Příklady - Bodový odhad
|
|
- Naděžda Šmídová
- před 6 lety
- Počet zobrazení:
Transkript
1 Příklady - odový odhad 5. října 03 Pražské metro Přijdu v pražském metru na nástupiště a tam zjistím, že metro v mém směru jelo před :30 a metro v opačném směru před 4:0. Udělejte bodový odhad, jak dlouho budu čekat na metro. ) Metoda momentů Označím si: X : 30 50s, Y 4 : 0 60s. Předpokládejme, že metra jezdí v pravidelných intervalech po sekundách. Pokud přijdu v náhodný okamžik, má doba, jakou budu čekat, rovnoměrné spojité rozdělení od 0 do. Odhaduji jeden parametr, bude mi tedy stačit první moment, tedy střední hodnota. Zjistím tedy střední hodnotu, jak dlouho bych čekal na metro a střední hodnotu z rovnoměrného spojitého rozdělení. Obojí porovnám. Podle zadání budu v jednom směru čekat x X a v druhém směru x Y. Střední hodnota těchto časů je: X+ Y X+Y Střední hodnota pro rovnoměrné rozdělení od 0 do je: µ 0+. Porovnáme: µ x Máme tedy bodový odhad pro dobu, po jaké jezdí metra. odový odhad pro dobu, jakou budu čekat v prvním směru je tedy: T X Můžeme si všimnout, že nám vyšla stejná hodnota jako je Y. Není to náhoda, protože když příklad necháme v písmenkách X a Y, vyjde nám X + Y X + Y
2 T X Y Získáváme tedy poněkud paradoxní výsledek, že nejlepší bodový odhad doby, jakou budu čekat na metro, získám tak, že se podívám na hodiny v opačném směru. Je tento podivný výsledek správně? Ano, je. Musíme si ale uvědomit, že děláme bodový odhad, který nám nic neříká o přesnosti odhadu. A protože celou metodu nasazujeme jen na dva údaje, je odhad velmi, velmi nepřesný. ) Metoda maximální věrohodnosti Vyřešíme stejný příklad metodou maximální věrohodnosti. Pro rovnoměrné rozdělení se to dělá spíše úvahou než výpočtem, což si ukážeme. Metra jezdí v pravidelných intervalech délky. Pro dobu, před jakou odjelo metro, mám opět rovnoměrné rozdělení od 0 do. Znám dvě hodnoty pro doby, před jakou odjelo metro: X : 30 50s, Y 4 : 0 60s. Určitě chci, aby tyto hodnoty ležely v intervalu 0,. Pak bude hustota pravděpodobnosti pro obě hodnoty rovna: f (50), f (60). (Hustota pravděpodobnosti má tvar obdélníku. Jeho délka je. Integrál přes def. obor musí být, takže výška obdélníku je.) Chci mít co největší věrohodnostní funkci, což je: V () f (50) f (60). Proto musí být co nejmenší. A přesto se obě hodnoty musí do intervalu vejít. To mejlépe udělám tak, že bude rovno největší hodnotě z dat. Tedy max (X i ) 60. Odhad pro dobu čekání je tedy Shrnutí a porovnání metod Obě metody nám tedy dávají různé odhady. A mají také různé statistiky pro odhad parametru : X + Y, max (X i ). Která z těchto statistik je lepší? Soustřeďme se na druhou statistiku. Pokud bychom znali skutečnou hodnotu a pak ji odhadovali největší hodnotou, která padla, pak bude odhad vždy menší než skutečná hodnota. Takže statistika nebude nestranná!!! (ude tzv. vychýlená.) Takže to není dobrá statistika a dáme přednost první metodě momentů. Udělejme si takové porovnání obou metod: Rovnoměrné rozdělení: Lepší je metoda momentů. Exponenciální rozdělení: Obě metody dávají stejné výsledky. Metoda momentů bývá jednodušší. Normální Gaussovo rozdělení: Metoda momentů je jednodušší a dává lepší výsledky.
