Porovnání dvou reaktorů

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Porovnání dvou reaktorů"

Transkript

1 Porovnání dvou reaktorů Zadání: Chemické reakce při kontinuální výrobě probíhají ve dvou identických reaktorech. Konstanty potřebné pro regulaci průběhu reakce jsou nastaveny pro každý reaktor samostatně. Kvalita meziproduktu byla sledována v průběhu jednoho měsíce pomocí sedimentačního testu. Zjistěte porovnáním hodnot pro oba reaktory, zda je možno tvrdit, že kvalita meziproduktu z obou reaktorů je shodná a je možno je míchat pro další proces výroby. Hodnoty sedimentačního testu by se měly pohybovat v rozmezí od 135 do 145 mm /30 min. Uvažujte 95% statistickou jistotu. 1. Proveďte ověření normality u obou souborů pomocí průzkumové analýzy (EDA). 2. Prověřte, zdali se hodnoty sedimentace nacházejí v požadovaném intervalu. 3. Na základě zjištěných skutečností z průzkumové analýzy (EDA) proveďte porovnání obou výběrů pomocí statistického testování. Data pro reaktor H: Data pro reaktor G: Průzkumová analýza dat (EDA) -1-

2 Vyšetřuje statistické zvláštnosti, jako je: koncentrace dat tvarové zvláštnosti rozdělení dat přítomnost podezřelých hodnot Diagnostické grafy v průzkumové analýze Obrázek 1: Histogram pro reaktor H Obrázek 2: Histogram pro reaktor G Histogram (osa x: proměnná x, osa y: úměrná hustotě pravděpodobnosti) v jednotlivých třídách s konstantní šířkou, kdy optimální počet tříd byl stanoven automaticky s ohledem na počet dat. V prvním případě ukazuje na Gaussovo symetrické rozdělení (obr.1) a v druhém na mírně zešikmená data (obr. 2). Obrázek 3: Q-Q graf pro reaktor H Obrázek 4: Q-Q graf pro reaktor G Q-Q graf (osa x: Q(P), s i osa y: x i) posuzuje shodu výběrového rozdělení Q E(P) i s kvantilovou funkcí teoretického rozdělení Q T(P i). Z tvaru dat, které leží na přímce, lze usoudit na normální rozdělení (obr.3). Naproti tomu data pro reaktor G vykazují mírný odklon od přímky, což ukazuje na nesymetričnost rozdělení. Je zde také indikováno jedno, ale mohly by být až tři odlehlé měření (obr.4). -2-

3 Obrázek 5: Kvantilový graf pro reaktor H Obrázek 6: Kvantilový graf pro reaktor G Kvantilový graf (osa x: P, i osa y: x i) zobrazuje empirické kvantily proložené kvantilovou funkcí normálního rozdělení. Zelená křivka odpovídá funkci s klasickým průměrem a rozptylem (nerobustní), červená křivka odpovídá mediánu a mediánové odchylce (robustní). U reaktoru H lépe prokládá data křivka nerobustní, jde tedy o data s normálním rozdělením, proto bude vhodnější i pro odhad střední hodnoty zvolit průměr (obr. 5). Ve druhém případě je tvar křivky výraznější, a pokud bychom neuvažovali poslední bod jako odlehlý, mohlo by se blížit exponenciálnímu rozdělení. Opět i zde je indikován jeden odlehlý bod (obr. 6). Obrázek 7: Graf rozptýlení s kvantily Obrázek 8: Graf rozptýlení s kvantily Graf rozptýlení s kvantily (osa x: pořadová pravděpodobnost P, osa y: pořádková statistika x ) i i jehož základem je odhad kvantilové funkce výběru. To znamená, že body grafu jsou vizuálně i významově shodné s kvantilovým grafem. Pro normální rozdělení má kvantilová funkce sigmoidální tvar, který je patrný v prvním případě. Vzájemná poloha obdélníků odpovídá symetrickému rozdělení. Vodorovná úsečka uprostřed nejmenšího obdélníku označuje medián (50% kvantil), svislá úsečka na příčce odpovídá intervalu spolehlivosti mediánu (obr.7). Ve druhém případě je zřetelně vidět zhuštění dat a přechod od normálního k exponenciálnímu rozložení (obr. 8). -3-

