Přednáška. Další rozdělení SNP. Limitní věty. Speciální typy rozdělení. Další rozdělení SNP Limitní věty Speciální typy rozdělení
|
|
- David Mašek
- před 2 lety
- Počet zobrazení:
Transkript
1 VI Přednáška Další rozdělení SNP Limitní věty Speciální typy rozdělení
2 Rovnoměrné rozdělení R(a,b) Příklad Obejít celý areál trvá strážnému 30 minut. Jaká je pravděpodobnost, že u vrátnice budete čekat méně než 10 minut, než se vrátí?
3 Rovnoměrné rozdělení R(a,b) Na celém intervalu (a,b) R je jistota rozprostřena rovnoměrně. (Čekání na konec pravidelného cyklu.) a < b meze intervalu 1 f(x) = b a, jestliže x a,b 0, jestliže x / a,b 0, jestliže x (,a) x a F(x) = b a, jestliže x a,b 1, jestliže x (b, ) E(X) = a + b, 2 var(x) = b a 12,
4 Rovnoměrné rozdělení R(a,b) Graf hustoty a distribuční funkce 1 0 b a 0 1 a b a b
5 Exponenciální rozdělení, Ex(λ) Příklad Telefonistka vyřizuje v průměru 30 hovorů do hodiny. Jaká je pravděpodobnost, že v průběhu minuty přijde alespoň 1 hovor? Poissonovo rozdělení λ = 0,5 1 P(X 1) Po(0,5). Jaká je pravděpodobnost, že přijme alespoň jeden hovor za t minut? P(X t) = 1 e λt
6 Exponenciální rozdělení, Ex(λ) Doba čekání na (poissonovský) náhodný jev. 1 λ průměrná doba čekání, délka intervalu mezi jevy, D = 0, ), { 0, jestliže x < 0 f(x) = λ e λ x, jestliže x 0 { 0, jestliže x < 0 F(x) = 1 e λ x, jestliže x 0 E(X) = λ, var(x) = λ 2,
7 Exponenciální rozdělení, Ex(λ) Grafy hustoty a distribuční funkce 0 λ
8 Příklad Jaká je pravděpodobnost, že budeme na strážného čekat 2 minuty? Jaká je pravděpodobnost, že budeme čekat dvě minuty, jestliže už čekáme 6 minut? P(a + t x) P(a x) = P(t x) Nemá paměť. tj. doba čekání nezávisí na tom jak dlouho jsme čekali.
9 Centrální limitní věta Věta X 1,X 2,...,X n jsou nezávislé a mají stejné rozdělení se střední hodnotou E(X i ) = µ a rozptylem σ 2, pak s rostoucím n n rozdělení X = X i se blíží N(nµ,nσ 2 ), i=1 rozdělení X = 1 n X i se blíží N ( µ, 1 n n σ2), i=1 n rozdělení X i=1 = X i nµ se blíží N(0,1), n σ
10 Aplikace centrální limitní věty, Bi N X má binomické rozdělení Bi(n,p), X je součtem X 1,X 2,...,X n s rozdělením A(p), E(X i ) = p, var(x i ) = p(1 p), s rostoucím n můžeme X aproximovat normálním rozdělením Bi(n,p) N ( np,np(1 p) ) Bi(30,0,2) N ( 6; 4,8 )
11 Aplikace centrální limitní věty, Bi N Pokud X má rozložení Bi(n,p), a X = X n p n p (1 p) (standardizace) lim n P(X x) = 1 e 2 1 x2 2π tj. X má pro velká n přibližně rozdělení N(0,1) Známe z minula, (motivace k zavedení normálního rozdělení).
12 Aplikace centrální limitní věty, Po N X má Poissonovo rozdělení Po(λ), pokud λ = n N, X je součtem X 1,X 2,...,X n s rozdělením Po(1), E(X i ) = 1, var(x i ) = 1, s rostoucím n můžeme X aproximovat normálním rozdělením Po(n) N(n,n) Po(10) N ( 10; 10 )
13 Aplikace centrální limitní věty, Bi Po Po(λ) N(λ,λ), (λ = 16) Bi(n,p) N ( np,np(1 p) ), (n = 80, p = 0,2) pokud 1 1 p tj. p je malé, pak np np(1 p) Po(np) Bi(n,p)
14 Čebyševův vzorec Odhad pravděpodobnosti, E(X) = µ střední hodnota var(x) = σ 2 rozptyl ε > 0 přípustná odchylka (Často volíme ε = kσ). P(ε X µ ) σ2 ε 2 Poskytuje jen velmi přibližný odhad, zato pro libovolné rozdělení.
