SYLABUS 9. PŘEDNÁŠKY Z GEODÉZIE 2 (Výpočet výměr)
|
|
- Ludvík Štěpánek
- před 7 lety
- Počet zobrazení:
Transkript
1 SYLABUS 9. PŘEDNÁŠKY Z GEODÉZIE 2 (Výpočet výměr) 1. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. duben
2 Geodézie 2 přednáška č.9 VÝPOČET VÝMĚR PARCEL A POZEMKŮ (skripta Geodézie 2, str. 86) Pozemek je přirozená část zemského povrchu, oddělená od sousedních částí hranicí územní správní jednotky nebo hranicí katastrálního území, hranicí vlastnickou, hranicí druhů pozemků, popřípadě rozhraním způsobu využití pozemků. Parcela je obraz pozemku, který je geometricky a polohově určen, zobrazen v katastrální mapě a označen shodně ve všech částech katastrálního operátu parcelním číslem. Výměra je vyjádření plošného obsahu průmětu pozemku do zobrazovací roviny ve stanovených jednotkách. Velikost výměry vyplývá z geometrického určení pozemku a zaokrouhluje se na celé metry čtvereční. Výměra parcely není závazným údajem katastru nemovitostí pro právní úkony týkající se nemovitostí vedených v katastru nemovitostí. Jednotkou plošného obsahu je metr čtvereční 1 m 2, vedlejší jednotkou je 1 hektar 1 ha = m 2. Starší jednotky plošného obsahu 1 ar = 100 m 2 (již nepoužívaná) a dále jednotky v sáhové míře (Geodézie 1, přednáška č.1). Při určování výměr z map se postupuje následovně: z mapy se odměřují potřebné veličiny k výpočtu výměr, přičemž nejjednodušším způsobem je rozložení složitých obrazců na jednodušší, výměra parcely se zjistí plochoměrnou pomůckou, tzv. planimetrem, sejmutí souřadnic lomových bodů parcely tzv. digitizérem s následným výpočtem vhodným sofwarem, nasnímání mapového listu scannerem, opět s následným výpočtem vhodným výpočetním programem na PC. Kvalita výměry je v souboru popisných informací (SPI) katastru nemovitostí označena číselným kódem, v závislosti na způsobu určení (skripta Geodézie 2, str. 87). Výpočet výměry z původních měr Pro výpočet výměr se rozkládá obecný obrazec na nejjednodušší geometrické obrazce, tedy trojúhelník, lichoběžník a čtyřúhelník, pro něž platí známé matematické vzorce, kterých je možno použít i pro výpočet výměr z veličin odměřených z mapy. Výměra obecného trojúhelníka (obr.1) a) ze základny c a výšky v : 2P = c.v., b) ze tří stran a, b, c (Heronův vzorec) : ( ) ( ) ( ), kde, c) ze dvou stran b, c a jimi sevřeného úhlu α:, d) ze strany c a přilehlých úhlů α, β: ( ) ( ). 2
3 Nejčastější způsob výpočtu je ze vzorce a), při polárním zaměření vrcholů trojúhelníka pak ze vzorce c). Výměra rovnoběžníka a lichoběžníka (obr.2 a 3) a), b), c). Vztahy pro výpočet rovnoběžníka a), lichoběžníka b) i zvrhlého lichoběžníka c) jsou prakticky stejné s tím, že znaménko kolmice k 2 je záporné. Výměra čtyřúhelníka Plocha obecného čtyřúhelníka se vypočte jeho rozdělením na dva trojúhelníky jednou z úhlopříček. Úhlopříčka tvoří základnu obou trojúhelníků a pomocí příslušných výšek se vypočte výměra čtyřúhelníka ze vztahů uvedených v obr.4.. 3
4 Výměra mnohoúhelníka Při výpočtu výměry mnohoúhelníka se tento obrazec rozdělí nejprve na čtyřúhelníky a trojúhelníky a v nich se změří příslušné veličiny:, ( ). Výpočet výměr ze souřadnic Základní vzorce jsou odvozeny z uzavřeného polygonového pořadu, neboli mnohoúhelníka o vrcholech 1 až 5 = n (obr.6), které jsou dány svými souřadnicemi x a y. Spolu se stranami mnohoúhelníka vytváří jednotlivé lichoběžníky, jejichž součet dává dvojnásobnou výměru mnohoúhelníka. Vztahy platí jak pro souřadnice získané z přímo měřených veličin, tak pro souřadnice získané odměřením z mapy. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ). Při dodržení číslování bodů ve směru pohybu hodinových ručiček, vycházejí souřadnicové rozdíly ( ) ( ) záporné a je možné výpočetní vztah zapsat ve formě ( ) ( ). Roznásobením rovnice dostaneme vztah:. Součiny y i x i (se stejnými indexy) se vzájemně vyruší a rovnice se upraví na tvar : ( ) ( ) ( ) ( ) ( ), nebo ( ) ( ) ( ) ( ) ( ). Obecně lze předchozí rovnice zapsat ve tvaru: ( ) nebo ( ) Uvedené vzorce se nazývají l Huilierovy (čte se Lilierovy). 4