4 Obrázek 9: Diagram rozptýlení pro reaktor H Obrázek 10: Diagram rozptýlení pro reaktor G Diagram rozptýlení (osa x: hodnoty x, osa y: libovolná úroveň) představuje jednorozměrnou i projekci kvantilového grafu do osy x. Na tomto velmi jednoduchém, přesto značně vypovídajícím grafu nejsou v prvním případě patrny větší lokální koncentrace dat. Aby bylo možno lépe posoudit rozložení dat, jsou v dolní polovině zobrazena táž data rozmítnuta. Nedochází zde ke splývání shodných nebo blízkých dat (obr. 9). Ve druhém případě je již znatelná oblast větší koncentrace dat, kde by mohly být indikovány až tři odlehlé body (obr. 10) Obrázek 11: Krabicový graf pro reaktor H Obrázek 12: Krabicový graf pro reaktor G Krabicový graf (osa x: úměrná hodnotám x, osa y: libovolná úroveň) je standardním i diagnostickým grafem, který umožňuje částečnou sumarizací dat, znázornění robustního odhadu polohy (Mediánu M), posouzení symetrie u konců rozdělení a identifikaci odlehlých bodů. Z prvního grafu lze usuzovat na symetrické normální rozdělení (obr. 11). Pokud bychom u druhého grafu odstranili hodnoty, které lze charakterizovat jako odlehlé (na grafu jsou mimo interval vnitřních hradeb), rozdělení by se stalo dokonale Gaussovským (obr. 12). Střed bílého pruhu odpovídá Mediánu, jeho šířka intervalu spolehlivosti. Zde jsou také patrny rozdíly, ve druhém případě jsou data mnohem špičatější. Obrázek 13: Graf polosum pro reaktor H Obrázek 14: Graf polosum pro reaktor G -4-

5 Graf polosum (osa x: pořádkové statistiky x i, osa y: Z i = 0.5(x (n+1-i) +x (i)) je citlivým indikátorem asymetrie rozdělení. Prostřední horizontální přímka na níž leží poslední bod, představuje medián a červené přerušované meze jeho interval spolehlivosti. Zde je mezi oběma výběry patrný velký rozdíl, stejně jako u některých jiných grafů. U reaktoru H není patrný trend, který by indikoval šikmost, tak jako u reaktoru G (obr.13, 14). Obrázek 15: Graf symetrie pro reaktor H Obrázek 16: Graf symetrie pro reaktor G Graf symetrie (osa x: M-xi, osa y: x - M) má podobný význam jako předchozí graf. V případě (n+1-i) symetrického rozdělení resultuje lineární závislost s nulovým úsekem a jednotkovou směrnicí. Také zde nelze u prvního grafu (obr. 15) potvrdit trend charakteristický pro asymetrické rozdělení, tak jako v druhém případě, kdy směrnice je úměrná šikmosti - rostoucí pro zápornou šikmost, klesající pro kladnou šikmost (obr.16). Obrázek 17: Hustota pravděpodobnosti pro H Obrázek 18: Hustota pravděpodobnosti pro G -5-

6 Hustota pravděpodobnosti (osa x: x i, osa y: hustota pravděpodobnosti f (x)) slouží k porovnání průběhu hustoty pravděpodobnosti normálního rozdělení s jádrovým odhadem hustoty počítaným na základě dat, který zde vyjadřuje červená čára. U reaktoru H jsou si obě křivky velmi podobné a z toho lze usoudit na rozdělení velmi blízké normálnímu (obr.17). U reaktoru G je patrná vyšší špičatost a také mírné zešikmení dat. Nehomogenitu dat, způsobenou shluky, vyjadřují maxima na této křivce. Ovšem hladkost křivky je dána parametrem vyhlazení hustoty, kdy při jeho malé hodnotě se objeví maxima pro každá data (obr.18). Obrázek 19: Kruhový graf pro reaktor H Obrázek 20: Kruhový graf pro reaktor G Kruhový graf slouží k vizuálnímu ověření hypotézy, že výběr pochází ze symetrického rozdělení. Zde se graf blíží k regulárnímu, konvexnímu polygonu, blízkému kružnici. Zelený kruh (elipsa) je optimální tvar normálního rozdělení. Černý, představující data se s Gaussovskou předlohou v prvním případě téměř kryje (obr. 19), u reaktoru G je patrná odchylka od normálního rozdělení (obr.20). Závěr exploratorní analýzy Data pro reaktor H se významně neodlišují od normálního (Gaussova) rozdělení. Nebyla indikována žádná odlehlá hodnota. -6-

7 Data pro reaktor G se odlišují od normálního (Gaussova) rozdělení. Byla indikována jedna odlehlá hodnota, která vzhledem k tomu, že se jedná o analytickou hodnotu a že by mohly byt i další body brány jako odlehlé, nebude vypuštěna. U těchto dat bude nutno provést transformaci, která potvrdí, nebo vyvrátí oprávněnost tvrzení, že data pocházejí z jiného než normálního (Gaussova) rozdělení. Transformace dat použitím programu QCExpert 3.0 Box-Coxova transformace Exponenciální transformace Optimální parametr Optimální parametr Dolní mez parametru Zvolený parametr Horní mez parametru Oprávněnost transformace Ano Věrohodnost bez transformace Opravený průměr Věrohodnost s transformací Interval spolehlivosti Oprávněnost transformace Ano Spodní Pravděpodobnost Horní Zvolený parametr LCL Věrohodnost UCL Opravený průměr LWL LCL UWL UCL LWL UWL Grafy k provedené transformaci Obrázek 21: Box-Coxova transformace Obrázek 22: Exponenciální transformace Graf hustoty představuje tvar rozdělení, který nejlépe vystihuje data prostřednictvím transformace. Svislé čáry představují kvantily (hodnoty) odpovídající mediánu (50% kvantil), kvartilu (25% kvantily ohraničující 50% dat), ±2s (zhruba 2.5% kvantily ohraničující interval 95% dat), 0.5% kvantily ohraničující 99% dat a ±3s, ohraničující 99.73% dat (obr. 21, 22). -7-

