SYLABUS PŘEDNÁŠKY 11 Z GEODÉZIE 1 (Hodnocení přesnosti měření a vytyčování) 1. ročník bakalářského studia studijní program G studijní obor G

Rozměr: px
Začít zobrazení ze stránky:

Download "SYLABUS PŘEDNÁŠKY 11 Z GEODÉZIE 1 (Hodnocení přesnosti měření a vytyčování) 1. ročník bakalářského studia studijní program G studijní obor G"

Transkript

1 SYLABUS PŘEDNÁŠKY 11 Z GEODÉZIE 1 (Hodnocení přesnosti měření a vytyčování) 1 ročník bakalářského studia studijní program G studijní obor G doc Ing Jaromír Procházka CSc s využitím přednášky doc Ing Martina Štronera PhD prosinec

2 Geodézie 1 přednáška č11 HODNOCENÍ PŘESNOSTI MĚŘENÍ A VYTYČOVÁNÍ ÚVOD O MĚŘENÍ OBECNĚ V geodézii měříme především délky a úhly ale také čas velikost síly tíže apod Výsledek měření je charakterizován číslem závislým též na volbě jednotek Ze zkušenosti platí: opakuje li se měření téže veličiny jsou i při sebevětší pečlivosti získány obecně různé výsledky Je to způsobeno tím že žádné měření nelze izolovat od mnoha rušivých vlivů kterými jsou především: - nedokonalost našich smyslů - nedokonalost přístrojů - vnější vlivy - nedostatečná znalost všech okolností které způsobují chyby měření atd Omezováním rušivých vlivů např využitím přesnějšího přístroje volbou příznivějších podmínek či pečlivým měřením lze snížit jejich působení a tak zvýšit přesnost měření Proměnlivé velmi početné a v podstatě nepostižitelné vlivy určují číselně výsledek měření který je tak v určitých mezích náhodnou (libovolnou a nepředvídatelnou) veličinou Rozdílnost výsledků měření vyplývá z fyzikální podstaty prostředí ve kterém měření probíhá Při měření a jeho zpracování je hledána nejspolehlivější hodnota výsledku měření odhadována její přesnost a meze její spolehlivosti Měřením či zpracováním měření NIKDY nezískáme skutečnou hodnotu veličiny vždy se jedná o odhad CHYBY (ODCHYLKY) MĚŘENÍ A JEJICH DĚLENÍ Výsledek každého měření je nevyhnutelně zatížen skutečnou chybou (náhodnou odchylkou) ε která je souhrnem působení jednotlivých vlivů Skutečnou chybu měření ε i lze vyjádřit pomocí skutečné ( správné ) hodnoty veličiny X a měřené hodnoty l i : Chyby (odchylky) měření se dělí na: - hrubé chyby a omyly - chyby nevyhnutelné a ty dále na: - chyby náhodné - chyby systematické Omyly a hrubé chyby Omyly nejsou způsobeny objektivními podmínkami měření ale nesprávnými úkony měřiče (nepozornost nedbalost špatná manipulace s přístrojem apod) Hrubé chyby mohou vznikat nakupením nepříznivých vlivů nebo jejich neobvyklou velikostí jako např silným větrem nebo vibrací obrazu cíle v dalekohledu Měření s těmito chybami jsou v příkrém rozporu s kontrolními měřeními k jejich vyloučení je nutné dvojí měření nebo 2

3 měření nadbytečných hodnot Nejsou chybami nevyhnutelnými a dále nejsou uvažovány Systematické chyby (odchylky) Vznikají z jednostranně působících příčin za stejných podmínek ovlivňují měření ve stejném smyslu tj chyba měření má stejné znaménko i velikost Dále je lze dělit na : o konstantní (při každém měření stejné znaménko i velikost např chybná délka pásma) o proměnlivé (jejich vliv se mění v závislosti na podmínkách měření např na teplotě atmosféry apod jejich vliv může mít i různá znaménka) Systematické chyby je možno potlačit či vyloučit seřízením (rektifikací nebo kalibrací) přístrojů a pomůcek před měřením vhodnou metodikou zpracování měření nebo početně tj zavedením korekcí (např pro délku měřenou kalibrovaným pásmem) Náhodné chyby (odchylky) Jsou to takové chyby které při stejné měřené veličině metodě měření podmínkách a pečlivosti náhodně nabývají různé velikosti i znaménka Jednotlivě nemají žádné zákonitosti a jsou vzájemně nezávislé nepředvídatelné a nezdůvodnitelné Ve větších souborech (vícekrát opakované měření) se však již řídí jistými statistickými zákonitostmi Náhodné chyby stejného druhu mají charakter náhodné veličiny s normálním rozdělením pravděpodobnosti Celková náhodná chyba měření je dána součtem velkého množství elementárních na sobě nezávislých náhodných chyb způsobených mnoha různými vlivy Vlastnosti náhodných chyb : o pravděpodobnost vzniku kladné či záporné chyby určité velikosti je stejná o malé chyby jsou pravděpodobnější (četnější) než chyby velké o chyby nad určitou mez se nevyskytují (resp považujeme je za hrubé) Normální rozdělení Hustota pravděpodobnosti φ(x) (také frekvenční funkce) normálního rozdělení N(E(x)σ 2 ) je dána střední hodnotou E(x) a směrodatnou odchylkou σ (obr1): ( ) * ( )+ kde ( ) 3