5 Při zaměření lomových bodů pozemku polárními souřadnicemi (obr.7), se výměra vypočte z ploch trojúhelníků, a to ze vztahu: ( ) Přesnost výpočtu výměr z přímo měřených hodnot Vzhledem k tomu, že v 1. semestru byly probrány pouze základy vyrovnávacího počtu, je zde uvedena jen ukázka odvození směrodatné odchylky σ P, charakterizující přesnost v určení výměry nejjednoduššího obrazce, tedy obdélníka, jehož plochu lze vyjádřit součinem dvou délek a, b (obr.7): P = a.b. (* Prostřednictvím zákona hromadění náhodných a směrodatných odchylek (přednáška č.11, Geodézie 1) se odvodí vztah mezi směrodatnými odchylkami měřených délek σ a, σ b a směrodatnou odchylkou σ P výměry P. Vztah pro směrodatnou odchylku σ P výměry obdélníka, vyjádřený totálním diferenciálem, je následující: ( ) ( ). Po výpočtu parciálních derivací z rovnice (* se vztah upraví na tvar : ( ) ( ). Z uvedeného vztahu lze odvodit vliv přesnosti měření jednotlivých délek na přesnost určení výměry. Stanovíme-li si předpoklad stejného vlivu obou členů pod odmocninou, bude platit:. Odtud plyne požadavek přesnějšího měření kratší délky (v daném případě b), která má na přesnost výměry větší vliv, jak je zřejmé i z grafického vyjádření v obrázku 8. Vzorce platí též pro hodnoty odměřené z mapy, ovšem s uvážením přesnosti odměřených veličin (zde délek), v závislosti na přesnosti jejich zobrazení v mapě, měřítku mapy, pravděpodobné srážce papíru, na kterém je mapa vyhotovena a způsobu odměření z mapy. 5
6 Přesnost výpočtu výměr určených ze souřadnic Za předpokladu určení souřadnic se směrodatnou odchylkou souřadnicovou σx,y je směrodatná odchylka výměry mnohoúhelníka dána vzorcem: (skripta Geodézie 2, str.93). Tak jako v předchozím případě může být vzorec použit i pro souřadnice získané z mapy, avšak opět s uvážením stejných vlivů, znehodnocujících přesnost určení výměry. Deformace (srážka) map (skripta Geodézie 2, str.99) Přesnost výměr při jejich určení z mapy je negativně ovlivňována deformací papíru nebo fólie, na kterých jsou mapy zobrazeny. Rozměr papíru se časem mění, přičemž se zpravidla smršťuje a proto se hovoří o jeho srážce. To znamená, že měřítko mapy neodpovídá zcela skutečnosti a délky naměřené na mapě je nutno opravit o korekci ze srážky mapy, zjištěné porovnáním známého rozměru mapového listu s rozměry naměřenými. Srážka papíru se zjišťuje v navzájem kolmých směrech a bývá různá, což je třeba při určení plošné srážky vzít v úvahu. Podrobnější informace o určení srážky jsou uvedeny ve skriptech Geodézie 2 a jsou obsahem předmětu Mapování. Nitkový planimetr Nitkový planimetr rozděluje i parcely velmi složitého tvaru rovnoběžkami na úzké proužky (lichoběžníky obr.9) o šířce a (vzdálenost rovnoběžek) a střední příčce y. Plošný obsah lichoběžníků se vypočte ze vztahu: pi = a. yi, přičemž celková plocha parcely P je dána výrazem:. Na obrázku č.9 je zachycen nitkový planimetr Alderův, který byl používán při určování výměr z katastrálních map 1:2880 (popř. 1:1000). V kovovém rámu je napjata osnova barevných žíní (černých, červených a žlutých), střídajících se v pravidelném intervalu a. Toto uspořádání umožňuje pracovat s trojí šířkou proužků, podle členitosti parcely. Nitkový planimetr je možno nahradit soustavou rovnoběžek narýsovaných nebo fotograficky nanesených na průhledné umělohmotné fólii. 6
7 Součtovým kružítkem (odpichovátkem) s nastavitelným maximálním rozvorem r (obr.10), odpovídajícím konstantní celé hodnotě (např. 100 sáhů čtverečních) se odměřují střední příčky lichoběžníků, které se postupně sčítají podle výše uvedeného vzorce. Sečte se počet celých rozvorů součtového kružítka a zbytek se odměří na příčném měřítku (obr.9). Polární planimetr Polární planimetr se skládá ze dvou ramen, a to tzv. ramene pólového, zakončeného hrotem se závažím (pól), který se zapíchne do mapy a ramene pojízdného, kloubově uloženého do ramene pólového. Pojízdné rameno je na konci opatřené hrotem (lupou), kterým se objíždí obvod parcely. Výměra se načítá na valivém kolečku se stupnicí a vernierem (obr.11). Zavedením digitizérů a scannerů bylo určování výměr planimetry prakticky vyloučeno z používání. 7
VÝPOČET VÝMĚR. Zpracováno v rámci projektu CTU 0513011 (2005)
VÝPOČET VÝMĚR Zpracováno v rámci projektu CTU 0513011 (2005) Výměry se určují: Početně: - z měr odsunutých z mapy (plánu), - z měr, přímo měřených v terénu, - z pravoúhlých souřadnic, - z polárních souřadnic.