8 Obrázek 23: Box-Coxova transformace Obrázek 24: Exponenciální transformace Graf logaritmu závislosti věrohodnostní funkce (osa y) na parametru r. Maximu odpovídá optimální hodnota r. Vodorovná přímka odpovídá spodní mezi 95% intervalu spolehlivosti maxima věrohodnosti a svislé přímky odpovídají intervalu spolehlivosti odhadu r. Obsahuje-li tento interval 1, není nutné transformovat. Zde interval jedničku neobsahuje, z toho plyne, že transformace byla oprávněná (obr. 23). Závislost šikmosti transformovaných dat na parametru transformace. Nulová šikmost odpovídá optimálnímu parametru. Význam tohoto grafu je podobný jako u předchozího grafu věrohodnosti, slouží k nalezení parametru transformace a určení statistické významnosti transformace. Leží-li průsečík svislé zelené přímky s křivkou mimo interval spolehlivosti šikmosti (vodorovné zelené přímky), je transformace opodstatněná (obr. 24). Zobrazení dat před a po provedené transformaci Obrázek 25: Před Box-Coxovou transformací Obrázek 26: Po Box-Coxově Transformaci QQ-graf původních dat, shodný s QQ-grafem v Exploratorní analýze dat. Metoda transformace bývá užitečná jen pro systematicky prohnutý tvar bodů v QQ-grafu (obr. 25, 27). Proti statistikám má QQ-graf výhodu v možnosti vizuálního posouzení, zda je nelinearita (tedy odchylka od normality) způsobena jen několika body, nebo všemi daty. Po provedené transformaci je tvar bodů blíže přímce než na předešlém grafu, transformace je úspěšná (obr. 26, 28). -8-

9 Obrázek 27: Před exponenciální transformací Obrázek 28: Po exponenciální transformaci Komentář k provedené transformaci: Jelikož se na základě průzkumové analýzy dat zjistilo, že rozdělení výběru dat se systematicky odlišuje od rozdělení normálního, byla provedena Box-Coxova a Exponenciální transformace dat, která, vede ke stabilizaci rozptylu, zesymetričtění rozdělení. Vypočtené údaje byly přepočítány do původních souřadnic. Exponenciální transformace je založena na minimální asymetrii - nulové šikmosti a v případě Box-Coxovy transformace přiblížení k normalitě (vzhledem k šikmosti a špičatosti) je založeno na metodě maximální věrohodnosti. Zkoumaná data vykazují systematickou asymetrii, nikoli asymetrii způsobenou pouze několika vybočujícími body, proto dává transformace spolehlivější hodnoty statistických odhadů. Výstup pro statistické testování: U souboru dat pro reaktor H pocházejí z Gaussova rozdělení, kdežto u dat pro reaktor G toto potvrzeno nebylo. Pro test správnosti intervalovým odhadem budou použity klasické odhady parametrů pro reaktor H a odhady vypočtené pomocí transformace u reaktoru G. Pro testování shody rozptylů bude použit modifikovaný F - test, a pro shodu středních hodnot test podle zjištěné shody rozptylů (druhý soubor dat nemá normální rozdělení). Ke statistickému testování bude použit Adstat 1.25, kde jsou výstupy testů jednoznačně komentovány. Test správnosti intervalovým odhadem: Požadovaný interval: 135 < µ < 145 Interval pro reaktor H: < µ < Y vyhovuje normě Interval pro reaktor G: < µ < Y nevyhovuje normě R Poznámka: Test správnosti pomocí Studentova t-testu (testovaná hodnota = 0) vyšel v obou případech negativně - rozdíl byl významný. Statistické testování: Test homogenity rozptylů (hypotéza H 0: σ 1 = σ 2 proti H A: σ 1 σ 2 ) -9-

