určete přibližně hodnotu funkce f v bodě =.8. [Výsl.: D(f) = 0, + ), D(f ) = (0, + ), f () = + ( ), tečna: y = ( 4) normála: y = 4 9 ( 4), f(.8) =. /0 =, 55 ] Varianty této úlohy s jinými funkcemi f a body 0. Pro funkce z úloh b) a b) určete též průsečíky grafu s oběma osami. b) f() = + c) 0 = d) f( = 0, 8) [Výsl.: D(f) = D(f ) = (, + ), f 6 () = + ( + ), tečna: y = + ( + ) normála: y = ( + ), f( 0.8) =. 4/5 = 0.8, průsečíky: [0, ], [ /, 0]] b) f() = + c) 0 = d) f( =, ) [Výsl.: D(f) = /, + ), D(f ) = ( /, + ), f () = ( ), f(.). = /5, průsečíky: [0, ], [, 0], ale bod [, 0] NE! ], tečna: y = + ( ), normála: y =

3 0. a) Vypočítejte derivaci funkce f : f() = +. Určete definiční obory D(f), D(f ). b) Napište rovnici tečny ke grafu funkce f v bodě [ 0, f( 0 )], je-li 0 =. c) Vypočítejte derivace f (), f (). Do jednoho obrázku načrtněte tečnu a tvar grafu dané funkce v okolí bodu [, f()]. d) Popište chování dané funkce v okolí bodu 0, tj. rostoucí nebo klesající, jak rychle (odhad sklonu tečny), tvar grafu. [Výsl.: D(f) = 0, + ), D(f ) = (0, + ), f () = +, tečna: y = + ( ), (normála: y = ( )), f () = 4, f () = 4, v okolí daného bodu je funkce rostoucí, konvení, tečna svírá s kladným směrem osy úhel přibližně 55 o.] Další varianty této úlohy si sestavte sami s jinými funkcemi f a body 0, např. s funkcemi b), b) a b) z předchozí úlohy.. a) Vypočítejte derivaci funkce f: f() = + 5. Určete definiční obory D(f) a D(f ). b) Napište rovnici tečny ke grafu této funkce v bodě [ 0, f( 0 )], je-li 0 =. Výsledku použijte pro výpočet přibližné hodnoty funkce f v bodě =,. c) Zdůvodněte eistenci absolutních etrémů funkce f na intervalu I =,. Tyto absolutní etrémy určete (tj. stanovte jejich polohu a hodnotu). [Výsl.: D(f) = 5, 5, D(f ) = ( 5, 5), f () = Ma= v bodech = ±, Min= 5 v bodě = 0]. Varianty této úlohy s jinými funkcemi f, body 0 a intervaly I., tečna: y = 5 5 ( + ), abs. etrémy: a) f() = ( ) e b) 0 = 0 c) I = 0, [Výsl.: D(f) = D(f ) = R, f () = ( ) e, tečna: y =, (normála y = + ), abs. etrémy: Ma=0 v bodě =, Min= e v bodě = ] a) f() = tg b) 0 = π c) I = π/4, π/4 [Výsl.: D(f) = D(f ) = ( π + k π, +π + k π), k Z, f () = cos ; f (π) = 0, proto tečna: y = π, (normála = π), f () 0 pro každé I, proto abs. etrémy: Ma= π/4 v bodě = π/4, Min= + π/4 v bodě = π/4]. a) f() = + 0 b) 0 = 0 c) I =, [Výsl.: D(f) = D(f ) = ( 4, + ), f () = + 4 ( + 4) + 4 (po úpravě), tečna: y = 5 8, (normála y = 5 + 8), abs. etrémy: Ma=7 v bodech =, Min= 6 v bodě = ]. V následujícíh čtyřech úlohách a) Definujte absolutní etrémy funkce f na intervalu I. Popište stručně postup při jejich výpočtu. b) Zdůvodněte eistenci absolutních etrémů dané funkce f na daném intervalu I. c) Absolutní etrémy určete (tj. jejich polohu a hodnotu.). f() = 4 + 5, I = 0, [Výsl.: Ma=f() =, Min=f() = 4]. f() = +, I =, [Výsl.: Ma=f() = 4, Min=f(0) = 0] 4. f() = +, I =, 5 [Výsl.: Ma=f() =, Min=f() = f(5) = ] 5. f() = + 6 6, I =, 4 [Výsl.: Ma=f(4) = 4, Min=f() = 4] 6. Je dána funkce f() = + 4. a) Určete definiční obor D(f) a vypočítejte limity v jeho krajních bodech. b) Vypočítejte f () a určete D(f ). Najděte body, ve kterých je derivace nulová. c) Určete lokální etrémy a intervaly monotonie (tj. funkce rostoucí, resp. klesající). d) Načrtněte graf dané funkce f. [Výsl.: D(f) = (, ), daná funkce je lichá, obě limity, tj. pro + i pro jsou rovny nule, f () = 4 ( + 4), f () = 0 pro = ±, funkce je klesající v intervalu (,, rostoucí v,, klesající v intervalu, ), ostré lokální minimum (navíc i absolutní) v bodě =, f( ) = /4, ostré lokální maimum (navíc i absolutní) v bodě =, f() = /4.]

