SYLABUS 9. PŘEDNÁŠKY Z GEODÉZIE 2 (Výpočet výměr)

Rozměr: px
Začít zobrazení ze stránky:

Download "SYLABUS 9. PŘEDNÁŠKY Z GEODÉZIE 2 (Výpočet výměr)"

Transkript

1 SYLABUS 9. PŘEDNÁŠKY Z GEODÉZIE 2 (Výpočet výměr) 1. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. duben

2 Geodézie 2 přednáška č.9 VÝPOČET VÝMĚR PARCEL A POZEMKŮ (skripta Geodézie 2, str. 86) Pozemek je přirozená část zemského povrchu, oddělená od sousedních částí hranicí územní správní jednotky nebo hranicí katastrálního území, hranicí vlastnickou, hranicí druhů pozemků, popřípadě rozhraním způsobu využití pozemků. Parcela je obraz pozemku, který je geometricky a polohově určen, zobrazen v katastrální mapě a označen shodně ve všech částech katastrálního operátu parcelním číslem. Výměra je vyjádření plošného obsahu průmětu pozemku do zobrazovací roviny ve stanovených jednotkách. Velikost výměry vyplývá z geometrického určení pozemku a zaokrouhluje se na celé metry čtvereční. Výměra parcely není závazným údajem katastru nemovitostí pro právní úkony týkající se nemovitostí vedených v katastru nemovitostí. Jednotkou plošného obsahu je metr čtvereční 1 m 2, vedlejší jednotkou je 1 hektar 1 ha = m 2. Starší jednotky plošného obsahu 1 ar = 100 m 2 (již nepoužívaná) a dále jednotky v sáhové míře (Geodézie 1, přednáška č.1). Při určování výměr z map se postupuje následovně: z mapy se odměřují potřebné veličiny k výpočtu výměr, přičemž nejjednodušším způsobem je rozložení složitých obrazců na jednodušší, výměra parcely se zjistí plochoměrnou pomůckou, tzv. planimetrem, sejmutí souřadnic lomových bodů parcely tzv. digitizérem s následným výpočtem vhodným sofwarem, nasnímání mapového listu scannerem, opět s následným výpočtem vhodným výpočetním programem na PC. Kvalita výměry je v souboru popisných informací (SPI) katastru nemovitostí označena číselným kódem, v závislosti na způsobu určení (skripta Geodézie 2, str. 87). Výpočet výměry z původních měr Pro výpočet výměr se rozkládá obecný obrazec na nejjednodušší geometrické obrazce, tedy trojúhelník, lichoběžník a čtyřúhelník, pro něž platí známé matematické vzorce, kterých je možno použít i pro výpočet výměr z veličin odměřených z mapy. Výměra obecného trojúhelníka (obr.1) a) ze základny c a výšky v : 2P = c.v., b) ze tří stran a, b, c (Heronův vzorec) : ( ) ( ) ( ), kde, c) ze dvou stran b, c a jimi sevřeného úhlu α:, d) ze strany c a přilehlých úhlů α, β: ( ) ( ). 2

3 Nejčastější způsob výpočtu je ze vzorce a), při polárním zaměření vrcholů trojúhelníka pak ze vzorce c). Výměra rovnoběžníka a lichoběžníka (obr.2 a 3) a), b), c). Vztahy pro výpočet rovnoběžníka a), lichoběžníka b) i zvrhlého lichoběžníka c) jsou prakticky stejné s tím, že znaménko kolmice k 2 je záporné. Výměra čtyřúhelníka Plocha obecného čtyřúhelníka se vypočte jeho rozdělením na dva trojúhelníky jednou z úhlopříček. Úhlopříčka tvoří základnu obou trojúhelníků a pomocí příslušných výšek se vypočte výměra čtyřúhelníka ze vztahů uvedených v obr.4.. 3

4 Výměra mnohoúhelníka Při výpočtu výměry mnohoúhelníka se tento obrazec rozdělí nejprve na čtyřúhelníky a trojúhelníky a v nich se změří příslušné veličiny:, ( ). Výpočet výměr ze souřadnic Základní vzorce jsou odvozeny z uzavřeného polygonového pořadu, neboli mnohoúhelníka o vrcholech 1 až 5 = n (obr.6), které jsou dány svými souřadnicemi x a y. Spolu se stranami mnohoúhelníka vytváří jednotlivé lichoběžníky, jejichž součet dává dvojnásobnou výměru mnohoúhelníka. Vztahy platí jak pro souřadnice získané z přímo měřených veličin, tak pro souřadnice získané odměřením z mapy. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ). Při dodržení číslování bodů ve směru pohybu hodinových ručiček, vycházejí souřadnicové rozdíly ( ) ( ) záporné a je možné výpočetní vztah zapsat ve formě ( ) ( ). Roznásobením rovnice dostaneme vztah:. Součiny y i x i (se stejnými indexy) se vzájemně vyruší a rovnice se upraví na tvar : ( ) ( ) ( ) ( ) ( ), nebo ( ) ( ) ( ) ( ) ( ). Obecně lze předchozí rovnice zapsat ve tvaru: ( ) nebo ( ) Uvedené vzorce se nazývají l Huilierovy (čte se Lilierovy). 4