10 Test Fisher-Snedecor F-test Korigovaný F-test Jacknife test Hodnota test. Počet stupňů Počet stupňů Kvantil pro Závěr testu kritéria volnosti Df volnosti Df H 1 2 α/2=0, Přijata Přijata E-02 Přijata Test shody průměrů (hypotéza H : µ = µ proti H : µ µ ) A 1 2 Test Hodnota test. Počet stupňů Kvantil pro Závěr testu kritéria volnosti Df H 1 α/2=0, t-test (σ 1 = σ 2 ) E-01 Přijata 2 2 t-test (σ 1 σ 2 ) Přijata t-test modif. šikmost Přijata Robustní t-test pro (σ = σ ) Přijata Robustní t-test Přijata pro (σ 1 σ 2 ) Závěr a doporučení: Pomocí programu Qcexpert 3.0 byla provedena analýza předložených dat. Důraz byl kladen především na exploratorní analýzu a její grafické výstupy, které souboru některé odchylky od normality. Z grafů pro reaktor H je patrno, že se jedná o data z normálního (Gaussova) rozdělení, přičemž další testování odhalilo jejich závislost, která je způsobena řízením ve výrobním procesu. Vzhledem k tomu, že jde o snahu udržet proces v ustáleném stavu pomocí regulace, je nutno tuto skutečnost akceptovat.data pro reaktor G jsou mírně asymetrická a vhodnost provedené transformace byla potvrzena (obr.23,24). Dle požadavku byl proveden test správnosti intervalovým odhadem na shodu s požadovanou normou. Bylo zjištěno, že u dat pro reaktor H shoda existuje, u reaktoru G je posun mimo zadanou hranici u maxima. Dále bylo provedeno testování shody dvou výběrů pomocí progranu Adstat Na základě exploratorní analýzy jsou jako určující korigovaný F-test pro shodu rozptylů. Vzhledem k tomu, že nebyla zamítnuta hypotéza o jejich shodě, pro shodu průměrů byl vybrán robustní t-test pro shodné rozptyly. V obou případech byla hypotéza H o shodě přijata, z toho plyne, že na hladině 0 významnosti α = 0,05 se považují průměry i rozptyly za shodné (viz. hodnocení v tabulce). -10-

11 Přestože statistické testování prokázalo shodu, bude nutno proces revidovat, poněvadž test správnosti ukázal posun mimo požadovanou normu, která je vidět i z grafů exploratorní analýzy. U reaktoru G by se mohlo také jednat o nehomogenitu dat (ta byla v programu Qcexpert zamítnuta). Z toho plyne, že provádění statistického testování bez exploratorní analýzy dat a dalších souvislostí může být nedostatečné až zavádějící. Literatura Milan Meloun, Jiří Militký: Statistické zpracování experimentálních dat, EASH PUBLISHING, a.s Karen L. Acerson: Wordperfect for Windows, Grada

PRŮZKUMOVÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Exploratory Data Analysis (EDA)

PRŮZKUMOVÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Exploratory Data Analysis (EDA) PRŮZKUMOVÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Exploratory Data Analysis (EDA) Reprezentativní náhodný výběr: 1. Prvky výběru x i jsou vzájemně nezávislé. 2. Výběr je homogenní, tj. všechna x i jsou ze stejného

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

Úloha E301 Čistota vody v řece testem BSK 5 ( Statistická analýza jednorozměrných dat )

Úloha E301 Čistota vody v řece testem BSK 5 ( Statistická analýza jednorozměrných dat ) Úloha E301 Čistota vody v řece testem BSK 5 ( Statistická analýza jednorozměrných dat ) Zadání : Čistota vody v řece byla denně sledována v průběhu 10 dní dle biologické spotřeby kyslíku BSK 5. Jsou v

Více

Statistická analýza. jednorozměrných dat

Statistická analýza. jednorozměrných dat Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie icenční studium chemometrie Statistické zpracování dat Statistická analýza jednorozměrných dat Zdravotní ústav se sídlem v

Více

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce STATISTICKÁ

Více

S E M E S T R Á L N Í

S E M E S T R Á L N Í Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie S E M E S T R Á L N Í P R Á C E Licenční studium Statistické zpracování dat při managementu jakosti Předmět Statistická analýza

Více

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Seminární práce 1 Brno, 2002 Ing. Pavel

Více

Kvantily a písmenové hodnoty E E E E-02

Kvantily a písmenové hodnoty E E E E-02 Na úloze ukážeme postup průzkumové analýzy dat. Při výrobě calciferolu se provádí kontrola meziproduktu 3,5 DNB esteru calciferolu metodou HPLC. Sleduje se také obsah přítomného ergosterinu jako nečistoty,

Více

UNIVERZITA PARDUBICE

UNIVERZITA PARDUBICE UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Vedoucí studia a odborný garant: Prof. RNDr. Milan Meloun, DrSc. Vyučující: Prof. RNDr. Milan Meloun, DrSc. Autor práce: ANDRII