VíceUrčování výměr Srážka mapového listu Výpočet objemů Dělení pozemků
Geodézie přednáška 9 Určování výměr Srážka mapového listu Výpočet objemů Dělení pozemků Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.: 545134015 Určování výměr určování
VíceSYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1
SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1 (Souřadnicové výpočty 4, Orientace osnovy vodorovných směrů) 1. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. prosinec
VícePlanimetrie Metody a pomůcky k měření ploch Srážka mapového listu Výpočet plochy ze souřadnic Dělení pozemků (plochy) Kartografie.
Planimetrie Metody a pomůcky k měření ploch Srážka mapového listu Výpočet plochy ze souřadnic Dělení pozemků (plochy) Kartografie přednáška 9 Měření ploch při určování plochy na plánu nebo mapě se vždy
VíceGEODETICKÉ VÝPOČTY I.
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. SRÁŽKA PAPÍRU mapy, které byly zobrazeny na nezajištěném papíře podléhají během času deformaci způsobuje ji změna vlhkosti
VíceGEODETICKÉ VÝPOČTY I.
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. VÝPOČET VÝMĚR Z PRAVOÚHLÝCH SOUŘADNIC Ing. Jana Marešová, Ph.D. rok 2018-2019 Výpočet ze souřadnic se používá pro určení
VíceSYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE
SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE (Řešení kruţnicových oblouků v souřadnicích) 3. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. prosinec 2015
VíceTrojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy
5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,
Více4. Statika základní pojmy a základy rovnováhy sil
4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr
VíceGEODETICKÉ VÝPOČTY I.
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. DĚLENÍ POZEMKŮ Ing. Jana Marešová, Ph.D. rok 2018-2019 V praxi se geodet často setká s úkolem rozdělit pozemek (dědictví,
VícePrůmyslová střední škola Letohrad Komenského 472, Letohrad
Geodézie (profilová část maturitní zkoušky formou ústní zkoušky před zkušební komisí) 1) Měření délek 2) Teodolity 3) Zaměření stavebních objektů 4) Odečítací pomůcky 5) Nivelační přístroje a pomůcky 6)
VícePrůmyslová střední škola Letohrad Komenského 472, Letohrad
Geodézie (profilová část maturitní zkoušky formou ústní zkoušky před zkušební komisí) 1) Měření délek 2) Teodolity 3) Zaměření stavebních objektů 4) Odečítací pomůcky 5) Nivelační přístroje a pomůcky 6)
VíceMATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce
MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem
VíceVytyčení polohy bodu polární metodou
Obsah Vytyčení polohy bodu polární metodou... 2 1 Vliv měření na přesnost souřadnic... 3 2 Vliv měření na polohovou a souřadnicovou směrodatnou odchylku... 4 3 Vliv podkladu na přesnost souřadnic... 5
VícePomůcka k aplikaci ustanovení katastrální vyhlášky vztahujících se k souřadnicím podrobných bodů
Příloha k č.j. ČÚZK 6495/2009-22 Pomůcka k aplikaci ustanovení katastrální vyhlášky vztahujících se k souřadnicím podrobných bodů 1. Geometrické a polohové určení 1.1. Katastrální území a nemovitosti evidované
VíceÚsečka spojující sousední vrcholy se nazývá strana, spojnice nesousedních vrcholů je úhlopříčka mnohoúhelníku.
Mnohoúhelníky Je dáno n různých bodů A 1, A 2,. A n, z nichž žádné tři neleží na přímce. Geometrický útvar tvořený lomenou čarou a částí roviny touto čarou ohraničenou nazýváme n-úhelníkem A 1 A 2. A n.