4 Pravděpodobnost P že měření bude zatíženo chybou o velikosti padnoucí do intervalu <A;B> je rovna ploše vyšrafované v grafu Několik hodnot pravděpodobností P charakterizujících normální rozdělení jednorozměrných chyb je pro celistvé násobky koeficientu spolehlivosti uvedeno v tab1: Tab1 Hodnoty pravděpodobností pro různé intervaly spolehlivosti A B P E(x) E(x) + σ 0341 E(x) - σ E(x) + σ 0682 E(x) - 2σ E(x) + 2σ 0954 E(x) 25σ E(x) + 25σ 0988 E(x) - 3σ E(x) + 3σ E(x) - E(x) + Co to je směrodatná odchylka σ? Je to parametr popisující normální rozdělení Ve vztahu k měření je to charakteristika přesnosti Z hlediska chyb měření je třeba vždy tuto charakteristiku interpretovat s ohledem na předchozí tabulku a tedy si uvědomit že např v intervalu < -2σ ; 2σ > od střední hodnoty se vyskytuje hledaná hodnota geometrického parametru s pravděpodobností 95 % (za předpokladu že měření mají normální rozdělení) Výsledkem vlivu náhodných Δi a systematických chyb ci je skutečná chyba měření εi : VÝPOČET CHARAKTERISTIK PŘESNOSTI MĚŘENÍ Směrodatné odchylky σ (s) Jako charakteristika přesnosti měření (rozptylu) se téměř výhradně používá směrodatná odchylka σ Druhy směrodatných odchylek : základní σ : z velkého souboru měření kde n výběrová s : ze souboru menšího zpravidla n < 5 4

5 Výpočet : - kde ; ; - Mezní odchylka δ Mezní odchylka δ určuje symetrický interval spolehlivosti kde se nachází se zvolenou pravděpodobností skutečná hodnota Hodnoty ležící mimo tento interval se považují za hrubé chyby které se z dosažených výsledků vylučují Mezní odchylka se počítá se vztahu: kde up je hodnota normovaného normálního rozdělení jinak také koeficient spolehlivosti (konfidence) Volí se obvykle 2 až 3 (95% až 997%) s ohledem ke složitosti prací a k předpokládané přítomnosti systematických chyb VYROVNÁNÍ MĚŘENÝCH VELIČIN A HODNOCENÍ JEJICH PŘESNOSTI METODA NEJMENŠÍCH ČTVERCŮ (MNČ) V geodézii se často vyskytuje nadbytečný počet měření při určení neznámé veličiny Vyrovnáním se hledá její nejpravděpodobnější hodnota K tomu slouží v geodézii nejčastěji MNČ založená na počtu pravděpodobnosti za podmínky normálního rozdělení měřických odchylek Podle teorie pravděpodobnosti je vyrovnaná hodnota nejpravděpodobnější splňují-li opravy měřených veličin podmínku MNČ: kde: Používají se tři základní způsoby vyrovnání: 1 Vyrovnání přímých měření (jedna neznámá veličina přímo měřena n- krát např opakované měření délky či úhlu) 2 Vyrovnání zprostředkujících měření (určují se 2 nebo více nezávislých veličin prostřednictvím jiných přímo měřitelných veličin např určení souřadnic bodu prostřednictvím měřených úhlů a délek) (více předmět TCHVP) 3 Vyrovnání podmínkových měření (přímo měřené veličiny mají splňovat nějakou matematickou či geometrickou podmínku např součet úhlů v rovinném trojúhelníku (více předmět TCHVP) 5

6 Vyrovnání přímých měření o Vyrovnání přímých měření stejné přesnosti Při praktickém měření kromě několika málo specifických případů skutečnou hodnotu X neznáme a v takovémto případě je jako nejpravděpodobnější odhad skutečné hodnoty možno použít aritmetický průměr Ī Rozdíly průměrné hodnoty a jednotlivých měření jsou pak nazývány opravami vi ze kterých se počítá výběrová směrodatná odchylka s přesněji vyjádřeno její odhad Výpočet platí pro měření stejné přesnosti tedy všechna měření mají stejnou váhu rovnou jedné kde - Směrodatná odchylka je také náhodná veličina pokud provedeme stejně např 2 x 10 měření a vypočteme dvakrát směrodatnou odchylku obecně nebude stejná Jen pro ilustraci je zde uveden vzorec pro výpočet odhadu směrodatné odchylky směrodatné odchylky vyjadřující předpokládanou nepřesnost v určení směrodatné odchylky měřené veličiny: kde n je nadbytečný počet měření zde n = (n-1) Tab2 Závislost směrodatné odchylky σ σ na počtu měření n /(2n ) Pokud je známa směrodatná odchylka jednoho měření a bylo měřeno vícekrát směrodatná odchylka průměrné hodnoty se vypočte podle vzorce: kde n je počet měření o Vyrovnání přímých měření nestejné přesnosti Pokud měření nemají stejnou přesnost a tato přesnost je známa je nutno zvolit jiný postup zpracování Hodnota výsledku měření je pak získána váženým průměrem: - - Váhy se určují ze vztahu: kde c je vhodně volená konstanta Výběrová směrodatná odchylka vypočte ze vztahu: kde opravy jsou: -( hodnoty určené váženým průměrem se - ) 6 ( )