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

UNIVERZITA PARDUBICE CHEMICKO-TECHNOLOGICKÁ FAKULTA KATEDRA ANALYTICKÉ CHEMIE

UNIVERZITA PARDUBICE CHEMICKO-TECHNOLOGICKÁ FAKULTA KATEDRA ANALYTICKÉ CHEMIE UNIVERZITA PARDUBICE CHEMICKO-TECHNOLOGICKÁ FAKULTA KATEDRA ANALYTICKÉ CHEMIE STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT V OSTRAVĚ 20.3.2006 MAREK MOČKOŘ PŘÍKLAD Č.1 : ANALÝZA VELKÝCH VÝBĚRŮ Zadání: Pro kontrolu

Více

Exploratorní analýza dat

Exploratorní analýza dat 2. kapitola Exploratorní analýza dat Řešení praktických úloh z Kompendia, str. 81. Načtení dat po F3. Načtená data úlohy B201 je možné v editoru ještě opravovat. Volba statistické metody v červeném menu.

Více

Nejlepší odhady polohy a rozptýlení chemických dat

Nejlepší odhady polohy a rozptýlení chemických dat Nejlepší odhady polohy a rozptýlení chemických dat Prof. RNDr. Milan Meloun, DrSc., Katedra analytické chemie, Univerzita Pardubice, 532 10 Pardubice email: milan.meloun@upce.cz, http://meloun.upce.cz

Více

S E M E S T R Á L N Í

S E M E S T R Á L N Í Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie S E M E S T R Á L N Í P R Á C E Licenční studium Statistické zpracování dat při managementu jakosti Předmět ANOVA analýza rozptylu

Více

STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT. Semestrální práce UNIVERZITA PARDUBICE. Fakulta chemicko-technologická Katedra analytické chemie

STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT. Semestrální práce UNIVERZITA PARDUBICE. Fakulta chemicko-technologická Katedra analytické chemie UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Semestrální práce Licenční studium Galileo Interaktivní statistická analýza dat Brno

Více

Modul Základní statistika

Modul Základní statistika Modul Základní statistika Menu: QCExpert Základní statistika Základní statistika slouží k předběžné analýze a diagnostice dat, testování předpokladů (vlastností dat), jejichž splnění je nutné pro použití

Více

Porovnání dvou výběrů

Porovnání dvou výběrů Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Univerzita Pardubice Fakulta chemicko-technologická, Katedra analytické chemie Licenční studium GALILEO Interaktivní statistická analýza dat Semestrální práce z předmětu Statistická analýza jednorozměrných

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav materiálového inženýrství - odbor slévárenství

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav materiálového inženýrství - odbor slévárenství 1 PŘÍLOHA KE KAPITOLE 11 2 Seznam příloh ke kapitole 11 Podkapitola 11.2. Přilité tyče: Graf 1 Graf 2 Graf 3 Graf 4 Graf 5 Graf 6 Graf 7 Graf 8 Graf 9 Graf 1 Graf 11 Rychlost šíření ultrazvuku vs. pořadí

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie. Nám. Čs. Legií 565, Pardubice. Semestrální práce ANOVA 2015

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie. Nám. Čs. Legií 565, Pardubice. Semestrální práce ANOVA 2015 UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 15. licenční studium INTERAKTIVNÍ STATISTICKÁ ANALÝZA DAT Semestrální práce ANOVA 2015

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Licenční studium Galileo: Statistické zpracování dat Analýza velkých výběrů Hornův postup analýzy malých výběrů Statistické testování Statistická analýza jednorozměrných dat Semestrální práce Lenka Husáková

Více

Lineární regrese. Komentované řešení pomocí MS Excel

Lineární regrese. Komentované řešení pomocí MS Excel Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

Zápočtová práce STATISTIKA I

Zápočtová práce STATISTIKA I Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru

Více

ANOVA. Semestrální práce UNIVERZITA PARDUBICE. Fakulta chemicko-technologická Katedra analytické chemie

ANOVA. Semestrální práce UNIVERZITA PARDUBICE. Fakulta chemicko-technologická Katedra analytické chemie UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie ANOVA Semestrální práce Licenční studium Galileo Interaktivní statistická analýza dat Brno 2015 Ing. Petra Hlaváčková, Ph.D.

Více

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie ANOVA. Semestrální práce

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie ANOVA. Semestrální práce Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie ANOVA Semestrální práce Licenční studium GALILEO Interaktivní statistická analýza dat Brno, 2015 Doc. Mgr. Jan Muselík, Ph.D.