VíceMatematika - 6. ročník Vzdělávací obsah
Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá
VíceGEODÉZIE II. daný bod. S i.. měřené délky Ψ i.. měřené směry. orientace. Měřická přímka PRINCIP POLÁRNÍ METODY
Vysoká škola báňská technická univerzita Ostrava Hornicko-geologická fakulta Institut geodézie a důlního měřictví GEODÉZIE II Ing. Hana Staňková, Ph.D. kontrolní oměrná míra PRINCIP POLÁRNÍ METODY 4. Podrobné
VíceRozpis výstupů zima 2008 Geometrie
Rozpis výstupů zima 2008 Geometrie 20. 10. porovnávání úseček grafický součet úseček grafický rozdíl úseček... porovnávání úhlů grafický součet úhlů grafický rozdíl úhlů... osa úhlu úhly vedlejší a vrcholové...
VíceZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 2 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu
VíceOmezíme se jen na lomené čáry, jejichž nesousední strany nemají společný bod. Jestliže A 0 = A n (pro n 2), nazývá se lomená čára uzavřená.
MNOHOÚHELNÍKY Vlastnosti mnohoúhelníků Lomená čára C 0 C C C 3 C 4 protíná samu sebe. Lomená čára A 0 A A... A n- A n (n ) se skládá z úseček A 0 A, A A,..., A n- A n, z nichž každé dvě sousední mají společný
VíceZákladní geometrické tvary
Základní geometrické tvary č. 37 Matematika 1. Narýsuj bod A. 2. Narýsuj přímku b. 3. Narýsuj přímku, která je dána body AB. AB 4. Narýsuj polopřímku CD. CD 5. Narýsuj úsečku AB. 6. Doplň. Rýsujeme v rovině.
VíceÚloha č. 1 : TROJÚHELNÍK. Určení prostorových posunů stavebního objektu
Václav Čech, ČVUT v Praze, Fakulta stavební, 008 Úloha č. 1 : TROJÚHELNÍK Určení prostorových posunů stavebního objektu Zadání : Zjistěte posun bodu P do P, umístěného na horní terase Stavební fakulty.
VíceGEODETICKÉ VÝPOČTY I.
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. TROJÚHELNÍK PYTHAGOROVA VĚTA TROJÚHELNÍK Geodetické výpočty I. trojúhelník je geometrický rovinný útvar určený třemi
VíceGEODETICKÉ VÝPOČTY I.
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. ÚHLOVÉ JEDNOTKY PŘEVODY MEZI ÚHLOVÝMI MÍRAMI OBLOUKOVÁ MÍRA MÍRA ŠEDESÁTINNÁ úhlové jednotky ÚHLOVÉ MÍRY - STUPNĚ stupeň
VíceGEODETICKÉ VÝPOČTY I.
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. ÚHLOVÉ JEDNOTKY PŘEVODY MEZI ÚHLOVÝMI MÍRAMI OBLOUKOVÁ MÍRA MÍRA ŠEDESÁTINNÁ úhlové jednotky ÚHLOVÉ MÍRY - STUPNĚ stupeň
VíceTémata absolventského klání z matematiky :
Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný
VíceMATURITNÍ TÉMATA Z MATEMATIKY
MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické
VíceLaboratorní práce (č.10)
Laboratorní práce (č.10) Název:Měření ploch Integrovaná Střední škola technická Mělník (K učilišti 2566 276 01 Mělník ) Datum :25.4.2010 Třída :2T Vypracoval:Michal Rybnikár Hodnocení: Zadání: Určete velikost
VíceVýpočet plochy Měření objemu Dělení pozemků. Geodézie Přednáška
Výpočet ploch Měření objemu Dělení pozemků Geodézie řednáška Určování ploch strana určování ploch pozemků na plánu nebo mapě je vžd výpočet ploch obecného mnohoúhelníku plocha pozemku je vmezena vodorovným
VíceGymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Cvičení z matematiky geometrie (CZMg) Systematizace a prohloubení učiva matematiky Planimetrie, Stereometrie, Analytická geometrie, Kombinatorika, Pravděpodobnost a statistika Třída: 4.
VíceSeminář z geoinformatiky
Seminář z geoinformatiky Úvod Přednášející: Ing. M. Čábelka cabelka@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie PřF UK v Praze Úvod - Přednášející: Ing. Miroslav Čábelka, - rozsah hodin:
VíceSYLABUS PŘEDNÁŠKY 8 Z GEODÉZIE 1
SYLABUS PŘEDNÁŠKY 8 Z GEODÉZIE 1 Souřadnicové výpočty 2 1 ročník bakalářského studia studijní program G studijní obor G doc Ing Jaromír Procházka CSc listopad 2015 1 Geodézie 1 přednáška č8 VÝPOČET SOUŘADNIC
VíceGeodézie. Pozemní stavitelství. denní. Celkový počet vyučovacích hodin za studium: 96 3. ročník: 32 týdnů po 3 hodinách (z toho 1 hodina cvičení),
Učební osnova předmětu Geodézie Studijní obor: Stavebnictví Zaměření: Forma vzdělávání: Pozemní stavitelství denní Celkový počet vyučovacích hodin za studium: 96 3. ročník: 32 týdnů po 3 hodinách (z toho
VíceGEODETICKÉ VÝPOČTY I.