15 Pearsonovo rozdělení χ 2 (n) Součet druhých mocnin náhodných veličin s normálním rozdělením, X 1,...,X n mají rozdělení N(0,1) X = X X2 n n stupně volnosti (nezávislé sčítance) D = (0, ), f(x) a F(X) jsou pro různé stupně volnosti tabelovány, E(X) = n, var(x) = 2n,
16 Pearsonovo rozdělení χ 2 (n) n = 20 n = 10 n =
17 Pearsonovo rozdělení χ 2 (n) χ 2 (10),N(10,20) Pro rostoucí n se χ 2 (n) blíží N(n,2n) χ 2 (20),N(20,40) χ 2 (40),N(40,80)
18 Studentovo rozdělení t(n) N má rozdělení N(0,1) X má rozdělení χ 2 (n) T = N X n n stupně volnosti, f(x) a F(X) jsou pro různé stupně volnosti tabelovány, f(x) je sudá, E(T) = 0, var(t) = n n 2,
19 Studentovo rozdělení t(n) pro n > 30 platí t(n) N(0,1) N(0, 1) ν = 5 ν = 2 ν =
20 Fischer-Snedecorovo rozdělení F(m,n) X 1 má rozdělení χ 2 (m) X 2 má rozdělení χ 2 (n) F = X 1 m X 2 n m,n stupně volnosti, D = (0, ), hodnoty jsou pro různé stupně volnosti tabelovány,
21 (5,5) (10,30) (40,40)
Definice spojité náhodné veličiny zjednodušená verze
Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f
Vybraná rozdělení náhodné veličiny
3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.
ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN
ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN Rovnoměrné rozdělení R(a,b) rozdělení s konstantní hustotou pravděpodobnosti v intervalu (a,b) f( x) distribuční funkce 0 x a F( x) a x b b a 1 x b b 1 a x a a x b
MATEMATICKÁ STATISTIKA
MATEMATICKÁ STATISTIKA 1. Úvod. Matematická statistika se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného procesu, se snažíme popsat
Výběrové charakteristiky a jejich rozdělení
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový
LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení
LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení Způsoby statistického šetření Vyčerpávající šetření prošetření všech jednotek statistického souboru (populace) Výběrové šetření ze základního souboru
Přednáška. Diskrétní náhodná proměnná. Charakteristiky DNP. Základní rozdělení DNP
IV Přednáška Diskrétní náhodná proměnná Charakteristiky DNP Základní rozdělení DNP Diskrétní náhodná veličina Funkce definovaná na Ω, přiřazující každému elementárnímu jevu E prvky X(E) D R kde D je posloupnost
ÚVOD. Rozdělení slouží: K přesnému popisu pravděpodobnostního chování NV Střední hodnota, rozptyl, korelace atd.
ROZDĚLENÍ NV ÚVOD Velké skupiny náhodných pokusů vykazují stejné pravděpodobnostní chování Mince panna/orel Výška mužů/žen NV mohou být spojeny s určitým pravděpodobnostním rozdělení (již známe jeho hustotu
Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc.
Náhodné veličiny III Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc. Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman
Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a
Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a báli jste se zeptat Jedinečnou funkcí statistiky je, že umožňuje vědci číselně vyjádřit nejistotu v jeho závěrech. (G. W. Snedecor)
MATEMATIKA III V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 7 Rozdělení pravděpodobnosti spojité náhodné veličiny Mgr. Petr Otipka Ostrava 2013 Mgr. Petr Otipka
Minikurz aplikované statistiky. Minikurz aplikované statistiky p.1
Minikurz aplikované statistiky Marie Šimečková, Petr Šimeček Minikurz aplikované statistiky p.1 Program kurzu základy statistiky a pravděpodobnosti regrese (klasická, robustní, s náhodnými efekty, ev.