4 Varianty této úlohy s jinými funkcemi f. a) f() = 4 + na zúženém definičním oboru D(f) = (0, ) [Výsl.: Obě limity, tj. pro + i pro 0 + jsou rovny +, f () = 4, f () = 0 pro = ±, funkce je klesající v intervalu (0,, rostoucí v, ), ostré lokální minimum (navíc i absolutní) v bodě =, f() = 4/.] a) f() = 9 na zúženém definičním oboru D(f) = (, ) [Výsl.: Daná funkce je sudá, obě limity, tj. pro i pro + jsou rovny +, f () = (9 ), f () = 0 pro = 0, funkce je klesající v intervalu (, 0, rostoucí v 0, ), ostré lokální minimum (navíc i absolutní) v bodě = 0, f(0) = /9.] a) f() = na zúženém definičním oboru D(f) = (, 0) Další varianty této úlohy lze nalézt v [], a to např. úlohy č. 44,, 9 (pro zkoušku B bez konvenosti). 7. Je dána funkce f() = ( ) e. a) Určete definiční obor D(f). Vypočítejte derivaci a stanovte její definiční obor D(f ). b) Určete intervaly monotonie a lokální etrémy. c) Určetete intervaly, na nichž je tato funkce konvení, resp. konkávní. Najděte inflení body. d) Určete průsečíky grafu s osami, y. Vypočítejte funkční hodnoty ve významných bodech (lokální etrémy, inflení body). Načrtněte graf dané funkce f v intervalu,. [Výsl.: f () = ( ) e, D(f) = D(f ) = (, ), f () = 0 pro =, funkce je klesající v intervalu (,, rostoucí v, ), ostré lokální minimum (navíc i absolutní) v bodě =, f () = e, f () = 0 pro = 0, funkce je konkávní v intervalu (, 0, konvení v 0, ), inflení bod = 0, f( ) = /e. =., f(0) =, f() = e, průsečíky [0, ], [, 0].] Varianty této úlohy s jinými funkcemi f. a) f() =, graf v intervalu /, 6, bez konvenosti, bez průsečíků [Výsl.: Derivace f () =, D(f) = /, ), D(f ) = (/, ), f () = 0 pro =, funkce je rostoucí v /,, klesající v, ), ostré lokální maimum (navíc i absolutní) v bodě =, f(/) = /, f() =, f(6) =.] a) f() = e +, graf v intervalu, 0, bez konvenosti. [Výsl.: Derivace f () = e + ( + ), D(f) = D(f ) = R = (, ), f () = 0 pro =, funkce je klesající v (,, rostoucí v, ), ostré lokální minimum (navíc i absolutní) v bodě =, f( ) =, f( ) = /e, f(0) =, průsečík [0, ], průsečík s osou není.] 8. Je dána funkce f() = ln. a) Určete definiční obor D(f) a vypočítejte limity v jeho krajních bodech. b) Určete lokální etrémy a intervaly monotonie (tj. funkce rostoucí, resp. klesající). c) Určetete intervaly, na nichž je tato funkce konvení, resp. konkávní. Najděte inflení body. d) Určete průsečíky grafu s osou. Načrtněte graf dané funkce f. [Výsl.: D(f) = (0, ), limita pro 0 + je rovna nule, limita pro + je +, f () = ln +, f () = 0 pro = /e, funkce je klesající v intervalu (0, /e, rostoucí v /e, + ), ostré lokální minimum (navíc i absolutní) v bodě = /e, f(/e) = /e, f () = /, f je konvení v D(f), průsečík je [, 0].] Varianty této úlohy s jinými funkcemi f lze nalézt ve sbírce [], kde jsou uvedeny s výsledky např. úlohy č. 8. f() = 4, 9. f() = ( + ) e /, 9. f() = ( ), 08. f() = e 9. Je dána funkce f() = e. a), b), c) viz předchozí úloha d) Určete průsečíky grafu s osami, y. Vyšetřete asymptoty. Načrtněte graf dané funkce f. [Výsl.: D(f) = (, ) (, ), limity pro + a pro + jsou +, limita pro je rovna a pro je rovna nule, f () = e ( 4) ( ), f () = 0 pro = 4, funkce je klesající v intervalu (, ) a v intervalu (, 4, rostoucí v 4, + ), ostré lokální minimum v bodě = 4, f(4) = e 4, průsečík je [0, /], průsečík s osou není, svislá asymptota =, asymptota y = 0 pro ] 4

5 Varianta této úlohy s jinou funkcí. a) f() = + [Výsl.: D(f) = (, ), obě limity, tj. pro a pro + jsou rovny nule, derivace f () = ( + ), D(f ) = D(f), f () = 0 pro = a pro =, funkce je rostoucí v intervalu (, a v, ), klesající v,, ostré lokální maimum (navíc i absolutní) v bodě =, f( ) = /, ostré lokální minimum (navíc i absolutní) v bodě =, f() = /6, průsečíky [0, /], [, 0], asymptota y = 0 pro i pro.] Další varianty této úlohy, příp. jenom její části s jinými funkcemi lze nalézt ve sbírce [], kde jsou uvedeny s výsledky např. úlohy č. 4. f() = ( + ) e, 56. f() = ln, 09. f() = ln 60. f() = ln ( + ), 78. f() =, 95. f() =, (bez konvenosti), +. f() = + arccotg (oprava výsledků: funkce není lichá, šikmá asymptota pro je y = + π). 0. Je dána funkce f() = e 4. a) Vypočítejte derivaci f () a určete definiční obory D(f), D(f ). b) Napište rovnici tečny ke grafu dané funkce v bodě [ 0, f( 0 )], je-li 0 =. c) Vypočítejte hodnotu f (). Napište Taylorův polynom. stupně T () dané funkce se středem v bodě 0 =. Pomocí T () určete přibližně hodnotu f() pro = /. [Výsl.: derivace f () = e 4, D(f) = D(f ) = (, ), f () =, tečna: y = + ( ), f () = 4 e 4, f () = 4, T () = + ( ) + ( ), f(/). = T (/) = /. ] Varianty této úlohy s jinými funkcemi f a body 0. a) f() = f() = 6, 0 =, přibližně f(/) [Výsl.:derivace f () = 6, D(f) = (,, D(f ) = (, ), f () = /, tečna: y = ( ), f () =, f () = /8, T () = ( ) (6 ) 6 ( ), f(/) =. T (/) = 4/64 =... ] a) f() = ( + ) e, 0 = 0, přibližně f(/4) [Výsl.:derivace f () = ( + ) e, D(f) = D(f ) = (, ), f (0) =, tečna: y = +, f () = ( + ) e, f (0) =, T () = + +, f(/4) =. T (/4) = 5/ =..6. ]. Je dána funkce f() = + a) Vypočítejte. a. derivaci této funkce. Stanovte definiční obory funkcí f, f a f. b) Napište Taylorův polynom T () stupně dva se středem 0 = 0 dané funkce f. Pomocí T () určete přibližně hodnotu f() pro = /4. c) Napište Lagrangeův tvar zbytku R (). Jeho pomocí odhadněte velikost chyby aproimace hodnoty funkce f v bodě = /4 při použití Taylorova polynomu T () z úlohy b). [Výsl.:Derivace f () =, f () =, D(f) = /, ), D(f ) = D(f ) = ( /, ), T () = + ( + ) +, f(/4) f(/4) T (/4) 7/8.]. = T (/4) = 9/6. =., f () = ( + ) 5, R () = (ξ + ) 5, R (/4) = Varianta této úlohy s jinou funkcí f a s jiným bodem 0. a) f() = f() = ln(+), 0 =, přibližně f( 0.8) [Výsl.: Derivace f () = +, f () = D(f ) = D(f ) = (, ), T () = ( + ) ( + ), f( 0.9). = T ( 0.9) = 0.095, f () = (ξ + ) ( + ), R ( 0.9) = f( 0.9) T ( 0.9) 0.00/ < ] ( + ), D(f) = ( + ), R () = Další varianty této úlohy s jinými funkcemi f lze nalézt ve sbírce [], kde jsou uvedeny s výsledky vybrané úlohy z úloh č. 0 až 76 (pro zkoušku B bez vyjádření zbytku a bez odhadu chyby). 5