3 Složité několikarozměrné rozdělení: Lepší je metoda maximální věrohodnosti. Normální Gaussovo rozdělení Naměřili jsme tato data:, 8, 8, 4. Předpokládáme, že tato data mají normální rozdělení. Jaké konkrétní Gaussově křivce nejlépe odpovídají? ) Metoda maximální věrohodnosti Tato metoda je poměrně pracná a pro normální rozdělení nedává příliš dobrý odhad pro rozptyl. Přesto jsem ji tu ukázal, abyste se s ní seznámili. Gaussova křivka je dána parametry µ a σ. Tyto parametry tedy odhadneme. Hustota pravděpodobnosti normálního rozdělení je dána vzorcem: Věrohodnostní funkce je tedy dána vzorcem: f (x) σ π (x µ) e σ. V (µ, σ) σ π ( µ) e σ σ π (8 µ) e σ ( ) 4 σ e ( µ) +(8 µ) +(8 µ) +(4 µ) σ π 4π σ 4 e σ σ π (8 µ) e σ [( µ) +(8 µ) +(8 µ) +(4 µ) ]. σ π (4 µ) e σ Hledáme maximum funkce, tedy body, v nichž jsou obě parciální derivace podle µ i podle σ rovny 0. Spočtěme první parciální derivaci: V µ 4π σ 4 e σ [( µ) +(8 µ) +(8 µ) +(4 µ) ] ( ) σ [ ( µ) (8 µ) (8 µ) (4 µ)] 4π σ 6 e σ [( µ) +(8 µ) +(8 µ) +(4 µ) ] [( µ) + (8 µ) + (8 µ) + (4 µ)]. Kdy se tento výraz rovná nule? Tehdy, když je nulová hranatá závorka napravo. Máme tedy rovnici: [( µ) + (8 µ) + (8 µ) + (4 µ)] 0 3 4µ 0 µ 8. Spočtěme ještě druhou parciální derivaci: V σ [ 4π 4σ 5 e σ [( µ) +(8 µ) +(8 µ) +(4 µ) ] + 3
4 +σ 4 e σ [( µ) +(8 µ) +(8 µ) +(4 µ) ] ( ) ( σ 3) [ ( µ) + (8 µ) + (8 µ) + (4 µ) ]] 4π e σ [( µ) +(8 µ) +(8 µ) +(4 µ) ] σ 7 [ 4σ + ( µ) + (8 µ) + (8 µ) + (4 µ) ]. tedy: Kdy se tento výraz rovná nule? Když je nulová hranatá závorka na posledním řádku. Máme 4σ + ( µ) + (8 µ) + (8 µ) + (4 µ) 0 4σ + ( 8) + (8 8) + (8 8) + (4 8) 0 4σ σ 8. Hledané rozdělení je tedy: N (8, 8). Můžeme si všimnout, že získaný rozptyl je rozptyl, jako kdyby data byla základním souborem. To je chybička, která s rostoucím počtem dat mizí. Odhad rozptylu je vychýlený, proto dáme přednost metodě momentů. ) Metoda momentů Střední hodnota dat je: x 8. Výběrový rozptyl dat je: s 4. Střední hodnotu a rozptyl základního souboru odhadneme střední hodnotou a rozptylem výběrového souboru: µ x 8, σ s 4. Hledané rozdělení je: N (8, 4). Metoda je podstatně jednodušší a dává pro rozptyl správný výsledek. Příklady ke spočtení ) Několik atomových jader zkoumaného prvku se rozpadlo po 8, 4,,, 9, 3 minutách. Odhadněte funkci, která udává pravděpodobnost, že se jádro v určitém čase rozpadne. Exponenciální rozdělení, f (t) 8 e t 8 ) Hmotnost myší má normální rozdělení. Získali jsme následující hmotnosti myší: 6,, 7, 0, 8, 9,, 0, 5. Odhadněte rozdělení hmotnosti myší. Metoda momentů, f (m) N (; 4, 5) 4
5 3) Má tramvaj jezdí ráno v pravidelných intervalech. Zlý vandal ale strhl jízdní řád. Na tramvaj jsem minulý týden čekal, 4, 8, a 5 minut. Odhadněte, v jakém intervalu jezdí tramvaj. Metoda momentů, rovnoměrné spojité rozdělení, 6 minut. 4) Jsem opravář na železniční trati. Ráno jsem zjistil, že musím provést opravu na., 3. a 89. kilometru. Odhadněte, jaký úsek trati mám na starosti. Metoda momentů, rovnoměrné spojité rozdělení, 75. až 39. kilometr. 5
Odhady - Sdružené rozdělení pravděpodobnosti
Odhady - Sdružené rozdělení pravděpodobnosti 4. listopadu 203 Kdybych chtěl znát maximum informací o náhodné veličině, musel bych znát všechny hodnoty, které mohou padnout, a jejich pravděpodobnosti. Tedy
10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.