5 Při zaměření lomových bodů pozemku polárními souřadnicemi (obr.7), se výměra vypočte z ploch trojúhelníků, a to ze vztahu: ( ) Přesnost výpočtu výměr z přímo měřených hodnot Vzhledem k tomu, že v 1. semestru byly probrány pouze základy vyrovnávacího počtu, je zde uvedena jen ukázka odvození směrodatné odchylky σ P, charakterizující přesnost v určení výměry nejjednoduššího obrazce, tedy obdélníka, jehož plochu lze vyjádřit součinem dvou délek a, b (obr.7): P = a.b. (* Prostřednictvím zákona hromadění náhodných a směrodatných odchylek (přednáška č.11, Geodézie 1) se odvodí vztah mezi směrodatnými odchylkami měřených délek σ a, σ b a směrodatnou odchylkou σ P výměry P. Vztah pro směrodatnou odchylku σ P výměry obdélníka, vyjádřený totálním diferenciálem, je následující: ( ) ( ). Po výpočtu parciálních derivací z rovnice (* se vztah upraví na tvar : ( ) ( ). Z uvedeného vztahu lze odvodit vliv přesnosti měření jednotlivých délek na přesnost určení výměry. Stanovíme-li si předpoklad stejného vlivu obou členů pod odmocninou, bude platit:. Odtud plyne požadavek přesnějšího měření kratší délky (v daném případě b), která má na přesnost výměry větší vliv, jak je zřejmé i z grafického vyjádření v obrázku 8. Vzorce platí též pro hodnoty odměřené z mapy, ovšem s uvážením přesnosti odměřených veličin (zde délek), v závislosti na přesnosti jejich zobrazení v mapě, měřítku mapy, pravděpodobné srážce papíru, na kterém je mapa vyhotovena a způsobu odměření z mapy. 5

6 Přesnost výpočtu výměr určených ze souřadnic Za předpokladu určení souřadnic se směrodatnou odchylkou souřadnicovou σx,y je směrodatná odchylka výměry mnohoúhelníka dána vzorcem: (skripta Geodézie 2, str.93). Tak jako v předchozím případě může být vzorec použit i pro souřadnice získané z mapy, avšak opět s uvážením stejných vlivů, znehodnocujících přesnost určení výměry. Deformace (srážka) map (skripta Geodézie 2, str.99) Přesnost výměr při jejich určení z mapy je negativně ovlivňována deformací papíru nebo fólie, na kterých jsou mapy zobrazeny. Rozměr papíru se časem mění, přičemž se zpravidla smršťuje a proto se hovoří o jeho srážce. To znamená, že měřítko mapy neodpovídá zcela skutečnosti a délky naměřené na mapě je nutno opravit o korekci ze srážky mapy, zjištěné porovnáním známého rozměru mapového listu s rozměry naměřenými. Srážka papíru se zjišťuje v navzájem kolmých směrech a bývá různá, což je třeba při určení plošné srážky vzít v úvahu. Podrobnější informace o určení srážky jsou uvedeny ve skriptech Geodézie 2 a jsou obsahem předmětu Mapování. Nitkový planimetr Nitkový planimetr rozděluje i parcely velmi složitého tvaru rovnoběžkami na úzké proužky (lichoběžníky obr.9) o šířce a (vzdálenost rovnoběžek) a střední příčce y. Plošný obsah lichoběžníků se vypočte ze vztahu: pi = a. yi, přičemž celková plocha parcely P je dána výrazem:. Na obrázku č.9 je zachycen nitkový planimetr Alderův, který byl používán při určování výměr z katastrálních map 1:2880 (popř. 1:1000). V kovovém rámu je napjata osnova barevných žíní (černých, červených a žlutých), střídajících se v pravidelném intervalu a. Toto uspořádání umožňuje pracovat s trojí šířkou proužků, podle členitosti parcely. Nitkový planimetr je možno nahradit soustavou rovnoběžek narýsovaných nebo fotograficky nanesených na průhledné umělohmotné fólii. 6

7 Součtovým kružítkem (odpichovátkem) s nastavitelným maximálním rozvorem r (obr.10), odpovídajícím konstantní celé hodnotě (např. 100 sáhů čtverečních) se odměřují střední příčky lichoběžníků, které se postupně sčítají podle výše uvedeného vzorce. Sečte se počet celých rozvorů součtového kružítka a zbytek se odměří na příčném měřítku (obr.9). Polární planimetr Polární planimetr se skládá ze dvou ramen, a to tzv. ramene pólového, zakončeného hrotem se závažím (pól), který se zapíchne do mapy a ramene pojízdného, kloubově uloženého do ramene pólového. Pojízdné rameno je na konci opatřené hrotem (lupou), kterým se objíždí obvod parcely. Výměra se načítá na valivém kolečku se stupnicí a vernierem (obr.11). Zavedením digitizérů a scannerů bylo určování výměr planimetry prakticky vyloučeno z používání. 7

VÝPOČET VÝMĚR. Zpracováno v rámci projektu CTU 0513011 (2005)

VÝPOČET VÝMĚR. Zpracováno v rámci projektu CTU 0513011 (2005) VÝPOČET VÝMĚR Zpracováno v rámci projektu CTU 0513011 (2005) Výměry se určují: Početně: - z měr odsunutých z mapy (plánu), - z měr, přímo měřených v terénu, - z pravoúhlých souřadnic, - z polárních souřadnic.