7 o Dvojice měření V geodézii se často měří hledaná veličina pouze dvakrát zpravidla se stejnou přesností Nejpravděpodobnější hodnotou je pak průměr Hodnotí se základní směrodatnou odchylkou ovšem z jedné měřické dvojice je výběrová směrodatná odchylka nespolehlivá Mnohem spolehlivější je její určení ze souboru měřických dvojic stejné přesnosti pokud je k dispozici Soubor měřických dvojic stejné přesnosti Z většího množství měřických dvojic lze určit výběrovou směrodatnou odchylku jednoho měření ze vztahu: Výběrová směrodatná odchylka průměru dvojice je pak: o Příklady na zpracování výsledků přímých měření Příklad 1 : Délka byla měřena opakovaně pětkrát za stejných podmínek a stejnou metodou tedy se stejnou přesností Vypočtěte průměrnou délku přesnost jednoho měření s a přesnost průměru sx charakterizované výběrovými směrodatnými odchylkami i l v vv [m2] E E E E E-6 Σ E-5 Ø s = sx = Příklad 2 : Délka byla měřena opakovaně pětkrát různými metodami tedy s různou přesností Vypočtěte průměrnou délku a přesnost průměru sx i l σ Σ c = Ø sx = p lp v pv pvv [m2] E E E E E E-6 7

8 ZÁKON HROMADĚNÍ SMĚRODATNÝCH ODCHYLEK V mnoha případech nelze nebo není výhodné přímo měřit určovanou hodnotu a tato se pak určuje zprostředkovaně tedy výpočtem z jiných měřených hodnot Příkladem může být plocha trojúhelníka jsou-li měřeny dvě strany a úhel Potřebujeme nejen vypočítat hledanou hodnotu ale také určit její směrodatnou odchylku Známe li funkční vztah mezi veličinami dokážeme ji vypočítat pomocí zákona hromadění směrodatných odchylek (ZHSO) ZHSO vychází ze zákona hromadění skutečných chyb (náhodných odchylek) který je založen na totálním diferenciálu funkčního vztahu Zákon hromadění skutečných chyb (náhodných odchylek): Funkční vztah lze obecně vyjádřit rovnicí: ( ) Pro hledanou hodnotu y a její skutečnou chybu ε y platí funkční vztah vycházející z měřených veličin x i a jejich skutečných chyb ε xi : ( ) Vzhledem k tomu že skutečné chyby jsou oproti měřeným hodnotám velmi malé lze rozvinout pravou stranu vztahu podle Taylorova rozvoje s omezením pouze na členy prvního řádu kde odpovídající diferenciály jsou nahrazeny skutečnými chybami: ( ) Zákon hromadění směrodatných odchylek (středních chyb) Skutečné chyby měřených veličin zpravidla neznáme ale protože známe jejich směrodatné odchylky σ xi můžeme určit směrodatnou odchylku σ y hledané veličiny y pomocí zákona hromadění směrodatných odchylek který je dán vztahem : / / / Zákon hromadění směrodatných odchylek platí za následujících podmínek: 1 Jednotlivé měřené veličiny a tedy i jejich skutečné chyby musí být vzájemně nezávislé 2 Skutečné chyby mají náhodný charakter jejich znaménko a velikost se řídí normálním rozdělením 3 Skutečné chyby jsou oproti měřeným hodnotám malé parciální derivace musí zůstat prakticky konstantní změní-li se měřené hodnoty o hodnoty chyb 4 Jednotlivé členy musí mít stejný fyzikální rozměr 8

9 Příklady na aplikaci ZHSO Příklad 1 : Jsou známy dvě délky a = m b = m které byly změřeny se směrodatnou odchylkou σ a σ b = 0002m Dále byl změřen vodorovný úhel ω = se směrodatnou odchylkou σ ω = Určete směrodatnou odchylku σ P plochy trojúhelníka Funkční vztah pro výpočet plochy trojúhelníka: Rovnice pro skutečné chyby : kde Rovnice pro směrodatné odchylky: / / / ( ) Úprava pro σ a σ b = σ d : ( ) ( ) ( ) Po dosazení a výpočtu: σ P = 0043 m 2 P = m 2 9

10 Příklad 2 : Odvoďte vzorec pro směrodatnou odchylku průměru z n stejně přesných měření znáte-li směrodatnou odchylku jednoho měření σ l Funkční vztah pro výpočet prostého aritmetického průměru je: - Vztah pro skutečnou chybu odvodíme použitím Zákona hromadění skutečných chyb : { } Všechny hodnoty jsou zde měřeny se stejnou přesností tedy se stejnou směrodatnou odchylkou To ale nelze říci o skutečných chybách! O nich nevíme nic (je to náhodná veličina neznáme ani jejich velikost ani znaménko) a proto NELZE závorku ve výše uvedené rovnici zjednodušit Obecně platí : Směrodatnou odchylku průměru určíme prostřednictvím Zákona hromadění směrodatných odchylek : { } Ze zadání víme že všechna měření mají stejnou směrodatnou odchylku takže platí: a vzorec lze upravit na tvar: ( ) KRITÉRIA PRO TESTOVÁNÍ OPAKOVANÝCH MĚŘENÍ Hodnocení opakovaných měření se v geodetické praxi nejčastěji provádí porovnáním dosažené a očekávané (teoretické) přesnosti Při dvojici měřených hodnot se hodnotí dosažený rozdíl s rozdílem mezním při větším počtu měřených hodnot se testuje odlehlost měření od průměru s mezní opravou tzv McKay Nairovým testem při známé základní směrodatné odchylce Mezní rozdíl Rozdíl dvou měření se vypočte ze vztahu: Aplikací zákona hromadění skutečných chyb a následně zákona hromadění směrodatných odchylek se obdrží rovnice pro skutečnou chybu rozdílu: a rovnice pro směrodatnou odchylku rozdílu: Za předpokladu stejné přesnosti obou měření platí že: 10