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení
KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC
Přednáška 03 Přírodovědecká fakulta Katedra matematiky KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC jiri.cihlar@ujep.cz Diskrétní rozdělení Důležitá diskrétní rozdělení pravděpodobnosti
E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =
Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní
VYBRANÁ ROZDĚLENÍ. SPOJITÉ NÁH. VELIČINY Martina Litschmannová
VYBRANÁ ROZDĚLENÍ SPOJITÉ NÁH. VELIČINY Martina Litschmannová Opakování hustota pravděpodobnosti f(x) Funkce f(x) je hustotou pravděpodobností (na intervalu a x b), jestliže splňuje následující podmínky:
Poznámky k předmětu Aplikovaná statistika, 5.téma
Poznámky k předmětu Aplikovaná statistika, 5.téma 5. Některá významná rozdělení A. Diskrétní rozdělení (i) Diskrétní rovnoměrné rozdělení na množině {,..., n} Náhodná veličina X, která má diskrétní rovnoměrné
Charakterizace rozdělení
Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Náhodný výběr Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií
prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman Kotecký, 2011 Pravděpodobnost
8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.
8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované
NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?
NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU
SPOJITÉ ROZDĚLENÍ PRAVDĚPODOBNOSTI. 7. cvičení
SPOJITÉ ROZDĚLENÍ PRAVDĚPODOBNOSTI 7. cvičení Intenzita poruch Funkce modelující dobu do výskytu události životnost, dobu do poruchy, dobu do relapsu (návratu onemocnění), apod. používáme spolu s distribuční
Pravděpodobnost a statistika I KMA/K413
Pravděpodobnost a statistika I KMA/K413 Konzultace 3 Přírodovědecká fakulta Katedra matematiky jiri.cihlar@ujep.cz Kovariance, momenty Definice kovariance: Kovariance náhodných veličin Dále můžeme dokázat:,
správně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B.
Zkouška z předmětu KMA/PST. Anotace předmětu Náhodné jevy, pravděpodobnost, podmíněná pravděpodobnost. Nezávislé náhodné jevy. Náhodná veličina, distribuční funkce. Diskrétní a absolutně spojitá náhodná
Téma 22. Ondřej Nývlt
Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené
ÚVOD DO TEORIE ODHADU. Martina Litschmannová
ÚVOD DO TEORIE ODHADU Martina Litschmannová Obsah lekce Výběrové charakteristiky parametry populace vs. výběrové charakteristiky limitní věty další rozdělení pravděpodobnosti (Chí-kvadrát (Pearsonovo),
Pravděpodobnost a statistika (BI-PST) Cvičení č. 4
Pravděpodobnost a statistika (BI-PST) Cvičení č. 4 J. Hrabáková, I. Petr, F. Štampach, D. Vašata Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení technické v Praze ZS 2014/2015
marek.pomp@vsb.cz http://homel.vsb.cz/~pom68
Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové
Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.
Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která
Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jestliže opakujeme nezávisle nějaký pokus, můžeme z pozorovaných hodnot sestavit rozdělení relativních četností
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti
1 Klasická pravděpodobnost. Bayesův vzorec. Poslední změna (oprava): 11. května 2018 ( 6 4)( 43 2 ) ( 49 6 ) 3. = (a) 1 1 2! + 1 3!
Výsledky příkladů na procvičení z NMSA0 Klasická pravděpodobnost. 5. ( 4( 43 ( 49 3. 8! 3! 0! = 5 Poslední změna (oprava:. května 08 4. (a! + 3! + ( n+ n! = n k= ( k+ /k! = n k=0 ( k /k!; (b n k=0 ( k
X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní
..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X
Základní typy pravděpodobnostních rozdělení
Základní typy pravděpodobnostních rozdělení Petra Schreiberová, Jiří Krček Katedra matematiky a deskriptivní geometrie Vysoká škola báňská Technická Univerzita Ostrava Ostrava 208 OBSAH Diskrétní rozdělení
Cvičení ze statistiky - 7. Filip Děchtěrenko
Cvičení ze statistiky - 7 Filip Děchtěrenko Minule bylo.. Probrali jsme spojité modely Tyhle termíny by měly být známé: Rovnoměrné rozdělení Střední hodnota Mccalova transformace Normální rozdělení Přehled
Náhodná veličina. Michal Fusek. 10. přednáška z ESMAT. Ústav matematiky FEKT VUT, Michal Fusek
Náhodná veličina Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 10. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 71 Obsah 1 Náhodná veličina 2 Diskrétní náhodná veličina 3
y = 0, ,19716x.