Více

Určování výměr Srážka mapového listu Výpočet objemů Dělení pozemků

Určování výměr Srážka mapového listu Výpočet objemů Dělení pozemků Geodézie přednáška 9 Určování výměr Srážka mapového listu Výpočet objemů Dělení pozemků Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.: 545134015 Určování výměr určování

Více

SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1 (Souřadnicové výpočty 4, Orientace osnovy vodorovných směrů) 1. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. prosinec

Více

Planimetrie Metody a pomůcky k měření ploch Srážka mapového listu Výpočet plochy ze souřadnic Dělení pozemků (plochy) Kartografie.

Planimetrie Metody a pomůcky k měření ploch Srážka mapového listu Výpočet plochy ze souřadnic Dělení pozemků (plochy) Kartografie. Planimetrie Metody a pomůcky k měření ploch Srážka mapového listu Výpočet plochy ze souřadnic Dělení pozemků (plochy) Kartografie přednáška 9 Měření ploch při určování plochy na plánu nebo mapě se vždy

Více

GEODETICKÉ VÝPOČTY I.

GEODETICKÉ VÝPOČTY I. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. SRÁŽKA PAPÍRU mapy, které byly zobrazeny na nezajištěném papíře podléhají během času deformaci způsobuje ji změna vlhkosti

Více

GEODETICKÉ VÝPOČTY I.

GEODETICKÉ VÝPOČTY I. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. VÝPOČET VÝMĚR Z PRAVOÚHLÝCH SOUŘADNIC Ing. Jana Marešová, Ph.D. rok 2018-2019 Výpočet ze souřadnic se používá pro určení

Více

SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE

SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE (Řešení kruţnicových oblouků v souřadnicích) 3. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. prosinec 2015

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

GEODETICKÉ VÝPOČTY I.

GEODETICKÉ VÝPOČTY I. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. DĚLENÍ POZEMKŮ Ing. Jana Marešová, Ph.D. rok 2018-2019 V praxi se geodet často setká s úkolem rozdělit pozemek (dědictví,

Více

Průmyslová střední škola Letohrad Komenského 472, Letohrad

Průmyslová střední škola Letohrad Komenského 472, Letohrad Geodézie (profilová část maturitní zkoušky formou ústní zkoušky před zkušební komisí) 1) Měření délek 2) Teodolity 3) Zaměření stavebních objektů 4) Odečítací pomůcky 5) Nivelační přístroje a pomůcky 6)

Více

Průmyslová střední škola Letohrad Komenského 472, Letohrad

Průmyslová střední škola Letohrad Komenského 472, Letohrad Geodézie (profilová část maturitní zkoušky formou ústní zkoušky před zkušební komisí) 1) Měření délek 2) Teodolity 3) Zaměření stavebních objektů 4) Odečítací pomůcky 5) Nivelační přístroje a pomůcky 6)

Více

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem

Více

Vytyčení polohy bodu polární metodou

Vytyčení polohy bodu polární metodou Obsah Vytyčení polohy bodu polární metodou... 2 1 Vliv měření na přesnost souřadnic... 3 2 Vliv měření na polohovou a souřadnicovou směrodatnou odchylku... 4 3 Vliv podkladu na přesnost souřadnic... 5

Více

Pomůcka k aplikaci ustanovení katastrální vyhlášky vztahujících se k souřadnicím podrobných bodů

Pomůcka k aplikaci ustanovení katastrální vyhlášky vztahujících se k souřadnicím podrobných bodů Příloha k č.j. ČÚZK 6495/2009-22 Pomůcka k aplikaci ustanovení katastrální vyhlášky vztahujících se k souřadnicím podrobných bodů 1. Geometrické a polohové určení 1.1. Katastrální území a nemovitosti evidované

Více

Úsečka spojující sousední vrcholy se nazývá strana, spojnice nesousedních vrcholů je úhlopříčka mnohoúhelníku.

Úsečka spojující sousední vrcholy se nazývá strana, spojnice nesousedních vrcholů je úhlopříčka mnohoúhelníku. Mnohoúhelníky Je dáno n různých bodů A 1, A 2,. A n, z nichž žádné tři neleží na přímce. Geometrický útvar tvořený lomenou čarou a částí roviny touto čarou ohraničenou nazýváme n-úhelníkem A 1 A 2. A n.

Více

Matematika - 6. ročník Vzdělávací obsah

Matematika - 6. ročník Vzdělávací obsah Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá

Více

GEODÉZIE II. daný bod. S i.. měřené délky Ψ i.. měřené směry. orientace. Měřická přímka PRINCIP POLÁRNÍ METODY

GEODÉZIE II. daný bod. S i.. měřené délky Ψ i.. měřené směry. orientace. Měřická přímka PRINCIP POLÁRNÍ METODY Vysoká škola báňská technická univerzita Ostrava Hornicko-geologická fakulta Institut geodézie a důlního měřictví GEODÉZIE II Ing. Hana Staňková, Ph.D. kontrolní oměrná míra PRINCIP POLÁRNÍ METODY 4. Podrobné

Více

Rozpis výstupů zima 2008 Geometrie

Rozpis výstupů zima 2008 Geometrie Rozpis výstupů zima 2008 Geometrie 20. 10. porovnávání úseček grafický součet úseček grafický rozdíl úseček... porovnávání úhlů grafický součet úhlů grafický rozdíl úhlů... osa úhlu úhly vedlejší a vrcholové...

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 2 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

Omezíme se jen na lomené čáry, jejichž nesousední strany nemají společný bod. Jestliže A 0 = A n (pro n 2), nazývá se lomená čára uzavřená.