11 a vzorec lze upravit na tvar : Mezní rozdíl je potom dán vzorcem: a dodržení očekávané přesnosti měření se hodnotí nerovností: Test odlehlosti měření Při větším počtu měření nelze již použít hodnocení mezním rozdílem Nejpoužívanějším hodnocením dodržení očekávané přesnosti je test odlehlosti měření při známé základní směrodatné odchylce σlo jednoho měření Test spočívá v porovnání absolutní hodnoty dosažených oprav vi k průměru s mezní opravou vm vypočtenou ze vztahu: kde uαn je kritická hodnota (tab3) závislá na počtu opakování n a zvolené hladině významnosti (riziku) α (volí se 5% nebo 1%) Odlehlost měření se testuje nerovností: Tab3 Kritické hodnoty pro McKay-Nairův test odlehlých měření G α 5% 1% P o č e t m ě ř e n í n Postup testování je následující: o Vypočte se průměrná hodnota ze všech měření a opravy vi k ní o Pomocí výše uvedeného vztahu se vypočte hodnota vm o Testuje se odlehlost měření výše uvedenou nerovností Platí-li nerovnost je testované měření zatím pouze podezřelé z odlehlosti přičemž v jednom souboru může být takových měření i více o Přiměří se nejméně jedno další měření a rozšířený soubor se znovu testuje tak že se vypočte nová průměrná hodnota nové opravy i mezní oprava pro zvýšený počet opakování Podezřelé měření se může zařadit do rozšířeného souboru a výslednou hodnotou je potom průměr ze všech měření Zůstane-li i v rozšířeném souboru podezřelé měření odlehlé (popř je odlehlé jiné měření) jsme oprávněni jej ze souboru vyloučit o Při vyloučení odlehlého měření je nový soubor nutno opět otestovat pro nový průměr nové opravy i odpovídající mezní opravu o Vždy však musí zůstat minimálně zachován předem určený počet měření Konkrétní použití testu odlehlých měření je uvedeno v přednášce č10 (str7) při testování vodorovných směrů naměřených ve 3 skupinách Tamtéž je (na str8) uvedena i další možnost hodnocení dosažené přesnosti měření reprezentované výběrovou směrodatnou odchylkou sφi s mezní výběrovou směrodatnou odchylkou sφim 11

SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1 (Souřadnicové výpočty 4, Orientace osnovy vodorovných směrů) 1. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. prosinec

Více

Zákony hromadění chyb.

Zákony hromadění chyb. Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky

Více

Úvod do inženýrské geodézie

Úvod do inženýrské geodézie Úvod do inženýrské geodézie Úvod do inženýrské geodézie Rozbory přesnosti Vytyčování Čerpáno ze Sylabů přednášek z inženýrské geodézie doc. ing. Jaromíra Procházky, CSc. Úvod do inženýrské geodézie Pod

Více

Posouzení přesnosti měření

Posouzení přesnosti měření Přesnost měření Posouzení přesnosti měření Hodnotu kvantitativně popsaného parametru jakéhokoliv objektu zjistíme jedině měřením. Reálné měření má vždy omezenou přesnost V minulosti sloužila k posouzení

Více

Vytyčení polohy bodu polární metodou

Vytyčení polohy bodu polární metodou Obsah Vytyčení polohy bodu polární metodou... 2 1 Vliv měření na přesnost souřadnic... 3 2 Vliv měření na polohovou a souřadnicovou směrodatnou odchylku... 4 3 Vliv podkladu na přesnost souřadnic... 5

Více

EXPERIMENTÁLNÍ MECHANIKA 2 Přednáška 5 - Chyby a nejistoty měření. Jan Krystek

EXPERIMENTÁLNÍ MECHANIKA 2 Přednáška 5 - Chyby a nejistoty měření. Jan Krystek EXPERIMENTÁLNÍ MECHANIKA 2 Přednáška 5 - Chyby a nejistoty měření Jan Krystek 9. května 2019 CHYBY A NEJISTOTY MĚŘENÍ Každé měření je zatíženo určitou nepřesností způsobenou nejrůznějšími negativními vlivy,

Více

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin doc. Ing. Martin Štroner, Ph.D. Fakulta stavební ČVUT v Praze 1 Úvod Při přesných inženýrsko geodetických

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

OBECNÉ METODY VYROVNÁNÍ

OBECNÉ METODY VYROVNÁNÍ OBECNÉ METODY VYROVNÁNÍ HYNČICOVÁ TEREZA, H2IGE1 2014 ÚVOD Z DŮVODU VYLOUČENÍ HRUBÝCH CHYB A ZVÝŠENÍ PŘESNOSTI NIKDY NEMĚŘÍME DANOU VELIČINU POUZE JEDNOU VÝSLEDKEM OPAKOVANÉHO MĚŘENÍ NĚKTERÉ VELIČINY JE

Více

STATISTICKÉ ODHADY Odhady populačních charakteristik

STATISTICKÉ ODHADY Odhady populačních charakteristik STATISTICKÉ ODHADY Odhady populačních charakteristik Jak stanovit charakteristiky rozložení sledované veličiny v základní populaci? Populaci většinou nemáme celou k dispozici, musíme se spokojit jen s

Více

Charakterizují kvantitativně vlastnosti předmětů a jevů.

Charakterizují kvantitativně vlastnosti předmětů a jevů. Měřicí aparatura 1 / 34 Fyzikální veličiny Charakterizují kvantitativně vlastnosti předmětů a jevů. Můžeme je dělit: Podle rozměrů: Bezrozměrné (index lomu, poměry) S rozměrem fyzikální veličiny velikost

Více

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. 1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Chyby měření 210DPSM

Chyby měření 210DPSM Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů

Více

Náhodné chyby přímých měření

Náhodné chyby přímých měření Náhodné chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně pravděpodobná.