Více

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Licenční studium Pythagoras Statistické zpracování experimentálních dat Semestrální práce ANOVA vypracoval: Ing. David Dušek

Více

VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky

VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky PRAVDĚPODOBNOST A STATISTIKA Zadání 1 JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: DATUM ODEVZDÁNÍ DOMÁCÍ ÚKOL

Více

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce ANALÝZA

Více

Tvorba nelineárních regresních modelů v analýze dat

Tvorba nelineárních regresních modelů v analýze dat Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Tvorba nelineárních regresních modelů v analýze dat Semestrální práce Licenční studium GALILEO Interaktivní statistická analýza

Více

Praktická statistika. Petr Ponížil Eva Kutálková

Praktická statistika. Petr Ponížil Eva Kutálková Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo

Více

IDENTIFIKACE BIMODALITY V DATECH

IDENTIFIKACE BIMODALITY V DATECH IDETIFIKACE BIMODALITY V DATECH Jiří Militky Technická universita v Liberci e- mail: jiri.miliky@vslib.cz Milan Meloun Universita Pardubice, Pardubice Motto: Je normální předpokládat normální data? Zvláštnosti

Více

LICENČNÍ STUDIUM GALILEO SEMESTRÁLNÍ PRÁCE

LICENČNÍ STUDIUM GALILEO SEMESTRÁLNÍ PRÁCE LICENČNÍ STUDIUM GALILEO STATISTICKÉ ZPRACOVÁNÍ DAT SEMESTRÁLNÍ PRÁCE Statistická analýza jednorozměrných dat a ANOVA Vladimír Pata Univerzita Tomáše Bati ve Zlíně Fakulta technologická Ústav výrobních

Více

Statistika pro geografy

Statistika pro geografy Statistika pro geografy 2. Popisná statistika Mgr. David Fiedor 23. února 2015 Osnova 1 2 3 Pojmy - Bodové rozdělení četností Absolutní četnost Absolutní četností hodnoty x j znaku x rozumíme počet statistických

Více

Jarqueův a Beryho test normality (Jarque-Bera Test, JB test)

Jarqueův a Beryho test normality (Jarque-Bera Test, JB test) Jarqueův a Beryho test normality (Jarque-Bera Test, JB test) Autoři: Carlos M. Jarque and Anil K. Bera Předpoklady: - Výběrová data mohou obsahovat chybějící pozorování (chybějící hodnoty) vhodné zejména

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Charakteristika datového souboru

Charakteristika datového souboru Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex

Více

Stanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace )

Stanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace ) Příklad č. 1 Stanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace ) Zadání : Stanovení manganu ve vodách se provádí oxidací jodistanem v kyselém prostředí až na manganistan. (1) Sestrojte

Více

Náhodná proměnná. Náhodná proměnná může mít rozdělení diskrétní (x 1. , x 2. ; x 2. spojité (<x 1

Náhodná proměnná. Náhodná proměnná může mít rozdělení diskrétní (x 1. , x 2. ; x 2. spojité (<x 1 Náhodná proměnná Náhodná proměnná může mít rozdělení diskrétní (x 1, x 2,,x n ) spojité () Poznámky: 1. Fyzikální veličiny jsou zpravidla spojité, ale změřené hodnoty jsou diskrétní. 2. Pokud

Více

Matematika III. 27. listopadu Vysoká škola báňská - Technická univerzita Ostrava. Matematika III

Matematika III. 27. listopadu Vysoká škola báňská - Technická univerzita Ostrava. Matematika III Vysoká škola báňská - Technická univerzita Ostrava 27. listopadu 2017 Typy statistických znaků (proměnných) Typy proměnných: Kvalitativní proměnná (kategoriální, slovní,... ) Kvantitativní proměnná (numerická,

Více

UNIVERZITA PARDUBICE

UNIVERZITA PARDUBICE UNIVERZITA PARDUBICE Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie na téma Tvorba nelineárních regresních modelů v analýze dat Vedoucí licenčního studia Prof. RNDr.

Více

y = 0, ,19716x.

y = 0, ,19716x. Grafické ověřování a testování vybraných modelů 1 Grafické ověřování empirického rozdělení Při grafické analýze empirického rozdělení vycházíme z empirické distribuční funkce F n (x) příslušné k náhodnému

Více

Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie

Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat ANOVA Zdravotní ústav se sídlem v Ostravě Odbor hygienických laboratoří

Více

Analýza rozptylu ANOVA

Analýza rozptylu ANOVA Licenční studium Galileo: Statistické zpracování dat ANOVA ANOVA B ANOVA P Analýza rozptylu ANOVA Semestrální práce Lenka Husáková Pardubice 05 Obsah Jednofaktorová ANOVA... 3. Zadání... 3. Data... 3.3

Více

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu

Více

Popisná statistika. Komentované řešení pomocí MS Excel

Popisná statistika. Komentované řešení pomocí MS Excel Popisná statistika Komentované řešení pomocí MS Excel Vstupní data Máme k dispozici data o počtech bodů z 1. a 2. zápočtového testu z Matematiky I v zimním semestru 2015/2016 a to za všech 762 studentů,