Omezíme se jen na lomené čáry, jejichž nesousední strany nemají společný bod. Jestliže A 0 = A n (pro n 2), nazývá se lomená čára uzavřená. MNOHOÚHELNÍKY Vlastnosti mnohoúhelníků Lomená čára C 0 C C C 3 C 4 protíná samu sebe. Lomená čára A 0 A A... A n- A n (n ) se skládá z úseček A 0 A, A A,..., A n- A n, z nichž každé dvě sousední mají společný

Více

Základní geometrické tvary

Základní geometrické tvary Základní geometrické tvary č. 37 Matematika 1. Narýsuj bod A. 2. Narýsuj přímku b. 3. Narýsuj přímku, která je dána body AB. AB 4. Narýsuj polopřímku CD. CD 5. Narýsuj úsečku AB. 6. Doplň. Rýsujeme v rovině.

Více

Úloha č. 1 : TROJÚHELNÍK. Určení prostorových posunů stavebního objektu

Úloha č. 1 : TROJÚHELNÍK. Určení prostorových posunů stavebního objektu Václav Čech, ČVUT v Praze, Fakulta stavební, 008 Úloha č. 1 : TROJÚHELNÍK Určení prostorových posunů stavebního objektu Zadání : Zjistěte posun bodu P do P, umístěného na horní terase Stavební fakulty.

Více

GEODETICKÉ VÝPOČTY I.

GEODETICKÉ VÝPOČTY I. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. TROJÚHELNÍK PYTHAGOROVA VĚTA TROJÚHELNÍK Geodetické výpočty I. trojúhelník je geometrický rovinný útvar určený třemi

Více

GEODETICKÉ VÝPOČTY I.

GEODETICKÉ VÝPOČTY I. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. ÚHLOVÉ JEDNOTKY PŘEVODY MEZI ÚHLOVÝMI MÍRAMI OBLOUKOVÁ MÍRA MÍRA ŠEDESÁTINNÁ úhlové jednotky ÚHLOVÉ MÍRY - STUPNĚ stupeň

Více

GEODETICKÉ VÝPOČTY I.

GEODETICKÉ VÝPOČTY I. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. ÚHLOVÉ JEDNOTKY PŘEVODY MEZI ÚHLOVÝMI MÍRAMI OBLOUKOVÁ MÍRA MÍRA ŠEDESÁTINNÁ úhlové jednotky ÚHLOVÉ MÍRY - STUPNĚ stupeň

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Laboratorní práce (č.10)

Laboratorní práce (č.10) Laboratorní práce (č.10) Název:Měření ploch Integrovaná Střední škola technická Mělník (K učilišti 2566 276 01 Mělník ) Datum :25.4.2010 Třída :2T Vypracoval:Michal Rybnikár Hodnocení: Zadání: Určete velikost

Více

Výpočet plochy Měření objemu Dělení pozemků. Geodézie Přednáška

Výpočet plochy Měření objemu Dělení pozemků. Geodézie Přednáška Výpočet ploch Měření objemu Dělení pozemků Geodézie řednáška Určování ploch strana určování ploch pozemků na plánu nebo mapě je vžd výpočet ploch obecného mnohoúhelníku plocha pozemku je vmezena vodorovným

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Cvičení z matematiky geometrie (CZMg) Systematizace a prohloubení učiva matematiky Planimetrie, Stereometrie, Analytická geometrie, Kombinatorika, Pravděpodobnost a statistika Třída: 4.

Více

Seminář z geoinformatiky

Seminář z geoinformatiky Seminář z geoinformatiky Úvod Přednášející: Ing. M. Čábelka cabelka@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie PřF UK v Praze Úvod - Přednášející: Ing. Miroslav Čábelka, - rozsah hodin:

Více

SYLABUS PŘEDNÁŠKY 8 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 8 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 8 Z GEODÉZIE 1 Souřadnicové výpočty 2 1 ročník bakalářského studia studijní program G studijní obor G doc Ing Jaromír Procházka CSc listopad 2015 1 Geodézie 1 přednáška č8 VÝPOČET SOUŘADNIC

Více

Geodézie. Pozemní stavitelství. denní. Celkový počet vyučovacích hodin za studium: 96 3. ročník: 32 týdnů po 3 hodinách (z toho 1 hodina cvičení),

Geodézie. Pozemní stavitelství. denní. Celkový počet vyučovacích hodin za studium: 96 3. ročník: 32 týdnů po 3 hodinách (z toho 1 hodina cvičení), Učební osnova předmětu Geodézie Studijní obor: Stavebnictví Zaměření: Forma vzdělávání: Pozemní stavitelství denní Celkový počet vyučovacích hodin za studium: 96 3. ročník: 32 týdnů po 3 hodinách (z toho

Více

GEODETICKÉ VÝPOČTY I.

GEODETICKÉ VÝPOČTY I. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. Ing. Jana Marešová, Ph.D. rok 2018-2019 V případě pokud chceme upravit (narovnat přímkou) lomenou hranici při nezměněných

Více

5. P L A N I M E T R I E

5. P L A N I M E T R I E 5. P L A N I M E T R I E 5.1 Z Á K L A D N Í P L A N I M E T R I C K É P O J M Y Bod (definice, značení, znázornění) Přímka (definice, značení, znázornění) Polopřímka (definice, značení, znázornění, počáteční

Více

GEODETICKÉ VÝPOČTY I.