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. Ing. Jana Marešová, Ph.D. rok 2018-2019 V případě pokud chceme upravit (narovnat přímkou) lomenou hranici při nezměněných
Více5. P L A N I M E T R I E
5. P L A N I M E T R I E 5.1 Z Á K L A D N Í P L A N I M E T R I C K É P O J M Y Bod (definice, značení, znázornění) Přímka (definice, značení, znázornění) Polopřímka (definice, značení, znázornění, počáteční
VíceGEODETICKÉ VÝPOČTY I.
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. DĚLENÍ V POMĚRU MĚŘÍTKO MAPY měřítkem mapy rozumíme poměr 1 : M, kde M udává, kolikrát je délka na plánu menší než délka
VíceSYLABUS PŘEDNÁŠKY 11 Z GEODÉZIE 1 (Hodnocení přesnosti měření a vytyčování) 1. ročník bakalářského studia studijní program G studijní obor G
SYLABUS PŘEDNÁŠKY 11 Z GEODÉZIE 1 (Hodnocení přesnosti měření a vytyčování) 1 ročník bakalářského studia studijní program G studijní obor G doc Ing Jaromír Procházka CSc s využitím přednášky doc Ing Martina
Více2012, Brno Ing.Tomáš Mikita, Ph.D. Geodézie a pozemková evidence
2012, Brno Ing.Tomáš Mikita, Ph.D. Geodézie a pozemková evidence Přednáška č.7 Vytyčování, souřadnicové výpočty, podélné a příčné profily Vytyčování Geodetická činnost uskutečněná odborně a nestranně na
VíceM - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl
6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,
VíceÚvod do inženýrské geodézie
Úvod do inženýrské geodézie Úvod do inženýrské geodézie Rozbory přesnosti Vytyčování Čerpáno ze Sylabů přednášek z inženýrské geodézie doc. ing. Jaromíra Procházky, CSc. Úvod do inženýrské geodézie Pod
VíceMATEMATIKA - 4. ROČNÍK
VZDĚLÁVACÍ OBLAST: VZDĚLÁVACÍ OBOR: PŘEDMĚT: MATEMATIKA A JEJÍ APLIKACE MATEMATIKA MATEMATIKA - 4. ROČNÍK Téma, učivo Rozvíjené kompetence, očekávané výstupy Mezipředmětové vztahy Poznámky Opakování ze
VíceUrčete třetinu podílu čtvrtého čísla zleva a šestého čísla zprava podle číselné osy: Vypočtěte, kolik korun je 5 setin procenta ze 2 miliard korun.
1. Operace s reálnými čísly Obsah jedné stěny krychle je 289 cm 2. Vypočítejte objem této krychle. [S= 4 913 cm 3 ] Určete třetinu podílu čtvrtého čísla zleva a šestého čísla zprava podle číselné osy:
VíceVliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin
Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin doc. Ing. Martin Štroner, Ph.D. Fakulta stavební ČVUT v Praze 1 Úvod Při přesných inženýrsko geodetických
VíceM - Pythagorova věta, Eukleidovy věty
M - Pythagorova věta, Eukleidovy věty Určeno jako učební text pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací
VíceŽák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.
STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní
VíceFebruary 05, Čtyřúhelníky lichoběžníky.notebook. 1. Vzdělávací oblast: Matematika a její aplikace
Registrační číslo projektu: Název projektu: Název a číslo globálního grantu: CZ.1.07/1.1.12/02.0010 Šumavská škola = evropská škola Zvyšování kvality ve vzdělání v Plzeňském kraji CZ.1.07/1.1.12 Název
Více3) Vypočtěte souřadnice průsečíku dané přímky p : x = t, y = 9 + 3t, z = 1 + t, t R s rovinou ρ : 3x + 5y z 2 = 0.