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy

Více

Matematika I A ukázkový test 1 pro 2014/2015

Matematika I A ukázkový test 1 pro 2014/2015 Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)

Více

MATEMATIKA II - vybrané úlohy ze zkoušek (2015)

MATEMATIKA II - vybrané úlohy ze zkoušek (2015) MATEMATIKA II - vybrané úlohy ze zkoušek (2015) doplněné o další úlohy 24. 2. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi (e-mail: Frantisek.Mraz@fs.cvut.cz

Více

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní

Více

Definice derivace v bodě

Definice derivace v bodě Definice derivace v bodě tgϕ = f ( ) f () f () : = tgϕ = lim f f () tgϕ = f f () Obecně: f f f ( ) ( ) : = lim f ( + h) f f : = lim h h Derivace zleva (zprava): f ( ) : = lim f f ( ) f ( ) : = lim + +

Více

Pro jakou hodnotu parametru α jsou zadané vektory kolmé? (Návod: Vektory jsou kolmé, je-li jejich skalární součin roven nule.)

Pro jakou hodnotu parametru α jsou zadané vektory kolmé? (Návod: Vektory jsou kolmé, je-li jejich skalární součin roven nule.) Vybrané příklady ze skript J. Neustupa, S. Kračmar: Sbírka příkladů z Matematiky I I. LINEÁRNÍ ALGEBRA I.. Vektory, vektorové prostory Jsou zadány vektory u, v, w a reálná čísla α, β, γ. Vypočítejte vektor

Více

Diferenciální počet funkcí jedné proměnné

Diferenciální počet funkcí jedné proměnné Diferenciální počet funkcí jedné proměnné 1 4. Derivace funkce 4.3. Průběh funkce 2 Pro přesné určení průběhu grafu funkce je třeba určit bližší vlastnosti funkce. Monotónnost funkce Funkce monotónní =

Více

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné 66 I. Diferenciální počet funkcí jedné proměnné I. 5. Vyšetřování průběhu funkce Monotonie a lokální etrémy Důsledek. Nechť má funkce f) konečnou derivaci na intervalu I. Je-li f ) > 0 pro každé I, pak

Více

NMAF 051, ZS Zkoušková písemná práce 17. února ( sin (π 2 arctann) lim + 3. n 2. π 2arctan n. = lim + 3.

NMAF 051, ZS Zkoušková písemná práce 17. února ( sin (π 2 arctann) lim + 3. n 2. π 2arctan n. = lim + 3. Jednotlivé kroky při výpočtech stručně ale co nejpřesněji odůvodněte. Pokud používáte nějaké tvrzení nezapomeňte ověřit splnění předpokladů. Jméno a příjmení: Skupina: Příklad 3 Celkem bodů Bodů 5 7 0

Více

PRŮBĚH FUNKCE - CVIČENÍ

PRŮBĚH FUNKCE - CVIČENÍ MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA PRŮBĚH FUNKCE - CVIČENÍ Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny

Více

NMAF 051, ZS Zkoušková písemná práce 4. února 2009

NMAF 051, ZS Zkoušková písemná práce 4. února 2009 Jednotlivé kroky při výpočtech stručně, ale co nejpřesněji odůvodněte. Pokud používáte nějaké tvrzení, nezapomeňte ověřit splnění předpokladů. Jméno a příjmení: Skupina: Příklad 4 Celkem bodů Bodů 4 4

Více

{ } Ox ( 0) 4.2. Konvexnost, konkávnost, inflexe. Definice Obr. 52. Poznámka. nad tečnou

{ } Ox ( 0) 4.2. Konvexnost, konkávnost, inflexe. Definice Obr. 52. Poznámka. nad tečnou Konvenost, konkávnost, inflee 4.. Konvenost, konkávnost, inflee Definice 4... Nechť eistuje f ( ), D f. Řekneme, že funkce f ( ) je v bodě konkávní, jestliže eistuje { } O ( ) tak, že platí D : O( )\ f(

Více

Katedra aplikované matematiky, VŠB TU Ostrava.