GEODETICKÉ VÝPOČTY I. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. DĚLENÍ V POMĚRU MĚŘÍTKO MAPY měřítkem mapy rozumíme poměr 1 : M, kde M udává, kolikrát je délka na plánu menší než délka

Více

SYLABUS PŘEDNÁŠKY 11 Z GEODÉZIE 1 (Hodnocení přesnosti měření a vytyčování) 1. ročník bakalářského studia studijní program G studijní obor G

SYLABUS PŘEDNÁŠKY 11 Z GEODÉZIE 1 (Hodnocení přesnosti měření a vytyčování) 1. ročník bakalářského studia studijní program G studijní obor G SYLABUS PŘEDNÁŠKY 11 Z GEODÉZIE 1 (Hodnocení přesnosti měření a vytyčování) 1 ročník bakalářského studia studijní program G studijní obor G doc Ing Jaromír Procházka CSc s využitím přednášky doc Ing Martina

Více

2012, Brno Ing.Tomáš Mikita, Ph.D. Geodézie a pozemková evidence

2012, Brno Ing.Tomáš Mikita, Ph.D. Geodézie a pozemková evidence 2012, Brno Ing.Tomáš Mikita, Ph.D. Geodézie a pozemková evidence Přednáška č.7 Vytyčování, souřadnicové výpočty, podélné a příčné profily Vytyčování Geodetická činnost uskutečněná odborně a nestranně na

Více

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl 6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,

Více

Úvod do inženýrské geodézie

Úvod do inženýrské geodézie Úvod do inženýrské geodézie Úvod do inženýrské geodézie Rozbory přesnosti Vytyčování Čerpáno ze Sylabů přednášek z inženýrské geodézie doc. ing. Jaromíra Procházky, CSc. Úvod do inženýrské geodézie Pod

Více

MATEMATIKA - 4. ROČNÍK

MATEMATIKA - 4. ROČNÍK VZDĚLÁVACÍ OBLAST: VZDĚLÁVACÍ OBOR: PŘEDMĚT: MATEMATIKA A JEJÍ APLIKACE MATEMATIKA MATEMATIKA - 4. ROČNÍK Téma, učivo Rozvíjené kompetence, očekávané výstupy Mezipředmětové vztahy Poznámky Opakování ze

Více

Určete třetinu podílu čtvrtého čísla zleva a šestého čísla zprava podle číselné osy: Vypočtěte, kolik korun je 5 setin procenta ze 2 miliard korun.

Určete třetinu podílu čtvrtého čísla zleva a šestého čísla zprava podle číselné osy: Vypočtěte, kolik korun je 5 setin procenta ze 2 miliard korun. 1. Operace s reálnými čísly Obsah jedné stěny krychle je 289 cm 2. Vypočítejte objem této krychle. [S= 4 913 cm 3 ] Určete třetinu podílu čtvrtého čísla zleva a šestého čísla zprava podle číselné osy:

Více

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin doc. Ing. Martin Štroner, Ph.D. Fakulta stavební ČVUT v Praze 1 Úvod Při přesných inženýrsko geodetických

Více

M - Pythagorova věta, Eukleidovy věty

M - Pythagorova věta, Eukleidovy věty M - Pythagorova věta, Eukleidovy věty Určeno jako učební text pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

February 05, Čtyřúhelníky lichoběžníky.notebook. 1. Vzdělávací oblast: Matematika a její aplikace

February 05, Čtyřúhelníky lichoběžníky.notebook. 1. Vzdělávací oblast: Matematika a její aplikace Registrační číslo projektu: Název projektu: Název a číslo globálního grantu: CZ.1.07/1.1.12/02.0010 Šumavská škola = evropská škola Zvyšování kvality ve vzdělání v Plzeňském kraji CZ.1.07/1.1.12 Název

Více

3) Vypočtěte souřadnice průsečíku dané přímky p : x = t, y = 9 + 3t, z = 1 + t, t R s rovinou ρ : 3x + 5y z 2 = 0.

3) Vypočtěte souřadnice průsečíku dané přímky p : x = t, y = 9 + 3t, z = 1 + t, t R s rovinou ρ : 3x + 5y z 2 = 0. M1 Prog4 D1 1) Určete vektor c kolmý na vektory a = 2 i 3 j + k, b = i + 2 j 4 k. 2) Napište obecnou a parametrické rovnice roviny, která prochází bodem A[ 1; 1; 2] a je kolmá ke dvěma rovinám ρ : x 2y

Více

Vzorce počítačové grafiky

Vzorce počítačové grafiky Vektorové operace součet vektorů rozdíl vektorů opačný vektor násobení vektoru skalárem úhel dvou vektorů velikost vektoru a vzdálenost dvojice bodů v rovině (v prostoru analogicky) u = B A= b a b a u

Více

Geometrické plány jako podklad pro převody nemovitostí

Geometrické plány jako podklad pro převody nemovitostí Geometrické plány jako podklad pro převody nemovitostí Prohloubení nabídky dalšího vzdělávání v oblasti zeměměřictví a katastru nemovitostí ve Středočeském kraji CZ.1.07/3.2.11/03.0115 Projekt je finančně

Více

3. Souřadnicové výpočty

3. Souřadnicové výpočty 3. Souřadnicové výpočty 3.1 Délka. 3.2 Směrník. 3.3 Polární metoda. 3.4 Protínání vpřed z úhlů. 3.5 Protínání vpřed z délek. 3.6 Polygonové pořady. 3.7 Protínání zpět. 3.8 Transformace souřadnic. 3.9 Volné