Grafické ověřování a testování vybraných modelů 1 Grafické ověřování empirického rozdělení Při grafické analýze empirického rozdělení vycházíme z empirické distribuční funkce F n (x) příslušné k náhodnému
KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC
Přednáša 04 Přírodovědecá faulta Katedra matematiy KMA/P506 Pravděpodobnost a statistia KMA/P507 Statistia na PC jiri.cihlar@ujep.cz Záon velých čísel Lemma Nechť náhodná veličina nabývá pouze nezáporných
Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka
Náhodná veličina Náhodnou veličinou nazýváme veličinu, terá s určitými p-stmi nabývá reálných hodnot jednoznačně přiřazených výsledům příslušných náhodných pousů Náhodné veličiny obvyle dělíme na dva záladní
z Matematické statistiky 1 1 Konvergence posloupnosti náhodných veličin
Příklady k procvičení z Matematické statistiky Poslední úprava. listopadu 207. Konvergence posloupnosti náhodných veličin. Necht X, X 2... jsou nezávislé veličiny s rovnoměrným rozdělením na [0, ]. Definujme
VYBRANÁ ROZDĚLENÍ. DISKRÉTNÍ NÁH. VELIČINY Martina Litschmannová
VYBRANÁ ROZDĚLENÍ DISKRÉTNÍ NÁH. VELIČINY Martina Litschmannová Opakování Základní pojmy z teorie pravděpodobnosti Co je to náhodná veličina (dále NV)? Číselné vyjádření výsledku náhodného pokusu. Jaké
Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.
Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost
Normální rozložení a odvozená rozložení
I Normální rozložení a odvozená rozložení I.I Normální rozložení Data, se kterými pracujeme, pocházejí z různých rozložení. Mohou být vychýlena (doleva popř. doprava, nebo v nich není na první pohled vidět
AVDAT Náhodný vektor, mnohorozměrné rozdělení
AVDAT Náhodný vektor, mnohorozměrné rozdělení Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Opakování, náhodná veličina, rozdělení Náhodná veličina zobrazuje elementární
I. D i s k r é t n í r o z d ě l e n í
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
p(x) = P (X = x), x R,
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
1. Klasická pravděpodobnost
Příklady 1. Klasická pravděpodobnost 1. Házíme dvakrát kostkou. Jaká je pravděpodobnost, že padne alespoň jedna šestka? 2. Základy teorie pravděpodobnosti vznikly v korespondenci mezi dvěma slavnými francouzskými
Intervalové Odhady Parametrů
Parametrů Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze
ROZDĚLENÍ NÁHODNÝCH VELIČIN
ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)
Bakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika. 1 Úvodní poznámky. Verze: 13. června 2013
Bakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika Podrobnější rozpis okruhů otázek pro třetí část SZZ Verze: 13. června 2013 1 Úvodní poznámky 6 Smyslem SZZ by nemělo být toliko
Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"
Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2009/2010 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.
Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"
Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2010/2011 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.
Náhodná veličina Číselné charakteristiky diskrétních náhodných veličin Spojitá náhodná veličina. Pravděpodobnost
Pravděpodobnost Náhodné veličiny a jejich číselné charakteristiky Petr Liška Masarykova univerzita 19.9.2014 Představme si, že provádíme pokus, jehož výsledek dokážeme ohodnotit číslem. Před provedením
PRAVDĚPODOBNOST A STATISTIKA. Náhodná proměnná Vybraná spojitá rozdělení
PRAVDĚPODOBNOST A STATISTIKA Náhodná proměnná Vybrná spojitá rozdělení Zákldní soubor u spojité náhodné proměnné je nespočetná množin. Z je tedy podmnožin množiny reálných čísel (R). Distribuční funkce
Alternativní rozdělení. Alternativní rozdělení. Binomické rozdělení. Binomické rozdělení
Alternativní rozdělení Alternativní rozdělení Alternativní rozdělení Alternativní rozdělení Náhodná veličina X má alternativní rozdělení s parametrem p, jestliže nabývá hodnot 0 a 1 s pravděpodobnostmi
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
Pravdepodobnosť. Rozdelenia pravdepodobnosti
Pravdepodobnosť Rozdelenia pravdepodobnosti Pravdepodobnosť Teória pravdepodobnosti je matematickým základom pre odvodenie štatistických metód. Základné pojmy náhoda náhodný jav náhodná premenná pravdepodobnosť