Katedra aplikované matematiky, VŠB TU Ostrava. SBÍRKA PŘÍKLADŮ Z MATEMATICKÉ ANALÝZY JIŘÍ BOUCHALA Katedra aplikované matematiky, VŠB TU Ostrava jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala 3 Předmluva Cílem této sbírky je poskytnout studentům vhodné

Více

1. Písemka skupina A...

1. Písemka skupina A... . Písemka skupina A.... jméno a příjmení Načrtněte grafy funkcí (v grafu označte všechny průsečíky funkce s osami a asymptoty). y y sin 4 y y arccos ) Určete, jestli je funkce y ln prostá? ) Je funkce

Více

Seminární práce z matematiky

Seminární práce z matematiky Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Seminární práce z matematiky Vyšetřování průběhu funkcí Autor: Vyučující: Ondřej Vejpustek RNDr Eva Davidová Ostrava, 0 Taylorův polynom pro

Více

PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ

PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ Dierenciální počet unkcí jedné reálné proměnné - 5 - PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ Cílem vyšetřování průběhu unkce je umět nakreslit její gra Obvykle postupujeme tak že nalezneme její maimální deiniční

Více

MATEMATIKA II - vybrané úlohy ze zkoušek v letech

MATEMATIKA II - vybrané úlohy ze zkoušek v letech MATEMATIKA II - vybrané úlohy ze zkoušek v letech 2009 2012 doplněné o další úlohy 3. část KŘIVKOVÉ INTEGRÁLY, GREENOVA VĚTA, POTENIÁLNÍ POLE, PLOŠNÉ INTEGRÁLY, GAUSSOVA OSTROGRADSKÉHO VĚTA 7. 4. 2013

Více

c ÚM FSI VUT v Brně 20. srpna 2007

c ÚM FSI VUT v Brně 20. srpna 2007 20. srpna 2007 1. f = 3 12 2. f = 2 e 3. f = ln Příklad 1. Nakreslete graf funkce f() = 3 12 Příklad 1. f = 3 12 Nejprve je třeba určit definiční obor. Výraz je vždy definován. Příklad 1. f = 3 12 f =

Více

MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015)

MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015) MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015 doplněné o další úlohy 13. 4. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi ( e-mail: Frantisek.Mraz@fs.cvut.cz.

Více

( ) ( ) ( ) ( ) ( ) ( ) Užití derivací. x, x a, b : x x f x f x MATA P12. Funkce rostoucí a klesající: Definice rostoucí a klesající funkce

( ) ( ) ( ) ( ) ( ) ( ) Užití derivací. x, x a, b : x x f x f x MATA P12. Funkce rostoucí a klesající: Definice rostoucí a klesající funkce MATA P1 Užití derivací Funkce rostoucí a klesající: Deinice rostoucí a klesající unkce Funkce je rostoucí v intervalu (a,b), právě když platí: ( ) ( ) ( ), a, b : 1 1 1 Funkce je klesající v intervalu

Více

Matematika I A ukázkový test 1 pro 2018/2019

Matematika I A ukázkový test 1 pro 2018/2019 Matematka I A ukázkový test 1 pro 2018/2019 1. Je dána soustava rovnc s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napšte Frobenovu větu (předpoklady + tvrzení). b) Vyšetřete

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/4.080 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/ Inovace a zkvalitnění výuky prostřednictvím

Více

NMAF 051, ZS Zkoušková písemná práce 16. ledna 2009

NMAF 051, ZS Zkoušková písemná práce 16. ledna 2009 Jednotlivé kroky při výpočtech stručně, ale co nejpřesněji odůvodněte. Pokud používáte nějaké tvrzení, nezapomeňte ověřit splnění předpokladů. Jméno a příjmení: Skupina: Příklad 3 5 Celkem bodů Bodů 8

Více

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Označení derivace čárkami, resp. římskými číslicemi, volíme při nižším řádu derivace, jinak užíváme horní index v závorce f (5), f (6),... x c g (x).

Označení derivace čárkami, resp. římskými číslicemi, volíme při nižším řádu derivace, jinak užíváme horní index v závorce f (5), f (6),... x c g (x). 9 Využití derivace 9.1 Derivace vyšších řádů Definice 1. Nechť funkce má derivaci v nějakém okolí bodu c D(f). Nechť funkce ϕ() =f () máderivacivboděc. Pak hodnotu ϕ (c) nazýváme derivací 2. řádu (2. derivací)

Více

13. DIFERENCIÁLNÍ A INTEGRÁLNÍ POČET

13. DIFERENCIÁLNÍ A INTEGRÁLNÍ POČET . DIFERENCIÁLNÍ A INTEGRÁLNÍ POČET Dovednosti: Chápat pojem limita funkce v bodě a ovládat výpočet jednoduchých limit.. Na základě daného grafu funkce umět odhadnout limity v nevlastních bodech a nevlastní

Více

WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 2017

WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 2017 Matematika I - Sbírka příkladů WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 7 Obsah Limity a spojitost. l Hôpitalovo pravidlo zakázáno............................ 4. l Hôpitalovo pravidlo povoleno............................

Více

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Funkce RNDR. Yvetta Bartáková Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Derivace funkce VY INOVACE_05 0_M Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Definice Mějme funkci f definovanou v okolí bodu 0. Eistuje-li

Více

. (x + 1) 2 rostoucí v intervalech (, 1) a. ) a ( 2, + ) ; rostoucí v intervalu ( 7, 2) ; rostoucí v intervalu,

. (x + 1) 2 rostoucí v intervalech (, 1) a. ) a ( 2, + ) ; rostoucí v intervalu ( 7, 2) ; rostoucí v intervalu, Příklad Najděte intervaly monotonie a lokální etrémy funkce f() = +. ( + ) ( rostoucí v intervalech (, ) a 7, + ) klesající v intervalu ( ), 7 5 5 v bodě = 7 5 je lokální minimum 4. Najděte intervaly monotonie

Více

Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, )

Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, ) Příklady na konvexnost a inflexní body. Funkce = x 3 9x. Derivace jsou f (x) = 3x 9 a f (x) = 6x. Funkce f je konvexní na intervalu (, ) a konkávní na intervalu (, ). Inflexní bod c =. 3 1 1 y = x 3 9x

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015 Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární

Více

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce)

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce) Předmět: Ročník: Vytvořil: Datum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: LOKÁLNÍ EXTRÉMY LOKÁLNÍ EXTRÉMY (maimum a minimum funkce) Lokální etrémy jsou body, v nichž funkce

Více

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy

Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy funkcí, průběh funkce) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 5. přednáška z AMA1 Michal Fusek (fusekmi@feec.vutbr.cz)

Více

Ukázka závěrečného testu

Ukázka závěrečného testu Okruhy otázek pro závěrečný test ) Vlastnosti funkce ) Graf funkce ) Definiční obor funkce ) imita funkce ) Derivace funkce 6) Užití derivace 7) Matice 8) Řešení soustavy lineárních rovnic 9) Určitý integrál

Více

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6 Příklad 1 Vyšetřete průběh funkce: a) = b) = c) = d) =ln1+ e) =ln f) = Poznámka K vyšetřování průběhu funkce použijeme postup uvedený v zadání. Některé kroky nejsou již tak detailní, všechny by ale měly

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Univerzita Karlova v Praze Pedagogická akulta DRUHÁ SEMINÁRNÍ PRÁCE Z DIFERENCIÁLNÍHO POČTU PRŮBĚH FUNKCE 000/001 Cirik, M-ZT Zadání: Vyšetřete průběh unkce ( ) : y Vypracování: ( ) : y Předně určíme deiniční

Více

. 1 x. Najděte rovnice tečen k hyperbole 7x 2 2y 2 = 14, které jsou kolmé k přímce 2x+4y 3 = 0. 2x y 1 = 0 nebo 2x y + 1 = 0.

. 1 x. Najděte rovnice tečen k hyperbole 7x 2 2y 2 = 14, které jsou kolmé k přímce 2x+4y 3 = 0. 2x y 1 = 0 nebo 2x y + 1 = 0. Diferenciální počet příklad s výsledky ( Najděte definiční obor funkce f() = ln arcsin + ) D f = (, 0 Najděte rovnici tečny ke grafu funkce f() = 3 +, která je rovnoběžná s přímkou y = 4 4 y 4 = 0 nebo

Více

Rolleova věta. Mějme funkci f, která má tyto vlastnosti : má derivaci c) f (a) = f (b). a) je spojitá v a, b b) v každém bodě a,b

Rolleova věta. Mějme funkci f, která má tyto vlastnosti : má derivaci c) f (a) = f (b). a) je spojitá v a, b b) v každém bodě a,b Průběh unkce Rolleova věta Mějme unkci, která má tto vlastnosti : a) je spojitá v a, b b) v každém bodě a,b má derivaci c) (a) = (b). b Potom eistuje v a, alespoň jeden bod c, v němž ( c) : 1, 3 0 1 1

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Průběh funkce ZVMT lesnictví 1 / 21

LDF MENDELU. Simona Fišnarová (MENDELU) Průběh funkce ZVMT lesnictví 1 / 21 Průběh funkce Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu

Více

Derivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace

Derivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace Derivace funkce Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Směrnice přímk Derivace a její geometrický význam 3 Definice derivace 4 Pravidla a vzorce pro derivování 5 Tečna a normála 6 Derivace

Více

MASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii

MASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii MASARYKOVA UNIVERZITA Přírodovědecká fakulta Řešené příklad na etrém a průběh funkce se zaměřením na ekonomii Bakalářská práce Veronika Kruttová Brno 008 Prohlášení: Prohlašuji, že jsem svou bakalářskou

Více

MATEMATIKA I DIFERENCIÁLNÍ POČET I FAKULTA STAVEBNÍ MODUL BA01 M06, GA01 M05 DERIVACE FUNKCE

MATEMATIKA I DIFERENCIÁLNÍ POČET I FAKULTA STAVEBNÍ MODUL BA01 M06, GA01 M05 DERIVACE FUNKCE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL BA0 M06, GA0 M05 DIFERENCIÁLNÍ POČET I DERIVACE FUNKCE STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 0 Typeset by L

Více

f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 =

f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 = Řešení vzorové písemky z předmětu MAR Poznámky: Řešení úloh ze vzorové písemky jsou formulována dosti podrobně podobným způsobem jako u řešených příkladů ve skriptech U zkoušky lze jednotlivé kroky postupu

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/1 BA06 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2014 1 (1) Určete rovnici kručnice o

Více

Obsah. Derivace funkce. Petr Hasil. L Hospitalovo pravidlo. Konvexnost, konkávnost a inflexní body Asymptoty

Obsah. Derivace funkce. Petr Hasil. L Hospitalovo pravidlo. Konvexnost, konkávnost a inflexní body Asymptoty Petr Hasil Přednáška z Matematické analýzy I c Petr Hasil (MUNI) MA I (M0) / 46 Obsah Základní vlastnosti derivace Geometrický význam derivace Věty o střední hodnotě L Hospitalovo pravidlo 2 Etrémy Konvenost,

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika AA01. Cvičení, zimní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika AA01. Cvičení, zimní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika AA0 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2005 () Jsou dány matice A = AB BA. [ AB BA

Více

Aplikace derivace a průběh funkce

Aplikace derivace a průběh funkce Aplikace derivace a průběh funkce Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 10. přednáška Blanka Šedivá KMA zimní semestr 016/017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 016/017 1 / 1 Použití derivace pro vyšetřování průběhu funkce

Více

Zimní semestr akademického roku 2015/ ledna 2016

Zimní semestr akademického roku 2015/ ledna 2016 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Zimní semestr akademického roku 015/016 5. ledna 016 Obsah Cvičení Předmluva iii