Více

Předpokládané znalosti žáka 1. stupeň:

Předpokládané znalosti žáka 1. stupeň: Předpokládané znalosti žáka 1. stupeň: ČÍSLO A POČETNÍ OPERACE používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje

Více

Geometrický plán (1) Zeměměřické činnosti pro KN. Geometrický plán

Geometrický plán (1) Zeměměřické činnosti pro KN. Geometrický plán Geometrický plán (1) GEOMETRICKÝ PLÁN Zákon o katastru nemovitostí č. 256/2013 Sb. Vyhláška o katastru nemovitostí (katastrální vyhláška) č. 357/2013 Sb. Prohloubení nabídky dalšího vzdělávání v oblasti

Více

Ing. Jan Fafejta: Kvalita, přesnost a rozsah dat státních mapových děl ve vztahu k potřebám informačních systémů".

Ing. Jan Fafejta: Kvalita, přesnost a rozsah dat státních mapových děl ve vztahu k potřebám informačních systémů. Ing. Jan Fafejta: Kvalita, přesnost a rozsah dat státních mapových děl ve vztahu k potřebám informačních systémů". KVALITA, PŘESNOST A ROZSAH DAT STÁTNÍCH MAPOVÝCH DĚL VE VZTAHU K POTŘEBÁM INFORMAČNÍCH

Více

pro převody nemovitostí (1)

pro převody nemovitostí (1) pro převody nemovitostí (1) Geometrické plány jako podklad pro převody nemovitostí Prohloubení nabídky dalšího vzdělávání v oblasti zeměměřictví a katastru nemovitostí ve Středočeském kraji CZ.1.07/3.2.11/03.0115

Více

Teorie sférické trigonometrie

Teorie sférické trigonometrie Teorie sférické trigonometrie Trigonometrie (z řeckého trigónon = trojúhelník a metrein= měřit) je oblast goniometrie zabývající se praktickým užitím goniometrických funkcí při řešení úloh o trojúhelnících.

Více

Úlohy k procvičení kapitoly Obsahy rovinných obrazců

Úlohy k procvičení kapitoly Obsahy rovinných obrazců Úlohy k procvičení kapitoly Obsahy rovinných obrazců 1. Vypočtěte obvod a obsah obrazců nakreslených na obrázku 1. (Rozměry jsou udány v mm.) Obrázek 1 2. Na pokrytí 1 m 2 střechy se spotřebuje 26 ražených

Více

Matematika - 6. ročník Očekávané výstupy z RVP Učivo Přesahy a vazby desetinná čísla. - zobrazení na číselné ose

Matematika - 6. ročník Očekávané výstupy z RVP Učivo Přesahy a vazby desetinná čísla. - zobrazení na číselné ose Matematika - 6. ročník desetinná čísla - čtení a zápis v desítkové soustavě F užití desetinných čísel - zaokrouhlování a porovnávání des. čísel ve výpočtových úlohách - zobrazení na číselné ose MDV kritické

Více

2. Vyšetřete všechny možné případy vzájemné polohy tří různých přímek ležících v jedné rovině.

2. Vyšetřete všechny možné případy vzájemné polohy tří různých přímek ležících v jedné rovině. ZS1BK_PGE1 Geometrie I: Vybrané úlohy z elementární geometrie 1. Které geometrické útvary mohou vzniknout a) jako průnik dvou polopřímek téže přímky, b) jako průnik dvou polorovin téže roviny? V případě

Více

Obsahy. Trojúhelník = + + 2

Obsahy. Trojúhelník = + + 2 Obsahy Obsah nám říká, jak velkou plochu daný útvar zaujímá. Třeba jak velký máme byt nebo pozemek kolik metrů čtverečných (m 2 ), hektarů (ha), centimetrů čtverečných (cm 2 ), Základní jednotkou obsahu

Více

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika planimetrie. Mgr. Tomáš Novotný

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika planimetrie. Mgr. Tomáš Novotný Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity IV/2 Inovace

Více

19 Eukleidovský bodový prostor

19 Eukleidovský bodový prostor 19 Eukleidovský bodový prostor Eukleidovským bodovým prostorem rozumíme afinní bodový prostor, na jehož zaměření je definován skalární součin. Víme, že pomocí skalárního součinu jsou definovány pojmy norma

Více

SYLABUS 8. PŘEDNÁŠKY Z INŽENÝRSKÉ GEODÉZIE

SYLABUS 8. PŘEDNÁŠKY Z INŽENÝRSKÉ GEODÉZIE SYLABUS 8 PŘEDNÁŠKY Z INŽENÝRSKÉ GEODÉZIE (Vytyčování kružnicových oblouků) 3 ročník bakalářského studia studijní program G studijní obor G doc Ing Jaromír Procházka CSc listopad 2015 1 11 VYTYČOVÁNÍ OBLOUKŮ

Více

REKONSTRUKCE ASTROLÁBU POMOCÍ STEREOGRAFICKÉ PROJEKCE

REKONSTRUKCE ASTROLÁBU POMOCÍ STEREOGRAFICKÉ PROJEKCE REKONTRUKCE ATROLÁBU POMOCÍ TEREOGRAFICKÉ PROJEKCE Václav Jára 1 1 tereografická projekce a její vlastnosti tereografická projekce kulové plochy je středové promítání z bodu této kulové plochy do tečné