M1 Prog4 D1 1) Určete vektor c kolmý na vektory a = 2 i 3 j + k, b = i + 2 j 4 k. 2) Napište obecnou a parametrické rovnice roviny, která prochází bodem A[ 1; 1; 2] a je kolmá ke dvěma rovinám ρ : x 2y
VíceVzorce počítačové grafiky
Vektorové operace součet vektorů rozdíl vektorů opačný vektor násobení vektoru skalárem úhel dvou vektorů velikost vektoru a vzdálenost dvojice bodů v rovině (v prostoru analogicky) u = B A= b a b a u
VíceGeometrické plány jako podklad pro převody nemovitostí
Geometrické plány jako podklad pro převody nemovitostí Prohloubení nabídky dalšího vzdělávání v oblasti zeměměřictví a katastru nemovitostí ve Středočeském kraji CZ.1.07/3.2.11/03.0115 Projekt je finančně
Více3. Souřadnicové výpočty
3. Souřadnicové výpočty 3.1 Délka. 3.2 Směrník. 3.3 Polární metoda. 3.4 Protínání vpřed z úhlů. 3.5 Protínání vpřed z délek. 3.6 Polygonové pořady. 3.7 Protínání zpět. 3.8 Transformace souřadnic. 3.9 Volné
VícePředpokládané znalosti žáka 1. stupeň:
Předpokládané znalosti žáka 1. stupeň: ČÍSLO A POČETNÍ OPERACE používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje
VíceGeometrický plán (1) Zeměměřické činnosti pro KN. Geometrický plán
Geometrický plán (1) GEOMETRICKÝ PLÁN Zákon o katastru nemovitostí č. 256/2013 Sb. Vyhláška o katastru nemovitostí (katastrální vyhláška) č. 357/2013 Sb. Prohloubení nabídky dalšího vzdělávání v oblasti
VíceIng. Jan Fafejta: Kvalita, přesnost a rozsah dat státních mapových děl ve vztahu k potřebám informačních systémů".
Ing. Jan Fafejta: Kvalita, přesnost a rozsah dat státních mapových děl ve vztahu k potřebám informačních systémů". KVALITA, PŘESNOST A ROZSAH DAT STÁTNÍCH MAPOVÝCH DĚL VE VZTAHU K POTŘEBÁM INFORMAČNÍCH
Vícepro převody nemovitostí (1)
pro převody nemovitostí (1) Geometrické plány jako podklad pro převody nemovitostí Prohloubení nabídky dalšího vzdělávání v oblasti zeměměřictví a katastru nemovitostí ve Středočeském kraji CZ.1.07/3.2.11/03.0115
VíceTeorie sférické trigonometrie
Teorie sférické trigonometrie Trigonometrie (z řeckého trigónon = trojúhelník a metrein= měřit) je oblast goniometrie zabývající se praktickým užitím goniometrických funkcí při řešení úloh o trojúhelnících.
VíceÚlohy k procvičení kapitoly Obsahy rovinných obrazců
Úlohy k procvičení kapitoly Obsahy rovinných obrazců 1. Vypočtěte obvod a obsah obrazců nakreslených na obrázku 1. (Rozměry jsou udány v mm.) Obrázek 1 2. Na pokrytí 1 m 2 střechy se spotřebuje 26 ražených
VíceMatematika - 6. ročník Očekávané výstupy z RVP Učivo Přesahy a vazby desetinná čísla. - zobrazení na číselné ose
Matematika - 6. ročník desetinná čísla - čtení a zápis v desítkové soustavě F užití desetinných čísel - zaokrouhlování a porovnávání des. čísel ve výpočtových úlohách - zobrazení na číselné ose MDV kritické
Více2. Vyšetřete všechny možné případy vzájemné polohy tří různých přímek ležících v jedné rovině.
ZS1BK_PGE1 Geometrie I: Vybrané úlohy z elementární geometrie 1. Které geometrické útvary mohou vzniknout a) jako průnik dvou polopřímek téže přímky, b) jako průnik dvou polorovin téže roviny? V případě
VíceObsahy. Trojúhelník = + + 2
Obsahy Obsah nám říká, jak velkou plochu daný útvar zaujímá. Třeba jak velký máme byt nebo pozemek kolik metrů čtverečných (m 2 ), hektarů (ha), centimetrů čtverečných (cm 2 ), Základní jednotkou obsahu
VíceICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika planimetrie. Mgr. Tomáš Novotný
Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity IV/2 Inovace
Více19 Eukleidovský bodový prostor
19 Eukleidovský bodový prostor Eukleidovským bodovým prostorem rozumíme afinní bodový prostor, na jehož zaměření je definován skalární součin. Víme, že pomocí skalárního součinu jsou definovány pojmy norma
VíceSYLABUS 8. PŘEDNÁŠKY Z INŽENÝRSKÉ GEODÉZIE
SYLABUS 8 PŘEDNÁŠKY Z INŽENÝRSKÉ GEODÉZIE (Vytyčování kružnicových oblouků) 3 ročník bakalářského studia studijní program G studijní obor G doc Ing Jaromír Procházka CSc listopad 2015 1 11 VYTYČOVÁNÍ OBLOUKŮ
VíceREKONSTRUKCE ASTROLÁBU POMOCÍ STEREOGRAFICKÉ PROJEKCE
REKONTRUKCE ATROLÁBU POMOCÍ TEREOGRAFICKÉ PROJEKCE Václav Jára 1 1 tereografická projekce a její vlastnosti tereografická projekce kulové plochy je středové promítání z bodu této kulové plochy do tečné
VíceStřední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné
VíceCVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 35 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Vypočtěte [( 3 3 ) ( 1 4 5 3 0,5 ) ] : 1 6 1. 1 bod VÝCHOZÍ TEXT K ÚLOZE
VícePLANIMETRIE 2 mnohoúhelníky, kružnice a kruh
PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh Lomená čára A 0 A 1 A 2 A 3..., A n (n 2) se skládá z úseček A 0 A 1, A 1 A 2, A 2 A 3,..., A n 1 A n, z nichž každé dvě sousední mají společný jeden krajní