Více

Pavlína Matysová. 5. listopadu 2018

Pavlína Matysová. 5. listopadu 2018 Soubor řešených úloh Vyšetřování průběhu funkce Pavlína Matysová 5. listopadu 018 1 Soubor řešených úloh Tento text obsahuje 7 úloh na téma vyšetřování průběhu funkce. Každé úloha je řešena dvěma způsoby

Více

Zimní semestr akademického roku 2014/ prosince 2014

Zimní semestr akademického roku 2014/ prosince 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 7. prosince 2014 Předmluva

Více

3. ledna list a odevzdejte tento zvláštní list (listy) i všechny ostatní listy, které jste při řešení

3. ledna list a odevzdejte tento zvláštní list (listy) i všechny ostatní listy, které jste při řešení Jméno a příjmení: Písemná část zkoušky z předmětu AN1E 3. ledna 2019 Skutečná písemná práce bude obsahovat 5 příkladů. Zvolte si pořadí, v jakém budete příklady řešit. Vaše řešení nemusí být kulturně zapsané,

Více

2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost

2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost .7. Průběh unkce Všetřit průběh unkce znamená určit ne nutně v tomto pořadí: deiniční obor; sudost, lichost; periodičnost, interval spojitosti a bod nespojitosti, průsečík grau unkce s osami, interval,

Více

IX. Vyšetřování průběhu funkce

IX. Vyšetřování průběhu funkce IX. Vyšetřování průběhu funkce Úvodní poznámky: Cíl: vyšetřit průběh dané funkce f. Zahrnuje: základní vlastnosti: D(f), spojitost, limity v krajních bodech, průsečíky s osami souřadnic, intervaly, kde

Více

Derivace a monotónnost funkce

Derivace a monotónnost funkce Derivace a monotónnost funkce Věta : Uvažujme funkci f (x), která má na intervalu I derivaci f (x). Pak platí: je-li f (x) > 0 x I, funkce f je na intervalu I rostoucí. je-li f (x) < 0 x I, funkce f je

Více

7.1 Extrémy a monotonie

7.1 Extrémy a monotonie KAPITOLA 7: Průběh funkce [ZMA13-P38] 7.1 Extrémy a monotonie Řekneme, že funkce f nabývá na množině M Df svého globálního maxima globálního minima A v bodě x 0, jestliže x 0 M, fx 0 = A a pro každé x

Více

Aplikace derivace ( )

Aplikace derivace ( ) Aplikace derivace Mezi aplikace počítáme:. LHospitalovo pravidlo. Etrémy funkce (růst a pokles funkce) 3. Inflee (konávnost a konvenost). Asymptoty funkce (se i bez směrnice) 5. Průběh funkce 6. Ekonomické

Více

Přijímací zkouška pro nav. magister. studium, obor učitelství F-M, 2012, varianta A

Přijímací zkouška pro nav. magister. studium, obor učitelství F-M, 2012, varianta A Přijímací zkouška pro nav. magister. studium, obor učitelství F-M, 1, varianta A Příklad 1 (5 bodů) Koule o poloměru R1 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční

Více

Derivace funkce. existuje limita lim 0 ) xx xx0. Jestliže tato limita neexistuje nebo pokud funkce ff

Derivace funkce. existuje limita lim 0 ) xx xx0. Jestliže tato limita neexistuje nebo pokud funkce ff Derivace funkce Derivace je základním pojmem v diferenciálním počtu. Má uplatnění tam, kde se zkoumá povaha funkčních závislostí určitých proměnných (veličin). V matematice, ekonomii, fyzice ale i v jiných

Více

f( x) x x 4.3. Asymptoty funkce Definice lim f( x) =, lim f( x) =, Jestliže nastane alespoň jeden z případů

f( x) x x 4.3. Asymptoty funkce Definice lim f( x) =, lim f( x) =, Jestliže nastane alespoň jeden z případů 3 Výklad Definice 3 Jestliže nastane alespoň jeden z případů lim =, lim =, + + lim =, lim =, kde ( D ), pak říkáme, že přímka = je asymptotou funkce f() v bodě f Jestliže lim ( k q) =, resp lim ( k q)

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika BA01. Cvičení, zimní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika BA01. Cvičení, zimní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika BA0 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 005 () Určete rovnici kručnice o poloměru

Více

Diferenciální počet funkcí více proměnných

Diferenciální počet funkcí více proměnných Vysoké učení technické v Brně Fakulta strojního inženýrství Diferenciální počet funkcí více proměnných Doc RNDr Miroslav Doupovec, CSc Neřešené příklady Matematika II OBSAH Obsah I Diferenciální počet

Více

Přijímací zkouška na navazující magisterské studium 2018

Přijímací zkouška na navazující magisterské studium 2018 Přijímací zkouška na navazující magisterské studium 2018 Řešení příkladů pečlivě odůvodněte. Příklad 1 (2 bodů) Studijní program: Studijní obory: Varianta A Matematika MMUI Navrhněte deterministický konečný

Více

MATEMATIKA A Metodický list č. 1

MATEMATIKA A Metodický list č. 1 Metodický list č. 1 Název tématického celku: Lineární algebra I Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a poukázat na jejich vzájemnou souvislost. Posluchači

Více

Matematická analýza 1, příklady na procvičení (Josef Tkadlec, )

Matematická analýza 1, příklady na procvičení (Josef Tkadlec, ) Matematická analýza, příklady na procvičení (Josef Tkadlec, 6.. 7) Reálná čísla. Určete maximum, minimum, supremum a infimum následujících množin: Z; b) M = (, ), 5 ; c) M =, Q; d) M = { + n : n N}; e)

Více

Význam a výpočet derivace funkce a její užití

Význam a výpočet derivace funkce a její užití OPAKOVÁNÍ ZÁKLADŮ MATEMATIKY Metodický list č. 1 Význam a výpočet derivace funkce a její užití 1. dílčí téma: Výpočet derivace přímo z definice a pomocí základních vzorců. K tomuto tématu je třeba zopakovat

Více

METODICKÝ NÁVOD MODULU

METODICKÝ NÁVOD MODULU Centrum celoživotního vzdělávání METODICKÝ NÁVOD MODULU Název Základy matematiky modulu: Zkratka: ZM Počet kreditů: 4 Semestr: Z/L Mentor: Petr Dolanský Tutor: Petr Dolanský I OBSAH BALÍČKU STUDIJNÍCH

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

Cvičení 1 Elementární funkce

Cvičení 1 Elementární funkce Cvičení Elementární funkce Příklad. Najděte definiční obor funkce f = +. + = + =, = D f =,. Příklad. Najděte definiční obor funkce f = 3. 3 3 = > 3 3 + =, 3, 3 = D f =, 3, 3. ± 3 = Příklad 3. Nalezněte

Více

Derivace úvod. Jak zjistit míru změny?