0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti
3 Bodové odhady a jejich vlastnosti
3 Bodové odhady a jejich vlastnosti 3.1 Statistika (Skripta str. 77) Výběr pořizujeme proto, abychom se (více) dověděli o souboru, ze kterého jsme výběr pořídili. Zde se soustředíme na situaci, kdy známe
Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I
Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I Příklad Tahová síla papíru používaného pro výrobu potravinových sáčků je důležitá charakteristika kvality. Je známo, že síla
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. Matematický přístup k výsledkům únavových zkoušek Náhodnost výsledků únavových zkoušek. Únavové
Odhady Parametrů Lineární Regrese
Odhady Parametrů Lineární Regrese Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení
Základy teorie odhadu parametrů bodový odhad
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Odhady parametrů Úkolem výběrového šetření je podat informaci o neznámé hodnotě charakteristiky základního souboru
Definice spojité náhodné veličiny zjednodušená verze
Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f
MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým
AVDAT Klasický lineární model, metoda nejmenších
AVDAT Klasický lineární model, metoda nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model y i = β 0 + β 1 x i1 + + β k x ik + ε i (1) kde y i
1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.
VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:
Pravděpodobnost a statistika (BI-PST) Cvičení č. 9
Pravděpodobnost a statistika (BI-PST) Cvičení č. 9 R. Blažek, M. Jiřina, J. Hrabáková, I. Petr, F. Štampach, D. Vašata Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení
Odhad parametrů N(µ, σ 2 )
Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Náhodný výběr Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
Odhad parametrů N(µ, σ 2 )
Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný
4. Aplikace matematiky v ekonomii
4. Aplikace matematiky v ekonomii 1 Lineární algebra Soustavy 1) Na základě statistických údajů se zjistilo, že závislost množství statku z poptávaného v průběhu jednoho týdne lze popsat vztahem q d =
VYBRANÁ ROZDĚLENÍ. SPOJITÉ NÁH. VELIČINY Martina Litschmannová
VYBRANÁ ROZDĚLENÍ SPOJITÉ NÁH. VELIČINY Martina Litschmannová Opakování hustota pravděpodobnosti f(x) Funkce f(x) je hustotou pravděpodobností (na intervalu a x b), jestliže splňuje následující podmínky:
STATISTICKÉ ODHADY Odhady populačních charakteristik
STATISTICKÉ ODHADY Odhady populačních charakteristik Jak stanovit charakteristiky rozložení sledované veličiny v základní populaci? Populaci většinou nemáme celou k dispozici, musíme se spokojit jen s
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
Testy. Pavel Provinský. 19. listopadu 2013
Testy Pavel Provinský 19. listopadu 2013 Test a intervalový odhad Testy a intervalové odhady - jsou vlastně to samé. Jiný je jen úhel pohledu. Lze přecházet od jednoho k druhému. Například: Při odvozování
Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a
Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a báli jste se zeptat Jedinečnou funkcí statistiky je, že umožňuje vědci číselně vyjádřit nejistotu v jeho závěrech. (G. W. Snedecor)
z Matematické statistiky 1 1 Konvergence posloupnosti náhodných veličin
Příklady k procvičení z Matematické statistiky Poslední úprava. listopadu 207. Konvergence posloupnosti náhodných veličin. Necht X, X 2... jsou nezávislé veličiny s rovnoměrným rozdělením na [0, ]. Definujme
Nestranný odhad Statistické vyhodnocování exp. dat M. Čada
Nestranný odhad 1 Parametr θ Máme statistický (výběrový) soubor, který je realizací náhodného výběru 1, 2, 3,, n z pravděpodobnostní distribuce, která je kompletně stanovena jedním nebo více parametry
Cvičení 11. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.