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,

Více

ÚHLŮ METODY MĚŘENÍ ÚHLŮ A SMĚRŮ CHYBY PŘI MĚŘENÍ ÚHLŮ A SMĚRŮ

ÚHLŮ METODY MĚŘENÍ ÚHLŮ A SMĚRŮ CHYBY PŘI MĚŘENÍ ÚHLŮ A SMĚRŮ 5. PŘEDNÁŠKA LETNÍ 00 ING. HANA STAŇKOVÁ, Ph.D. MĚŘENÍ ÚHLŮ METODY MĚŘENÍ ÚHLŮ A SMĚRŮ CHYBY PŘI MĚŘENÍ ÚHLŮ A SMĚRŮ GEODÉZIE 5. PŘEDNÁŠKA LETNÍ 00 METODY MĚŘENÍ ÚHLŮ. měření úhlů v jedné poloze dalekohledu.

Více

Úvod do teorie měření. Eva Hejnová

Úvod do teorie měření. Eva Hejnová Úvod do teorie měření Eva Hejnová Podmínky získání zápočtu: Podmínkou pro získání zápočtu je účast na cvičeních (maximálně tři absence) a úspěšné splnění jednoho písemného testu alespoň na 50 % max. počtu

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 5. Odhady parametrů základního souboru Mgr. David Fiedor 16. března 2015 Vztahy mezi výběrovým a základním souborem Osnova 1 Úvod, pojmy Vztahy mezi výběrovým a základním

Více

SYLABUS 2. a 3. PŘEDNÁŠKY Z INŽENÝRSKÉ GEODÉZIE

SYLABUS 2. a 3. PŘEDNÁŠKY Z INŽENÝRSKÉ GEODÉZIE SYLABUS 2. a 3. PŘEDNÁŠKY Z INŽENÝRSKÉ GEODÉZIE Plánování přesnosti měření v IG) 3. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. říjen 2018 1 3. PLÁNOVÁNÍ

Více

Úvod do teorie měření. Eva Hejnová

Úvod do teorie měření. Eva Hejnová Úvod do teorie měření Eva Hejnová Literatura: Novák, R. Úvod do teorie měření. Ústí nad Labem: UJEP, 2003 Sprušil, B., Zieleniecová, P.: Úvod do teorie fyzikálních měření. Praha: SPN, 1985 Brož, J. a kol.

Více

Úvod do teorie měření. Eva Hejnová

Úvod do teorie měření. Eva Hejnová Úvod do teorie měření Eva Hejnová Program semináře 1. Základní pojmy - metody měření, druhy chyb, počítání s neúplnými čísly, zaokrouhlování 2. Chyby přímých měření - aritmetický průměr a směrodatná odchylka,

Více

Úvod do problematiky měření

Úvod do problematiky měření 1/18 Lord Kelvin: "Když to, o čem mluvíte, můžete změřit, a vyjádřit to pomocí čísel, něco o tom víte. Ale když to nemůžete vyjádřit číselně, je vaše znalost hubená a nedostatečná. Může to být začátek

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

Náhodné (statistické) chyby přímých měření

Náhodné (statistické) chyby přímých měření Náhodné (statistické) chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně

Více

Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství. Ing. Pavel Voříšek MĚŘENÍ VZDÁLENOSTÍ. VOŠ a SŠS Vysoké Mýto leden 2008

Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství. Ing. Pavel Voříšek MĚŘENÍ VZDÁLENOSTÍ. VOŠ a SŠS Vysoké Mýto leden 2008 Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství Ing. Pavel Voříšek MĚŘENÍ VZDÁLENOSTÍ VOŠ a SŠS Vysoké Mýto leden 2008 METODY MĚŘENÍ DÉLEK PŘÍMÉ (měřidlo klademe přímo do měřené

Více

SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE

SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE (Řešení kruţnicových oblouků v souřadnicích) 3. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. prosinec 2015

Více

Vyjadřování přesnosti v metrologii

Vyjadřování přesnosti v metrologii Vyjadřování přesnosti v metrologii Měření soubor činností, jejichž cílem je stanovit hodnotu veličiny. Výsledek měření hodnota získaná měřením přisouzená měřené veličině. Chyba měření výsledek měření mínus

Více

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D. Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost

Více

Čas potřebný k prostudování učiva kapitoly: 1,25 hodiny

Čas potřebný k prostudování učiva kapitoly: 1,25 hodiny Fyzikální praktikum III 15 3. PROTOKOL O MĚŘENÍ V této kapitole se dozvíte: jak má vypadat a jaké náležitosti má splňovat protokol o měření; jak stanovit chybu měřené veličiny; jak vyhodnotit úspěšnost

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

Úvod do teorie měření. Eva Hejnová

Úvod do teorie měření. Eva Hejnová Úvod do teorie měření Eva Hejnová Literatura: Novák, R. Úvod do teorie měření. Ústí nad Labem: UJEP, 2003 Sprušil, B., Zieleniecová, P.: Úvod do teorie fyzikálních měření. Praha: SPN, 1985 Brož, J. a kol.

Více

OBSAH 1 Úvod Fyzikální charakteristiky Zem Referen ní plochy a soustavy... 21

OBSAH 1 Úvod Fyzikální charakteristiky Zem Referen ní plochy a soustavy... 21 OBSAH I. ČÁST ZEMĚ A GEODÉZIE 1 Úvod... 1 1.1 Historie měření velikosti a tvaru Země... 1 1.1.1 První určení poloměru Zeměkoule... 1 1.1.2 Středověké měření Země... 1 1.1.3 Nové názory na tvar Země...