Derivace úvod. Jak zjistit míru změny? Derivace úvod P ČEZ Jak zjistit míru změny? Derivace nám dá odpověď jestli je funkce: rostoucí/klesající konkávní/konvení jak moc je strmá jak moc roste kde má maimum/minimum 1000 700 P ČEZ P ČEZ 3% 4%

Více

Zlín, 23. října 2011

Zlín, 23. října 2011 (. -. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 3. října 0 Postup při vyšetřování průběhu funkce. Definiční obor funkce,

Více

Limita a spojitost funkce a zobrazení jedné reálné proměnné

Limita a spojitost funkce a zobrazení jedné reálné proměnné Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé

Více

Kapitola 1. Léto 2011

Kapitola 1. Léto 2011 Kapitola 1 Léto 2011 1 Písemná část zkoušky z Matematiky (LDF, 25.5.2011) 60 minut Jméno:................................. 1. [11 bodů] Vyšetřete průběh funkce 1 y (určete intervaly kde je 2 ( + 1) funkce

Více

Vyšetřování průběhu funkce pomocí programu MatLab. 1. Co budeme potřebovat?

Vyšetřování průběhu funkce pomocí programu MatLab. 1. Co budeme potřebovat? Vyšetřování průběhu funkce pomocí programu MatLab K práci budeme potřebovat následující příkazy pro 1. Co budeme potřebovat? (a) zadání jednotlivých výrazů symbolicky (obecně) (b) řešení rovnice f()=0,

Více

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y = 0.1 Diferenciální počet Je částí infinitezimálního počtu, což je souhrnný název pro diferenciální a integrální počet. Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si

Více

Přijímací zkouška na navazující magisterské studium 2014

Přijímací zkouška na navazující magisterské studium 2014 Přijímací zkouška na navazující magisterské studium 4 Studijní program: Studijní obory: Příklad (5 bodů) Spočtěte Matematika MA, MMIB, MMFT, MSTR, NVM, PMSE, MDU Varianta A M xy dxdy, kde M = {(x, y) R

Více

Diferenciální počet funkce jedné proměnné 1

Diferenciální počet funkce jedné proměnné 1 Diferenciální počet funkce jedné proměnné Limita funkce Pojem limita můžeme česk vjádřit jako mez, případně hranice Zavedení pojmu limita si objasníme na příkladu Příklad : Funkce f ( ) Obr 6: Graf funkce

Více

Exponenciální funkce. Exponenciální funkcí o základu a se nazývá funkce, která je daná rovnicí. Číslo a je kladné číslo, různé od jedničky a xεr.

Exponenciální funkce. Exponenciální funkcí o základu a se nazývá funkce, která je daná rovnicí. Číslo a je kladné číslo, různé od jedničky a xεr. Exponenciální funkce Exponenciální funkcí o základu a se nazývá funkce, která je daná rovnicí y = a x Číslo a je kladné číslo, různé od jedničky a xεr. Definičním oborem exponenciální funkce je tedy množina

Více

Limita a spojitost funkce

Limita a spojitost funkce Přednáška 5 Limita a spojitost funkce V této přednášce se konečně dostaneme k diferenciálnímu počtu funkce jedné reálné proměnné. Diferenciální počet se v podstatě zabývá lokálním chováním funkce v daném

Více

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná.

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná. Matmatika I část II Graf funkc.. Graf funkc Výklad Chcm-li určit graf funkc můžm vužít přdchozích znalostí a určit vlastnosti funkc ktré shrnm do níž uvdných bodů. Můž s stát ž funkc něktrou z vlastností

Více

dx se nazývá diferenciál funkce f ( x )

dx se nazývá diferenciál funkce f ( x ) 6 Výklad Definice 6 Nechť je 0 vnitřním bodem definičního oboru D f funkce f ( ) Funkce proměnné d = 0 definovaná vztahem df ( 0) = f ( 0) d se nazývá diferenciál funkce f ( ) v bodě 0, jestliže platí

Více

Průběh funkce pomocí systému MAPLE.

Průběh funkce pomocí systému MAPLE. Průběh funkce pomocí systému MAPLE. Vyšetřování průběhu funkce je komplení a někdy velmi obtížná úloha. V konkrétních aplikacích nás většinou zajímají jen některé otázky týkající se průběhu dané funkce.

Více

Přijímací zkouška na navazující magisterské studium 2018

Přijímací zkouška na navazující magisterské studium 2018 Přijímací zkouška na navazující magisterské studium 208 Studijní program: Studijní obory: Matematika MA, MMIT, MMFT, MSTR, MNVM, MPMSE Varianta A Řešení příkladů pečlivě odůvodněte. Věnujte pozornost ověření

Více

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Průběh funkce Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Průběh funkce Průběhem funkce rozumíme určení vlastností funkce

Více

Průběh funkce pomocí systému MAPLE.

Průběh funkce pomocí systému MAPLE. Průběh funkce pomocí systému MAPLE. Vyšetřování průběhu funkce je komplení a někdy velmi obtížná úloha. V konkrétních aplikacích nás většinou zajímají jen některé otázky týkající se průběhu dané funkce.