Více

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce KALIBRACE

Více

Kalibrace a limity její přesnosti

Kalibrace a limity její přesnosti Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Kalibrace a limity její přesnosti Semestrální práce Licenční studium GALILEO Interaktivní statistická analýza dat Brno, 2015

Více

3.4 Určení vnitřní struktury analýzou vícerozměrných dat

3.4 Určení vnitřní struktury analýzou vícerozměrných dat 3. Určení vnitřní struktury analýzou vícerozměrných dat. Metoda hlavních komponent PCA Zadání: Byly provedeny analýzy chladící vody pro odběrové místa. Byly stanoveny parametry - ph, vodivost, celková

Více

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě 31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,

Více

LINEÁRNÍ REGRESE Komentované řešení pomocí programu Statistica

LINEÁRNÍ REGRESE Komentované řešení pomocí programu Statistica LINEÁRNÍ REGRESE Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu Popisná

Více

P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.

P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. Matematický přístup k výsledkům únavových zkoušek Náhodnost výsledků únavových zkoušek. Únavové

Více

Číselné charakteristiky

Číselné charakteristiky . Číselné charakteristiky statistických dat Průměrný statistik se během svého života ožení s 1,75 ženami, které se ho snaží vytáhnout večer do společnosti,5 x týdně, ale pouze s 50% úspěchem. W. F. Miksch

Více

Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík

Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická

Více

PRŮZKUMOVÁ ANALÝZA DAT (EDA)

PRŮZKUMOVÁ ANALÝZA DAT (EDA) PRŮZKUMOVÁ ANALÝZA DAT (EDA) 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č.

Více

VŠB Technická univerzita Ostrava BIOSTATISTIKA

VŠB Technická univerzita Ostrava BIOSTATISTIKA VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: BIOSTATISTIKA Domácí úkoly Zadání 5 DATUM ODEVZDÁNÍ DOMÁCÍ ÚKOL 1:

Více

Jednofaktorová analýza rozptylu

Jednofaktorová analýza rozptylu I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých

Více

POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica

POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica Program Statistica I Statistica je velmi podobná Excelu. Na základní úrovni je to klikací program určený ke statistickému zpracování dat.

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Statistické vyhodnocování ankety pilotního projektu Kvalita výuky na Západočeské univerzitě v Plzni

Statistické vyhodnocování ankety pilotního projektu Kvalita výuky na Západočeské univerzitě v Plzni Statistické vyhodnocování ankety pilotního projektu Kvalita výuky na Západočeské univerzitě v Plzni Kvantifikace dat Pro potřeby statistického zpracování byly odpovědi převedeny na kardinální intervalovou

Více

Úloha 1: Lineární kalibrace

Úloha 1: Lineární kalibrace Úloha 1: Lineární kalibrace U pacientů s podezřením na rakovinu prostaty byl metodou GC/MS měřen obsah sarkosinu v moči. Pro kvantitativní stanovení bylo nutné změřit řadu kalibračních roztoků o různé

Více

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ SEMESTRÁLNÍ PRÁCE Kalibrace a limity její přesnosti Precheza a.s. Přerov 2005 Ing. Miroslav Štrajt 1. Zadání Úloha 1. Lineární kalibrace: u přímkové

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely )

Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely ) Úloha M608 Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely ) Zadání : Při kvantitativní analýze lidského krevního séra ovlivňují hodnotu obsahu vysokohustotního

Více

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 33

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 33 1 / 33 Méně než minimum ze statistiky Michaela Šedová KPMS MFF UK Principy medicíny založené na důkazech a základy vědecké přípravy Příklad Studie syndromu náhodného úmrtí dětí. Dvě skupiny: Děti, které

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 5. Odhady parametrů základního souboru Mgr. David Fiedor 16. března 2015 Vztahy mezi výběrovým a základním souborem Osnova 1 Úvod, pojmy Vztahy mezi výběrovým a základním

Více

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. 1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový

Více

VYBRANÉ DVOUVÝBĚROVÉ TESTY. Martina Litschmannová

VYBRANÉ DVOUVÝBĚROVÉ TESTY. Martina Litschmannová VYBRANÉ DVOUVÝBĚROVÉ TESTY Martina Litschmannová Obsah přednášky Vybrané dvouvýběrové testy par. hypotéz test o shodě rozptylů (F-test), testy o shodě středních hodnot (t-test, Aspinové-Welchův test),

Více

pravděpodobnosti, popisné statistiky

pravděpodobnosti, popisné statistiky 8. Modelová rozdělení pravděpodobnosti, popisné statistiky Rozdělení pravděpodobnosti Normální rozdělení jako statistický model Přehled a aplikace modelových rozdělení Popisné statistiky Anotace Klasickým