Více

SYLABUS 9. PŘEDNÁŠKY Z GEODÉZIE 2 (Výpočet výměr)

SYLABUS 9. PŘEDNÁŠKY Z GEODÉZIE 2 (Výpočet výměr) SYLABUS 9. PŘEDNÁŠKY Z GEODÉZIE 2 (Výpočet výměr) 1. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. duben 2016 1 Geodézie 2 přednáška č.9 VÝPOČET VÝMĚR

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu úloha/zadání název úlohy Inženýrská geodézie II 1/5 Určení nepřístupné vzdálenosti

Více

Vyhodnocení součinitele alfa z dat naměřených v reálných podmínkách při teplotách 80 C a pokojové teplotě.

Vyhodnocení součinitele alfa z dat naměřených v reálných podmínkách při teplotách 80 C a pokojové teplotě. oučinitel odporu Vyhodnocení součinitele alfa z dat naměřených v reálných podmínkách při teplotách 80 C a pokojové teplotě Zadání: Vypočtěte hodnotu součinitele α s platinového odporového teploměru Pt-00

Více

Popis teodolitu Podmínky správnosti teodolitu Metody měření úhlů

Popis teodolitu Podmínky správnosti teodolitu Metody měření úhlů 5. PŘEDNÁŠKA LETNÍ 00 Ing. Hana Staňková, Ph.D. Měření úhlů Popis teodolitu Podmínky správnosti teodolitu Metody měření úhlů GEODÉZIE 5. PŘEDNÁŠKA LETNÍ 00 POPIS TEODOLITU THEO 00 THEO 00 kolimátor dalekohled

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními

Více

Vyrovnání měření přímých stejné přesnosti

Vyrovnání měření přímých stejné přesnosti Vyrovnání měření přímých stejné přesnost 1) Určíme přblžnou hodnotu x pro přehlednější výpočet v pracovní tabulce: x ) Vypočteme hodnoty doplňků δ k přblžné hodnotě x : δ l x, protože l x + δ 3) Výpočet

Více

Úloha č. 1 : TROJÚHELNÍK. Určení prostorových posunů stavebního objektu

Úloha č. 1 : TROJÚHELNÍK. Určení prostorových posunů stavebního objektu Václav Čech, ČVUT v Praze, Fakulta stavební, 008 Úloha č. 1 : TROJÚHELNÍK Určení prostorových posunů stavebního objektu Zadání : Zjistěte posun bodu P do P, umístěného na horní terase Stavební fakulty.

Více

Regulační diagramy (RD)

Regulační diagramy (RD) Regulační diagramy (RD) Control Charts Patří k základním nástrojům vnitřní QC laboratoře či výrobního procesu (grafická pomůcka). Pomocí RD lze dlouhodobě sledovat stabilitu (chemického) měřícího systému.

Více

přesnost (reprodukovatelnost) správnost (skutečná hodnota)? Skutečná hodnota použití různých metod

přesnost (reprodukovatelnost) správnost (skutečná hodnota)? Skutečná hodnota použití různých metod přesnost (reprodukovatelnost) správnost (skutečná hodnota)? Skutečná hodnota použití různých metod Měření Pb v polyethylenu 36 různými laboratořemi 0,47 0 ± 0,02 1 µmol.g -1 tj. 97,4 ± 4,3 µg.g -1 Měření

Více

Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .

Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) . Statistika Teorie odhadu statistická indukce Intervalový odhad µ, σ 2 a π Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika

Více

Laboratorní práce č. 1: Měření délky

Laboratorní práce č. 1: Měření délky Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.

Více

Podrobné polohové bodové pole (1)

Podrobné polohové bodové pole (1) Podrobné polohové bodové pole (1) BUDOVÁNÍ NEBO REVIZE A DOPLNĚNÍ PODROBNÉHO POLOHOVÉHO BODOVÉHO POLE Prohloubení nabídky dalšího vzdělávání v oblasti Prohloubení nabídky zeměměřictví dalšího vzdělávání

Více

SEMESTRÁLNÍ PRÁCE. Leptání plasmou. Ing. Pavel Bouchalík

SEMESTRÁLNÍ PRÁCE. Leptání plasmou. Ing. Pavel Bouchalík SEMESTRÁLNÍ PRÁCE Leptání plasmou Ing. Pavel Bouchalík 1. ÚVOD Tato semestrální práce obsahuje písemné vypracování řešení příkladu Leptání plasmou. Jde o praktickou zkoušku znalostí získaných při přednáškách

Více

Použitý rezistor (jmenovitá hodnota): R1 = 270 kω je přesný metalizovaný rezistor s přesností ± 0,1%.

Použitý rezistor (jmenovitá hodnota): R1 = 270 kω je přesný metalizovaný rezistor s přesností ± 0,1%. Laboratorní úloha Snímač teploty R je zapojený podle schema na Obr. 1. Snímač je termistor typ B57164K [] se jmenovitým odporem pro teplotu 5 C R 5 00 Ω ± 10 %. Závislost odporu termistoru na teplotě je

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

MÍRY ZÁVISLOSTI (KORELACE A REGRESE)

MÍRY ZÁVISLOSTI (KORELACE A REGRESE) zhanel@fsps.muni.cz MÍRY ZÁVISLOSTI (KORELACE A REGRESE) 2.5 MÍRY ZÁVISLOSTI 2.5.1 ZÁVISLOST PEVNÁ, VOLNÁ, STATISTICKÁ A KORELAČNÍ Jednorozměrné soubory - charakterizovány jednotlivými statistickými znaky

Více

Stanovení akustického výkonu Nejistoty měření. Ing. Miroslav Kučera, Ph.D.