Více

Přijímací zkouška na navazující magisterské studium 2015

Přijímací zkouška na navazující magisterské studium 2015 Přijímací zkouška na navazující magisterské studium 2015 Studijní program: Studijní obory: Matematika MMUI Varianta A Řešení příkladů pečlivě odůvodněte. Příklad 1 (25 bodů Navrhněte deterministický konečný

Více

I. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou

I. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou Typy příkladů pro I. část písemky ke zkoušce z MA II I. Diferenciální rovnice. 1. Určete obecné řešení rovnice y = y sin x.. Určete řešení rovnice y = y x splňující počáteční podmínku y(1) = 0. 3. Rovnici

Více

7. Funkce jedné reálné proměnné, základní pojmy

7. Funkce jedné reálné proměnné, základní pojmy , základní pojmy POJEM FUNKCE JEDNÉ PROMĚNNÉ Reálná funkce f jedné reálné proměnné je funkce (zobrazení) f: X Y, kde X, Y R. Jde o zvláštní případ obecného pojmu funkce definovaného v přednášce. Poznámka:

Více

Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla.

Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla. Lineární funkce Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla. Číslo b je hodnota funkce f v bodě 0. Definičním oborem lineární funkce je množina

Více

Vysoká škola polytechnická Jihlava. Obor Finance a řízení. Matematika 1,2 - Miloš Kraus

Vysoká škola polytechnická Jihlava. Obor Finance a řízení. Matematika 1,2 - Miloš Kraus Vysoká škola polytechnická Jihlava Obor Finance a řízení Matematika, - cvičení Miloš Kraus. vydání září 005 Obsah Matematická logika 5 Funkce a jejich vlastnosti 8 3 Inverzní a cyklometrické funkce 5

Více

Výsledky úloh. 1. Úpravy výrazů + x 0, 2x 1 2 2, x Funkce. = f) a 2.8. ( ) ( ) 1.6. , klesající pro a ( 0, ) ), rostoucí pro s (, 1)

Výsledky úloh. 1. Úpravy výrazů + x 0, 2x 1 2 2, x Funkce. = f) a 2.8. ( ) ( ) 1.6. , klesající pro a ( 0, ) ), rostoucí pro s (, 1) Výsledky úloh. Úpravy výrazů.. +, + R.., a 0, a b.., a ± b, a b a b a +.. + a +, 0, a.., a 0; ± ; n + a.. a + b 9, > 0.7., a ± b a b m n.8., m 0, n 0, m n.9. a, a > 0 m + n.0., ;0; ;;.., k.. tg, k sin.

Více

6. Bez použití funkcí min a max zapište formulí predikátového počtu tvrzení, že každá množina

6. Bez použití funkcí min a max zapište formulí predikátového počtu tvrzení, že každá množina Instrukce: Příklady řešte výhradně elementárně, bez použití nástrojů z diferenciálního a integrálního počtu. Je-li součástí řešení úlohy podmnožina reálných čísel, vyjádřete ji jako disjunktní sjednocení

Více

30. listopadu Derivace. VŠB-TU Ostrava. Dostupné: s1a64/cd/index.htm.

30. listopadu Derivace. VŠB-TU Ostrava. Dostupné:   s1a64/cd/index.htm. KMA/MAT1 Přednáška a cvičení č. 11 30. listopadu 2017 [KS] Jaromír Kuben Petra Šarmanová: Diferenciální počet funkcí jedné proměnné. VŠB-TU Ostrava. Dostupné: http://homel.vsb.cz/ s1a64/cd/inde.htm. 1

Více

Logaritmus. Logaritmus kladného čísla o základu kladném a různém od 1 je exponent, kterým. umocníme základ a, abychom dostali číslo.

Logaritmus. Logaritmus kladného čísla o základu kladném a různém od 1 je exponent, kterým. umocníme základ a, abychom dostali číslo. Logaritmus Logaritmus kladného čísla o základu kladném a různém od 1 je exponent, kterým umocníme základ a, abychom dostali číslo. Platí tedy: logax = y a y = x ( Dekadický logaritmus základ 10 označení

Více

NMAF 051, ZS Zkoušková písemná práce 26. ledna x. x 1 + x dx. q 1. u = x = 1 u2. = 1 u. u 2 (1 + u 2 ) (1 u 2 du = 2.

NMAF 051, ZS Zkoušková písemná práce 26. ledna x. x 1 + x dx. q 1. u = x = 1 u2. = 1 u. u 2 (1 + u 2 ) (1 u 2 du = 2. Jednotlivé kroky při výpočtech stručně, ale co nejpřesněji odůvodněte Pokud používáte nějaké tvrzení, nezapomeňte ověřit splnění předpokladů Jméno a příjmení: Skupina: Příklad 4 Celkem bodů Bodů 5 6 8

Více

y = 1/(x 3) - 1 x D(f) = R D(f) = R\{3} D(f) = R H(f) = ( ; 2 H(f) = R\{ 1} H(f) = R +

y = 1/(x 3) - 1 x D(f) = R D(f) = R\{3} D(f) = R H(f) = ( ; 2 H(f) = R\{ 1} H(f) = R + Funkce. Vlastnosti funkcí Funkce f proměnné R je zobrazení na množině reálných čísel (reálnému číslu je přiřazeno právě jedno reálné číslo). Z grafu poznáme, zda se jedná o funkci tak, že nenajdeme žádnou

Více

10. cvičení - LS 2017

10. cvičení - LS 2017 10. cvičení - LS 2017 Michal Outrata Příklad 1 Spočtěte následující itu daných posloupností: (a) (b) (c) n 3 +5n 2 n 3 6n 2 +3 n ; n 4 3n 2 6 n 4 + 3n 2 + 6; n 2 15n+2(1 n). 2(n 2) 3 2n 3 Příklad 2 Pro

Více