Pravděpodobnost a statistika
Pravděpodobnost a statistika Normální rozdělení a centrální limitní věta Vilém Vychodil KMI/PRAS, Přednáška 9 Vytvořeno v rámci projektu 2963/2011 FRVŠ V. Vychodil (KMI/PRAS, Přednáška 9) Normální rozdělení
charakteristiky KGG/STG Zimní semestr Základní statistické charakteristiky, Teoretická rozdělení 1
3. ZákladnZ kladní statistické charakteristiky rozdělení 1 charakteristiky Dva hlavní druhy základnz kladních charakteristik statistického souboru: charakteristiky úrovně,, polohy (středn ední hodnoty)
Zápočtová písemka z Matematiky III (BA04) skupina A
skupina A 0 pro x < 1, ae x pro x 1, ), Pravděpodobnost P (X ) a P (X =.). E (X) a E ( X 1). Hustotu transformované náhodné veličiny Y = (X + 1). F(x) = x 3 pro x (0, 9), Hustotu f(x). Pravděpodobnost
Pravděpodobnost a statistika (BI-PST) Cvičení č. 7
Pravděpodobnost a statistika (BI-PST) Cvičení č. 7 R. Blažek, M. Jiřina, J. Hrabáková, I. Petr, F. Štampach, D. Vašata Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení
5. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI SPOJITÉ NÁHODNÉ VELIČINY
5. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI SPOJITÉ NÁHODNÉ VELIČINY Průvodce studiem V teto kapitole se seznámíte se základními typy rozložení spojité náhodné veličiny. Vašim úkolem y neměla ýt pouze
Základy teorie pravděpodobnosti
Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie
Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace
Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Jan Slovák Masarykova univerzita Fakulta informatiky 28. 11 2. 12. 2016 Obsah přednášky 1 Literatura 2 Střední
VŠB-TU OSTRAVA, FAKULTA ELEKTROTECHNIKY A INFORMATIKY, KATEDRA APLIKOVANÉ MATEMATIKY. Statistika. Vzorce a tabulky
VŠB-TU OSTRAVA, FAKULTA ELEKTROTECHNIKY A INFORMATIKY, KATEDRA APLIKOVANÉ MATEMATIKY Statistia Vzorce a tabuly Martina Litschmannová 3. března 05 Oficiální vzorce a tabuly KOMBINATORIKA Bez opaování Uspořádané
Náhodné vektory a matice
Náhodné vektory a matice Jiří Militký Katedra textilních materiálů Technická Universita Liberec, Červeně označené slide jsou jen pro doplnění informací a nezkouší se. Symbolika A B Jev jistý S (nastane
Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2017/2018 Tutoriál č. 2:, náhodný vektor Jan Kracík jan.kracik@vsb.cz náhodná veličina rozdělení pravděpodobnosti náhodné
Chyby měření 210DPSM
Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců
Téma 2: Pravděpodobnostní vyjádření náhodných veličin
0.025 0.02 0.015 0.01 0.005 Nominální napětí v pásnici Std Mean 140 160 180 200 220 240 260 Std Téma 2: Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Pravděpodobnostní posuzování
Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"
Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2013/2014 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.
Fyzikální korespondenční seminář MFF UK
Úloha I.S... náhodná 10 bodů; průměr 7,04; řešilo 45 studentů a) Zkuste vlastními slovy popsat, co je to náhodná veličina a jaké má vlastnosti (postačí vlastními slovy objasnit následující pojmy: náhodná
Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .
Statistika Teorie odhadu statistická indukce Intervalový odhad µ, σ 2 a π Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
PRAVDĚPODOBNOST A STATISTIKA. Odhady parametrů Postačující statistiky
PRAVDĚPODOBNOS A SAISIKA Odhady parametrů SP3 Připomenutí pojmů Připomenutí pojmů z S1P a SP2 odhady Nechť X,, je náhodný výběr z rozdělení s distribuční funkcí. 1 X,, X ) ( 1 n Statistika se nazývá bodovým
Pravděpodobnost, náhodná proměnná. Statistické metody a zpracování dat. III. Pravděpodobnost, teoretická rozdělení. Pravděpodobnost, náhodná proměnná
Pravděpodobnost, náhodná proměnná Statistické metody a zpracování dat III. Pravděpodobnost, teoretická rozdělení Petr Dobrovolný Popisné a průzkumové metody umožňují přehledné shrnutí informací, které
6.1 Normální (Gaussovo) rozdělení
6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů
PSY117/454 Statistická analýza dat v psychologii přednáška 8. Statistické usuzování, odhady
PSY117/454 Statistická analýza dat v psychologii přednáška 8 Statistické usuzování, odhady Výběr od deskripce k indukci Deskripce dat, odhad parametrů Usuzování = inference = indukce Počítá se s náhodným