Stanovení akustického výkonu Nejistoty měření. Ing. Miroslav Kučera, Ph.D. Stanovení akustického výkonu Nejistoty měření Ing. Miroslav Kučera, Ph.D. Využití měření intenzity zvuku pro stanovení akustického výkonu klapek? Výhody: 1) přímé stanovení akustického výkonu zvláště při

Více

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457. 0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti

Více

Mˇ eˇren ı ˇ cetnost ı (Poissonovo rozdˇ elen ı) 1 / 56

Mˇ eˇren ı ˇ cetnost ı (Poissonovo rozdˇ elen ı) 1 / 56 Měření četností (Poissonovo rozdělení) 1 / 56 Měření četností (Poissonovo rozdělení) Motivace: měření aktivity zdroje Geiger-Müllerův čítac: aktivita: 1 Bq = 1 částice / 1 s = s 1 Jaká je přesnost měření?

Více

5.1 Definice, zákonné měřící jednotky.

5.1 Definice, zákonné měřící jednotky. 5. Měření délek. 5.1 Definice, zákonné měřící jednotky. 5.2 Měření délek pásmem. 5.3 Optické měření délek. 5.3.1 Paralaktické měření délek. 5.3.2 Ryskový dálkoměr. 5.4 Elektrooptické měření délek. 5.4.1

Více

GEODETICKÉ VÝPOČTY I.

GEODETICKÉ VÝPOČTY I. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. DĚLENÍ POZEMKŮ Ing. Jana Marešová, Ph.D. rok 2018-2019 V praxi se geodet často setká s úkolem rozdělit pozemek (dědictví,

Více

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY Statistická hypotéza je určitá domněnka (předpoklad) o vlastnostech ZÁKLADNÍHO SOUBORU. Test statistické hypotézy je pravidlo (kritérium), které na základě

Více

Regrese. 28. listopadu Pokud chceme daty proložit vhodnou regresní křivku, musíme obvykle splnit tři úkoly:

Regrese. 28. listopadu Pokud chceme daty proložit vhodnou regresní křivku, musíme obvykle splnit tři úkoly: Regrese 28. listopadu 2013 Pokud chceme daty proložit vhodnou regresní křivku, musíme obvykle splnit tři úkoly: 1. Ukázat, že data jsou opravdu závislá. 2. Provést regresi. 3. Ukázat, že zvolená křivka

Více

SYLABUS PŘEDNÁŠKY 8 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 8 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 8 Z GEODÉZIE 1 Souřadnicové výpočty 2 1 ročník bakalářského studia studijní program G studijní obor G doc Ing Jaromír Procházka CSc listopad 2015 1 Geodézie 1 přednáška č8 VÝPOČET SOUŘADNIC

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

7.1 Definice délky. kilo- km 10 3 hekto- hm mili- mm 10-3 deka- dam 10 1 mikro- μm 10-6 deci- dm nano- nm 10-9 centi- cm 10-2

7.1 Definice délky. kilo- km 10 3 hekto- hm mili- mm 10-3 deka- dam 10 1 mikro- μm 10-6 deci- dm nano- nm 10-9 centi- cm 10-2 7. Měření délek 7.1 Definice délky, zákonné měřící jednotky 7.2 Měření délek pásmem 7.3 Optické měření délek 7.3.1 Paralaktické měření délek 7.3.2 Ryskový dálkoměr 7.4 Elektrooptické měření délek 7.5 Fyzikální

Více

O z n a č e n í m a t e r i á l u : V Y _ 3 2 _ I N O V A C E _ S T E I V _ F Y Z I K A 1 _ 0 7. o d c h y l k a

O z n a č e n í m a t e r i á l u : V Y _ 3 2 _ I N O V A C E _ S T E I V _ F Y Z I K A 1 _ 0 7. o d c h y l k a O z n a č e n í m a t e r i á l u : V Y _ 3 2 _ I N O V A C E _ S T E I V _ F Y Z I K A 1 _ 0 7 N á z e v m a t e r i á l u : F y z i k á l n í m ě ř e n í T e m a t i c k á o b l a s t : F y z i k a 1.

Více

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje

Více

Geodézie pro stavitelství KMA/GES

Geodézie pro stavitelství KMA/GES Geodézie pro stavitelství KMA/GES ZÁPADOČESKÁ UNIVERZITA V PLZNI Fakulta aplikovaných věd - KMA oddělení geomatiky Ing. Martina Vichrová, Ph.D. vichrova@kma.zcu.cz Vytvoření materiálů bylo podpořeno prostředky

Více

Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a

Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a báli jste se zeptat Jedinečnou funkcí statistiky je, že umožňuje vědci číselně vyjádřit nejistotu v jeho závěrech. (G. W. Snedecor)

Více

STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ. J. Pruška, T. Parák

STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ. J. Pruška, T. Parák STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ J. Pruška, T. Parák OBSAH: 1. Co je to spolehlivost, pravděpodobnost poruchy, riziko. 2. Deterministický a pravděpodobnostní přístup k řešení problémů.