Více

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 35 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Vypočtěte [( 3 3 ) ( 1 4 5 3 0,5 ) ] : 1 6 1. 1 bod VÝCHOZÍ TEXT K ÚLOZE

Více

PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh

PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh Lomená čára A 0 A 1 A 2 A 3..., A n (n 2) se skládá z úseček A 0 A 1, A 1 A 2, A 2 A 3,..., A n 1 A n, z nichž každé dvě sousední mají společný jeden krajní

Více

Příklady na 13. týden

Příklady na 13. týden Příklady na 13. týden 13-1 Kruhový záhon o průměru 10 m se má osázet begóniemi. Na jednu sazenici je zapotřebí 2 dm 2. 1g semena má 5 000 zrn, jejichž klíčivost je 85 %. Pěstební odpad od výsevu do výsadby

Více

Čtyřúhelníky. Autor: Jana Krchová Obor: Matematika. Vybarvi ( nebo vyšrafuj) čtyřúhelníky: Napiš názvy jednotlivých rovinných útvarů: 1) 2) 3) 4)

Čtyřúhelníky. Autor: Jana Krchová Obor: Matematika. Vybarvi ( nebo vyšrafuj) čtyřúhelníky: Napiš názvy jednotlivých rovinných útvarů: 1) 2) 3) 4) Projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Vybarvi ( nebo vyšrafuj) čtyřúhelníky: Čtyřúhelníky 1 2 3 4 5 6 7 8 9 10 11 12 Napiš názvy jednotlivých rovinných

Více

SPŠ STAVEBNÍ České Budějovice MAPOVÁNÍ. JS pro 2. ročník S2G 1. ročník G1Z

SPŠ STAVEBNÍ České Budějovice MAPOVÁNÍ. JS pro 2. ročník S2G 1. ročník G1Z SPŠ STAVEBNÍ České Budějovice MAPOVÁNÍ JS pro 2. ročník S2G 1. ročník G1Z Všeobecné základy MAP Mapování řeší problém znázornění nepravidelného zemského povrchu do roviny Vychází se z: 1) geometrických

Více

Využití Pythagorovy věty III

Využití Pythagorovy věty III .8. Využití Pythagorovy věty III Předpoklady: 008 Př. 1: Urči obsah rovnoramenného trojúhelníku se základnou 8 cm a rameny 5,8 cm. Pro výpočet obsahu potřebujeme znát jednu ze stran a odpovídající výšku.

Více

Polohopisná měření Jednoduché pomůcky k zaměřování Metody zaměřování pozemků

Polohopisná měření Jednoduché pomůcky k zaměřování Metody zaměřování pozemků Polohopisná měření Jednoduché pomůcky k zaměřování Metody zaměřování pozemků Kartografie přednáška 8 Polohopisná měření úkolem polohopisného měření je určení vzájemné polohy bodů na povrchu Země ve směru

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Klauzurní část školního kola kategorie A se koná

Klauzurní část školního kola kategorie A se koná 56. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie 1. rčete všechna reálná čísla s, pro něž má rovnice 4x 4 20x 3 + sx 2 + 22x 2 = 0 čtyři různé reálné kořeny, přičemž součin

Více

6.16. Geodetické výpočty - GEV

6.16. Geodetické výpočty - GEV 6.16. Geodetické výpočty - GEV Obor: 36-46-M/01 Geodézie a katastr nemovitostí Forma vzdělávání: denní Počet hodin týdně za dobu vzdělávání: 8 Platnost učební osnovy: od 1.9.2010 1) Pojetí vyučovacího

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.057 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

SYLABUS PŘEDNÁŠKY 9 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 9 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 9 Z GEODÉZIE 1 (Souřadnicové výpočty 3 Centrace měřených veličin) 1 ročník bakalářského studia studijní program G studijní obor G doc Ing Jaromír Procházka CSc prosinec 2015 1 Geodézie

Více

Vyučovací předmět / ročník: Matematika / 4. Učivo

Vyučovací předmět / ročník: Matematika / 4. Učivo Vzdělávací oblast: Matematika a její aplikace Výstupy žáka Vyučovací předmět / ročník: Matematika / 4. ČÍSLO A POČETNÍ OPERACE Zpracoval: Mgr. Dana Štěpánová orientuje se v posloupnosti přirozených čísel

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 2 (pro 9-12 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat (horní

Více

Souřadnicové výpočty. Geodézie Přednáška

Souřadnicové výpočty. Geodézie Přednáška Souřadnicové výpočt Geodézie Přednáška Souřadnicové výpočt strana 2 Souřadnicové výpočt (souřadnicová geometrie) vchází z analtické geometrie zkoumá geometrické tvar pomocí algebraických a analtických

Více

f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 =

f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 = Řešení vzorové písemky z předmětu MAR Poznámky: Řešení úloh ze vzorové písemky jsou formulována dosti podrobně podobným způsobem jako u řešených příkladů ve skriptech U zkoušky lze jednotlivé kroky postupu

Více

PŘEHLED ZÁKLADNÍCH ZKUŠEBNÍCH OTÁZEK ke zkoušce odborné způsobilosti k udělení úředního oprávnění pro ověřování výsledků zeměměřických činností