Odhad parametrů N(µ, σ 2 )
Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný
Deskriptivní statistické metody II. Míry polohy Míry variability
Deskriptivní statistické metody II. Míry polohy Míry variability Jana Vránová, 3.lékařská fakulta UK, Praha Náhodný výběr všechny prvky výběru {x i }, i = 1, 2,, n, se chápou jako náhodné veličiny, které
NMAI059 Pravděpodobnost a statistika
NMAI059 Pravděpodobnost a statistika podle přednášky Daniela Hlubinky (hlubinka@karlin.mff.cuni.cz) zapsal Pavel Obdržálek (pobdr@matfyz.cz) 205/20 poslední změna: 4. prosince 205 . přednáška. 0. 205 )
Kendallova klasifikace
Kendallova klasifikace Délka obsluhy, frontový režim, Littleovy vzorce Parametry obsluhy Trvání obsluhy - většinou předpokládáme, že trvání obsluhy jsou nezávisl vislé náhodné proměnné, se stejným rozdělením
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. Matematický přístup k výsledkům únavových zkoušek Náhodnost výsledků únavových zkoušek. Únavové
Příklady na testy hypotéz o parametrech normálního rozdělení
Příklady na testy hypotéz o parametrech normálního rozdělení. O životnosti 75W žárovky (v hodinách) je známo, že má normální rozdělení s = 5h. Pro náhodný výběr 0 žárovek byla stanovena průměrná životnost
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2015/16 Cvičení 1: Opakování ze statistiky LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Z čeho studovat 1) Z KNIHY Krkošková,
Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení
Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou
Pravděpodobnost a matematická statistika
Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n
Statistika II. Jiří Neubauer
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Zaměříme se především na popis dvourozměrných náhodných veličin (vektorů). Definice Nechť X a Y jsou
Téma 2: Pravděpodobnostní vyjádření náhodných veličin
0.05 0.0 0.05 0.0 0.005 Nominální napětí v pásnici Std Mean 40 60 80 00 0 40 60 Std Téma : Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník
pravděpodobnosti, popisné statistiky
8. Modelová rozdělení pravděpodobnosti, popisné statistiky Rozdělení pravděpodobnosti Normální rozdělení jako statistický model Přehled a aplikace modelových rozdělení Popisné statistiky Anotace Klasickým
Statistická analýza dat v psychologii. Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead
PSY117/454 Statistická analýza dat v psychologii Přednáška 8 Statistické usuzování, odhady Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead Barevná srdíčka kolegyně
Náhodná veličina a rozdělení pravděpodobnosti
3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro
Jan Hamhalter. 1. Náhodná veličina je dána maximem počtu ok při šesti hodech hrací kostkou. Určete pravděpodobnostní funkci a střední hodnotu. j.
M6C Některé příklady z přednášky a cvičení 24. února 2006 Jan Hamhalter 1 Náhodné veličiny 1. Náhodná veličina je dána maximem počtu ok při šesti hodech hrací kostkou. Určete pravděpodobnostní funkci a
Rovnoměrné rozdělení
Rovnoměrné rozdělení Nejjednodušší pravděpodobnostní rozdělení pro diskrétní náhodnou veličinu. V literatuře se také nazývá jako klasické rozdělení pravděpodobnosti. Náhodná veličina může nabývat n hodnot
5. B o d o v é o d h a d y p a r a m e t r ů
5. B o d o v é o d h a d y p a r a m e t r ů Na základě hodnot náhodného výběru z rozdělení určitého typu odhadujeme parametry tohoto rozdělení, tak aby co nejlépe odpovídaly hodnotám výběru. Formulujme
Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet?
Náhodné veličiny Náhodné veličiny Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Příklad Vytáhneme tři karty z balíčku zajímá nás, kolik je mezi nimi es.
jevu, čas vyjmutí ze sledování byl T j, T j < X j a T j je náhodná veličina.
Parametrické metody odhadů z neúplných výběrů 2 1 Metoda maximální věrohodnosti pro cenzorované výběry 11 Náhodné cenzorování Při sledování složitých reálných systémů často nemáme možnost uspořádat experiment
Pravděpodobnost a statistika
Pravděpodobnost a statistika Bodové odhady a intervaly spolehlivosti Vilém Vychodil KMI/PRAS, Přednáška 10 Vytvořeno v rámci projektu 963/011 FRVŠ V. Vychodil (KMI/PRAS, Přednáška 10) Bodové odhady a intervaly