Více

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. 4 Název: Určení závislosti povrchového napětí na koncentraci povrchově aktivní látky Pracoval: Jakub Michálek

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Diskrétní náhodná veličina

Diskrétní náhodná veličina Lekce Diskrétní náhodná veličina Výsledek náhodného pokusu může být vyjádřen slovně to vede k zavedení pojmu náhodného jevu Výsledek náhodného pokusu můžeme někdy vyjádřit i číselně, což vede k pojmu náhodné

Více

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje

Více

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou

Více

Stavový model a Kalmanův filtr

Stavový model a Kalmanův filtr Stavový model a Kalmanův filtr 2 prosince 23 Stav je veličina, kterou neznáme, ale chtěli bychom znát Dozvídáme se o ní zprostředkovaně prostřednictvím výstupů Příkladem může býapř nějaký zašuměný signál,

Více

Lineární regrese. Komentované řešení pomocí MS Excel

Lineární regrese. Komentované řešení pomocí MS Excel Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu Geodézie v podzemních prostorách 10 úloha/zadání H/190-4 název úlohy Hloubkové

Více

LINEÁRNÍ REGRESE. Lineární regresní model

LINEÁRNÍ REGRESE. Lineární regresní model LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)

Více

Postup pro kalibraci vyměřené zkušební dráhy pro stanovení konstanty vozidla W a účinného obvodu pneumatik (dále jen dráhy )

Postup pro kalibraci vyměřené zkušební dráhy pro stanovení konstanty vozidla W a účinného obvodu pneumatik (dále jen dráhy ) Postup pro kalibraci vyměřené zkušební dráhy pro stanovení konstanty vozidla W a účinného obvodu pneumatik (dále jen dráhy ) Kalibrace se provede porovnávací metodou pomocí kalibrovaného ocelového měřicího

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praze Úloha 9: Rozšíření rozsahu miliampérmetru a voltmetru. Cejchování kompenzátorem. Datum měření: 15. 10. 2015 Skupina: 8, čtvrtek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace:

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO

Více

Základní terminologické pojmy (Mezinárodní metrologický slovník VIM3)

Základní terminologické pojmy (Mezinárodní metrologický slovník VIM3) Základní terminologické pojmy (Mezinárodní metrologický slovník VIM3) Přesnost a správnost v metrologii V běžné řeči zaměnitelné pojmy. V metrologii a chemii ne! Anglický termín Measurement trueness Measurement

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Odhad parametrů N(µ, σ 2 )

Odhad parametrů N(µ, σ 2 ) Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n

Více

Pohyb tělesa po nakloněné rovině

Pohyb tělesa po nakloněné rovině Pohyb tělesa po nakloněné rovině Zadání 1 Pro vybrané těleso a materiál nakloněné roviny zjistěte závislost polohy tělesa na čase při jeho pohybu Výsledky vyneste do grafu a rozhodněte z něj, o jakou křivku

Více

12. cvičení z PST. 20. prosince 2017

12. cvičení z PST. 20. prosince 2017 1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace

Více

Měřicí přístroje a měřicí metody

Měřicí přístroje a měřicí metody Měřicí přístroje a měřicí metody Základní elektrické veličiny určují kvalitativně i kvantitativně stav elektrických obvodů a objektů. Neelektrické fyzikální veličiny lze převést na elektrické veličiny

Více

T- MaR. Ústav technologie, mechanizace a řízení staveb. Teorie měření a regulace. Podmínky názvy. 1.c-pod. ZS 2015/ Ing. Václav Rada, CSc.

T- MaR. Ústav technologie, mechanizace a řízení staveb. Teorie měření a regulace. Podmínky názvy. 1.c-pod. ZS 2015/ Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace Podmínky názvy 1.c-pod. ZS 2015/2016 2015 - Ing. Václav Rada, CSc. MĚŘENÍ praktická část OBECNÝ ÚVOD Veškerá měření mohou probíhat

Více

Úloha č. 2 - Kvantil a typická hodnota. (bodově tříděná data): (intervalově tříděná data): Zadání úlohy: Zadání úlohy:

Úloha č. 2 - Kvantil a typická hodnota. (bodově tříděná data): (intervalově tříděná data): Zadání úlohy: Zadání úlohy: Úloha č. 1 - Kvantily a typická hodnota (bodově tříděná data): Určete typickou hodnotu, 40% a 80% kvantil. Tabulka hodnot: Varianta Četnost 0 4 1 14 2 17 3 37 4 20 5 14 6 7 7 11 8 20 Typická hodnota je

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Testování statistických hypotéz Testování statistických hypotéz Princip: Ověřování určitého předpokladu zjišťujeme, zda zkoumaný výběr pochází ze základního souboru, který má určité rozdělení zjišťujeme,

Více

Statistika pro geografy

Statistika pro geografy Statistika pro geografy 2. Popisná statistika Mgr. David Fiedor 23. února 2015 Osnova 1 2 3 Pojmy - Bodové rozdělení četností Absolutní četnost Absolutní četností hodnoty x j znaku x rozumíme počet statistických

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

STATISTICKÉ CHARAKTERISTIKY

STATISTICKÉ CHARAKTERISTIKY STATISTICKÉ CHARAKTERISTIKY 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2 Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací

Více

Matematické modelování Náhled do ekonometrie. Lukáš Frýd

Matematické modelování Náhled do ekonometrie. Lukáš Frýd Matematické modelování Náhled do ekonometrie Lukáš Frýd Výnos akcie vs. Výnos celého trhu - CAPM model r it = r ft + β 1. (r mt r ft ) r it r ft = α 0 + β 1. (r mt r ft ) + ε it Ekonomický (finanční model)

Více

Souřadnicové výpočty. Geodézie Přednáška

Souřadnicové výpočty. Geodézie Přednáška Souřadnicové výpočt Geodézie Přednáška Souřadnicové výpočt strana 2 Souřadnicové výpočt (souřadnicová geometrie) vchází z analtické geometrie zkoumá geometrické tvar pomocí algebraických a analtických

Více

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

Kalibrace a limity její přesnosti

Kalibrace a limity její přesnosti Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Kalibrace a limity její přesnosti Semestrální práce Licenční studium GALILEO Interaktivní statistická analýza dat Brno, 2015

Více