PŘEHLED ZÁKLADNÍCH ZKUŠEBNÍCH OTÁZEK ke zkoušce odborné způsobilosti k udělení úředního oprávnění pro ověřování výsledků zeměměřických činností PŘEHLED ZÁKLADNÍCH ZKUŠEBNÍCH OTÁZEK ke zkoušce odborné způsobilosti k udělení úředního oprávnění pro ověřování výsledků zeměměřických činností Obecná část 1. Základní ustanovení katastrálního zákona,

Více

Úlohy klauzurní části školního kola kategorie A

Úlohy klauzurní části školního kola kategorie A 6. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie A. V oboru reálných čísel řešte soustavu rovnic y + 3x = 4x 3, x + 3y = 4y 3. 2. V rovině uvažujme lichoběžník ABCD se základnami

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Matematika (MAT) Náplň: Rovnice a nerovnice, kruhy a válce, úměrnost, geometrické konstrukce, výrazy 2 Třída: Tercie Počet hodin: 4 hodiny týdně Pomůcky: Učebna s PC a dataprojektorem (interaktivní

Více

Střední škola automobilní Ústí nad Orlicí

Střední škola automobilní Ústí nad Orlicí Síla Základní pojmy Střední škola automobilní Ústí nad Orlicí vzájemné působení těles, které mění jejich pohybový stav nebo tvar zobrazuje se graficky jako úsečka se šipkou ve zvoleném měřítku m f je vektor,

Více

Přípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro

Přípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro Příjímací zkoušky 01 Přípravný kurz k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) 1. Číselné obory 1.1. Doplňte číslo do rámečku tak, aby platila rovnost: 1.1.1.

Více

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32 Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;

Více

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán rovinný obrazec, v obrázku vyznačený barevnou výplní, který představuje

Více

KATASTR NEMOVITOSTÍ. Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství

KATASTR NEMOVITOSTÍ. Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství KATASTR NEMOVITOSTÍ Ing. Bc. Pavel Voříšek (úředně oprávněný zeměměřický inženýr). Vysoké Mýto 19. 2. 2018 KATASTR NEMOVITOSTÍ

Více

Ing. Martin Dědourek, CSc. Geodézie Svitavy, Wolkerova alej 14a, Svitavy NABÍDKOVÝ CENÍK

Ing. Martin Dědourek, CSc. Geodézie Svitavy, Wolkerova alej 14a, Svitavy NABÍDKOVÝ CENÍK Ing. Martin Dědourek, CSc. Geodézie Svitavy, Wolkerova alej 14a, Svitavy NABÍDKOVÝ CENÍK pro oceňování zeměměřických výkonů, platný od 1.1. 1996 a aktualizovaný dne 1.1. 25 Ceník byl sestaven za použití

Více

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015 Kartografie 1 - přednáška 1 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Úvod přednášky, cvičení, zápočty, zkoušky Jiří Cajthaml (přednášky, cvičení) potřebné znalosti: vzorce

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

64. ročník matematické olympiády Řešení úloh krajského kola kategorie A

64. ročník matematické olympiády Řešení úloh krajského kola kategorie A 64. ročník matematické olympiády Řešení úloh krajského kola kategorie A 1. Středy stran AC, BC označme postupně, N. Střed kružnice vepsané trojúhelníku KLC označme I. Úvodem poznamenejme, že body K, L

Více

Vyučovací předmět: Matematika Ročník: 7.

Vyučovací předmět: Matematika Ročník: 7. Vyučovací předmět: Matematika Ročník: 7. Vzdělávací obsah Očekávané výstupy z RVP ZV Školní výstupy Učivo I. čtvrtletí 40 hodin Opakování učiva z 6. ročníku (14) Přesahy a vazby, průřezová témata v oboru

Více

Podrobné polohové bodové pole (1)

Podrobné polohové bodové pole (1) Podrobné polohové bodové pole (1) BUDOVÁNÍ NEBO REVIZE A DOPLNĚNÍ PODROBNÉHO POLOHOVÉHO BODOVÉHO POLE Prohloubení nabídky dalšího vzdělávání v oblasti Prohloubení nabídky zeměměřictví dalšího vzdělávání

Více

5. Statika poloha střediska sil

5. Statika poloha střediska sil 5. Statika poloha střediska sil 5.1 Rovnoběžné sily a jejich střed Uvažujeme soustavu vzájemně rovnoběžných sil v prostoru s pevnými působišti. Každá síla má působiště dané polohovým vektorem. Všechny

Více

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je

Více

2. Bodové pole a souřadnicové výpočty

2. Bodové pole a souřadnicové výpočty 2. Bodové pole a souřadnicové výpočty 2.1 Body 2.2 Bodová pole 2.3 Polohové bodové pole. 2.3.1 Rozdělení polohového bodového pole. 2.3.2 Dokumentace geodetického bodu. 2.3.3 Stabilizace a signalizace bodů.

Více

TEMATICKÝ PLÁN. září říjen

TEMATICKÝ PLÁN. září říjen TEMATICKÝ PLÁN Předmět: MATEMATIKA Literatura: Matematika doc. RNDr. Oldřich Odvárko, DrSc., doc. RNDr. Jiří Kadleček, CSc Matematicko fyzikální tabulky pro základní školy UČIVO - ARITMETIKA: 1. Rozšířené

Více

Souřadnicové výpočty I.

Souřadnicové výpočty I. Geodézie přednáška 7 Souřadnicové výpočt I. Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.: 545134015 Výpočet směrníku a délk stran v základním i podrobném bodovém poli

Více