Více

Charakterizace rozdělení

Charakterizace rozdělení Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf

Více

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát

Více

Úvod do problematiky měření

Úvod do problematiky měření 1/18 Lord Kelvin: "Když to, o čem mluvíte, můžete změřit, a vyjádřit to pomocí čísel, něco o tom víte. Ale když to nemůžete vyjádřit číselně, je vaše znalost hubená a nedostatečná. Může to být začátek

Více

Příklady - Bodový odhad

Příklady - Bodový odhad Příklady - odový odhad 5. října 03 Pražské metro Přijdu v pražském metru na nástupiště a tam zjistím, že metro v mém směru jelo před :30 a metro v opačném směru před 4:0. Udělejte bodový odhad, jak dlouho

Více

KALIBRACE A LIMITY JEJÍ PŘESNOSTI. Semestrální práce UNIVERZITA PARDUBICE. Fakulta chemicko-technologická Katedra analytické chemie

KALIBRACE A LIMITY JEJÍ PŘESNOSTI. Semestrální práce UNIVERZITA PARDUBICE. Fakulta chemicko-technologická Katedra analytické chemie UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie KALIBRACE A LIMITY JEJÍ PŘESNOSTI Semestrální práce Licenční studium Galileo Interaktivní statistická analýza dat Brno 2016

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

Normální rozložení a odvozená rozložení

Normální rozložení a odvozená rozložení I Normální rozložení a odvozená rozložení I.I Normální rozložení Data, se kterými pracujeme, pocházejí z různých rozložení. Mohou být vychýlena (doleva popř. doprava, nebo v nich není na první pohled vidět

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE

TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Studentská 2 461 17 Liberec 1 SEMESTRÁLNÍ PRÁCE STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÝCH ŠETŘENÍ Gabriela Dlasková, Veronika Bukovinská Sára Kroupová, Dagmar

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Analýza dat na PC I.

Analýza dat na PC I. CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika

Více

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje

Více

Dva případy chybného rozhodnutí při testování: a) Testační statistika padne mimo obor přijetí nulové H hypotézy O, tj.

Dva případy chybného rozhodnutí při testování: a) Testační statistika padne mimo obor přijetí nulové H hypotézy O, tj. Uvedeme obecný postup statistického testování:. Formulace nulové H 0a alternativní hpotéz H A.. Volba hladin významnosti α.. Volba testační statistik např... Určení kritického oboru testové charakteristik.

Více

Vybraná rozdělení náhodné veličiny

Vybraná rozdělení náhodné veličiny 3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.

Více

KALIBRACE A LIMITY JEJÍ PŘESNOSTI 2015

KALIBRACE A LIMITY JEJÍ PŘESNOSTI 2015 UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 15. licenční studium INTERAKTIVNÍ STATISTICKÁ ANALÝZA DAT Semestrální práce KALIBRACE

Více

KORELACE. Komentované řešení pomocí programu Statistica

KORELACE. Komentované řešení pomocí programu Statistica KORELACE Komentované řešení pomocí programu Statistica Vstupní data I Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu Popisná

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními

Více

Statistika. Diskrétní data. Spojitá data. Charakteristiky polohy. Charakteristiky variability

Statistika. Diskrétní data. Spojitá data. Charakteristiky polohy. Charakteristiky variability I Přednáška Statistika Diskrétní data Spojitá data Charakteristiky polohy Charakteristiky variability Statistika deskriptivní statistika ˆ induktivní statistika populace (základní soubor) ˆ výběr parametry

Více

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje

Více

Úvod do statistické analýzy jednorozměrných dat Cvičebnice pro předmět: Zdravotnická statistika Fakulta zdravotnických studií

Úvod do statistické analýzy jednorozměrných dat Cvičebnice pro předmět: Zdravotnická statistika Fakulta zdravotnických studií Úvod do statistické analýzy jednorozměrných dat Cvičebnice pro předmět: Zdravotnická statistika Fakulta zdravotnických studií Ing. Jana Holá, Ph.D Zdravotnické studijní programy v inovaci Projekt reg.

Více

Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti

Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti 2.1 Tvorba lineárních regresních modelů při analýze dat Autor práce: Přednášející:

Více

Testy statistických hypotéz

Testy statistických hypotéz Testy statistických hypotéz Statistická hypotéza je jakýkoliv předpoklad o rozdělení pravděpodobnosti jedné nebo několika náhodných veličin. Na základě náhodného výběru, který je reprezentativním vzorkem

Více

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a

Více

Intervalové Odhady Parametrů

Intervalové Odhady Parametrů Parametrů Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze

Více

Kapitola 2.: Diagnostické grafy a testy normality dat

Kapitola 2.: Diagnostické grafy a testy normality dat Kapitola.: Diagnostické grafy a testy normality dat Cíl kapitoly Po prostudování této kapitoly budete - znát způsob konstrukce krabicového diagramu, normálního pravděpodobnostního grafu, kvantil-kvantilového

Více