VícePříklady na 13. týden
Příklady na 13. týden 13-1 Kruhový záhon o průměru 10 m se má osázet begóniemi. Na jednu sazenici je zapotřebí 2 dm 2. 1g semena má 5 000 zrn, jejichž klíčivost je 85 %. Pěstební odpad od výsevu do výsadby
VíceČtyřúhelníky. Autor: Jana Krchová Obor: Matematika. Vybarvi ( nebo vyšrafuj) čtyřúhelníky: Napiš názvy jednotlivých rovinných útvarů: 1) 2) 3) 4)
Projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Vybarvi ( nebo vyšrafuj) čtyřúhelníky: Čtyřúhelníky 1 2 3 4 5 6 7 8 9 10 11 12 Napiš názvy jednotlivých rovinných
VíceSPŠ STAVEBNÍ České Budějovice MAPOVÁNÍ. JS pro 2. ročník S2G 1. ročník G1Z
SPŠ STAVEBNÍ České Budějovice MAPOVÁNÍ JS pro 2. ročník S2G 1. ročník G1Z Všeobecné základy MAP Mapování řeší problém znázornění nepravidelného zemského povrchu do roviny Vychází se z: 1) geometrických
VíceVyužití Pythagorovy věty III
.8. Využití Pythagorovy věty III Předpoklady: 008 Př. 1: Urči obsah rovnoramenného trojúhelníku se základnou 8 cm a rameny 5,8 cm. Pro výpočet obsahu potřebujeme znát jednu ze stran a odpovídající výšku.
VícePolohopisná měření Jednoduché pomůcky k zaměřování Metody zaměřování pozemků
Polohopisná měření Jednoduché pomůcky k zaměřování Metody zaměřování pozemků Kartografie přednáška 8 Polohopisná měření úkolem polohopisného měření je určení vzájemné polohy bodů na povrchu Země ve směru
VíceMATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)
MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo
VíceKlauzurní část školního kola kategorie A se koná
56. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie 1. rčete všechna reálná čísla s, pro něž má rovnice 4x 4 20x 3 + sx 2 + 22x 2 = 0 čtyři různé reálné kořeny, přičemž součin
Více6.16. Geodetické výpočty - GEV
6.16. Geodetické výpočty - GEV Obor: 36-46-M/01 Geodézie a katastr nemovitostí Forma vzdělávání: denní Počet hodin týdně za dobu vzdělávání: 8 Platnost učební osnovy: od 1.9.2010 1) Pojetí vyučovacího
VíceDigitální učební materiál
Digitální učební materiál Projekt: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.057 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova
VíceSYLABUS PŘEDNÁŠKY 9 Z GEODÉZIE 1
SYLABUS PŘEDNÁŠKY 9 Z GEODÉZIE 1 (Souřadnicové výpočty 3 Centrace měřených veličin) 1 ročník bakalářského studia studijní program G studijní obor G doc Ing Jaromír Procházka CSc prosinec 2015 1 Geodézie
VíceVyučovací předmět / ročník: Matematika / 4. Učivo
Vzdělávací oblast: Matematika a její aplikace Výstupy žáka Vyučovací předmět / ročník: Matematika / 4. ČÍSLO A POČETNÍ OPERACE Zpracoval: Mgr. Dana Štěpánová orientuje se v posloupnosti přirozených čísel
VíceZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 2 (pro 9-12 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat (horní
VíceSouřadnicové výpočty. Geodézie Přednáška
Souřadnicové výpočt Geodézie Přednáška Souřadnicové výpočt strana 2 Souřadnicové výpočt (souřadnicová geometrie) vchází z analtické geometrie zkoumá geometrické tvar pomocí algebraických a analtických
Vícef(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 =
Řešení vzorové písemky z předmětu MAR Poznámky: Řešení úloh ze vzorové písemky jsou formulována dosti podrobně podobným způsobem jako u řešených příkladů ve skriptech U zkoušky lze jednotlivé kroky postupu
VícePŘEHLED ZÁKLADNÍCH ZKUŠEBNÍCH OTÁZEK ke zkoušce odborné způsobilosti k udělení úředního oprávnění pro ověřování výsledků zeměměřických činností
PŘEHLED ZÁKLADNÍCH ZKUŠEBNÍCH OTÁZEK ke zkoušce odborné způsobilosti k udělení úředního oprávnění pro ověřování výsledků zeměměřických činností Obecná část 1. Základní ustanovení katastrálního zákona,
VíceÚlohy klauzurní části školního kola kategorie A
6. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie A. V oboru reálných čísel řešte soustavu rovnic y + 3x = 4x 3, x + 3y = 4y 3. 2. V rovině uvažujme lichoběžník ABCD se základnami
VíceGymnázium Jiřího Ortena, Kutná Hora
Předmět: Matematika (MAT) Náplň: Rovnice a nerovnice, kruhy a válce, úměrnost, geometrické konstrukce, výrazy 2 Třída: Tercie Počet hodin: 4 hodiny týdně Pomůcky: Učebna s PC a dataprojektorem (interaktivní
VíceStřední škola automobilní Ústí nad Orlicí
Síla Základní pojmy Střední škola automobilní Ústí nad Orlicí vzájemné působení těles, které mění jejich pohybový stav nebo tvar zobrazuje se graficky jako úsečka se šipkou ve zvoleném měřítku m f je vektor,
VícePřípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro
Příjímací zkoušky 01 Přípravný kurz k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) 1. Číselné obory 1.1. Doplňte číslo do rámečku tak, aby platila rovnost: 1.1.1.
VíceMatematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32
Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;
VíceMgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán rovinný obrazec, v obrázku vyznačený barevnou výplní, který představuje
VíceKATASTR NEMOVITOSTÍ. Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství
Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství KATASTR NEMOVITOSTÍ Ing. Bc. Pavel Voříšek (úředně oprávněný zeměměřický inženýr). Vysoké Mýto 19. 2. 2018 KATASTR NEMOVITOSTÍ
VíceIng. Martin Dědourek, CSc. Geodézie Svitavy, Wolkerova alej 14a, Svitavy NABÍDKOVÝ CENÍK
Ing. Martin Dědourek, CSc. Geodézie Svitavy, Wolkerova alej 14a, Svitavy NABÍDKOVÝ CENÍK pro oceňování zeměměřických výkonů, platný od 1.1. 1996 a aktualizovaný dne 1.1. 25 Ceník byl sestaven za použití
VíceJiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015
Kartografie 1 - přednáška 1 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Úvod přednášky, cvičení, zápočty, zkoušky Jiří Cajthaml (přednášky, cvičení) potřebné znalosti: vzorce
VíceMaturitní témata od 2013
1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy
Více64. ročník matematické olympiády Řešení úloh krajského kola kategorie A
64. ročník matematické olympiády Řešení úloh krajského kola kategorie A 1. Středy stran AC, BC označme postupně, N. Střed kružnice vepsané trojúhelníku KLC označme I. Úvodem poznamenejme, že body K, L
VíceVyučovací předmět: Matematika Ročník: 7.
Vyučovací předmět: Matematika Ročník: 7. Vzdělávací obsah Očekávané výstupy z RVP ZV Školní výstupy Učivo I. čtvrtletí 40 hodin Opakování učiva z 6. ročníku (14) Přesahy a vazby, průřezová témata v oboru
VícePodrobné polohové bodové pole (1)
Podrobné polohové bodové pole (1) BUDOVÁNÍ NEBO REVIZE A DOPLNĚNÍ PODROBNÉHO POLOHOVÉHO BODOVÉHO POLE Prohloubení nabídky dalšího vzdělávání v oblasti Prohloubení nabídky zeměměřictví dalšího vzdělávání
Více5. Statika poloha střediska sil
5. Statika poloha střediska sil 5.1 Rovnoběžné sily a jejich střed Uvažujeme soustavu vzájemně rovnoběžných sil v prostoru s pevnými působišti. Každá síla má působiště dané polohovým vektorem. Všechny
VíceMatematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
Více2. Bodové pole a souřadnicové výpočty
2. Bodové pole a souřadnicové výpočty 2.1 Body 2.2 Bodová pole 2.3 Polohové bodové pole. 2.3.1 Rozdělení polohového bodového pole. 2.3.2 Dokumentace geodetického bodu. 2.3.3 Stabilizace a signalizace bodů.
VíceTEMATICKÝ PLÁN. září říjen
TEMATICKÝ PLÁN Předmět: MATEMATIKA Literatura: Matematika doc. RNDr. Oldřich Odvárko, DrSc., doc. RNDr. Jiří Kadleček, CSc Matematicko fyzikální tabulky pro základní školy UČIVO - ARITMETIKA: 1. Rozšířené
VíceSouřadnicové výpočty I.
Geodézie přednáška 7 Souřadnicové výpočt I. Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.: 545134015 Výpočet směrníku a délk stran v základním i podrobném bodovém poli
Více