11 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické
Minikurz aplikované statistiky. Minikurz aplikované statistiky p.1
Minikurz aplikované statistiky Marie Šimečková, Petr Šimeček Minikurz aplikované statistiky p.1 Program kurzu základy statistiky a pravděpodobnosti regrese (klasická, robustní, s náhodnými efekty, ev.
Pravděpodobnost a matematická statistika
Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n
X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní
..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X
Praktická statistika. Petr Ponížil Eva Kutálková
Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo
Vícerozměrná rozdělení
Vícerozměrná rozdělení 7. září 0 Učivo: Práce s vícerozměrnými rozděleními. Sdružené, marginální, podmíněné rozdělení pravděpodobnosti. Vektorová střední hodnota. Kovariance, korelace, kovarianční matice.
oddělení Inteligentní Datové Analýzy (IDA)
Vytěžování dat Filip Železný Katedra počítačů oddělení Inteligentní Datové Analýzy (IDA) 22. září 2014 Filip Železný (ČVUT) Vytěžování dat 22. září 2014 1 / 25 Odhad rozdělení Úloha: Vstup: data D = {
Obecné, centrální a normované momenty
Obecné, centrální a normované momenty Obsah kapitoly 4. Elementární statistické zpracování - parametrizace vhodnými empirickými parametry Studijní cíle Naučit se počítat centrální a normované momenty pomocí
Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.
Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními
Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY
VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový
Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.
1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový
Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc.
Náhodné veličiny III Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc. Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman
Funkce jedné proměnné
Funkce jedné proměnné Příklad - V následujících příkladech v případě a) pro funkce dané rovnicí zjistěte zda jsou rostoucí klesající nebo konstantní vypočítejte průsečíky grafu s osami souřadnic a graf
Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou
Vybraná rozdělení náhodné veličiny
3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.
AVDAT Nelineární regresní model
AVDAT Nelineární regresní model Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Nelineární regresní model Ey i = f (x i, β) kde x i je k-členný vektor vysvětlujících proměnných
Semestrální písemka BMA3 - termín varianta A13 vzorové řešení
Semestrální písemka BMA3 - termín 6.1.9 - varianta A13 vzorové řešení Každý příklad je hodnocen maximálně 18 body, z toho část a) 1 body a část b) body. Mezivýsledky při výpočtech zaokrouhlujte alespoň
Řešení. Označme po řadě F (z) Odtud plyne, že
Úloha Nechť ~ R(, ) a Y = Jinak řečeno, Y je odmocnina čísla vybraného zcela náhodně z intervalu (, ) Popište rozdělení veličiny Y a určete jeho modus, medián, střední hodnotu a rozptyl Řešení Označme
Výběrové charakteristiky a jejich rozdělení
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový
6. ZÁKLADY STATIST. ODHADOVÁNÍ. Θ parametrický prostor. Dva základní způsoby odhadu neznámého vektoru parametrů bodový a intervalový.
6. ZÁKLADY STATIST. ODHADOVÁNÍ X={X 1, X 2,..., X n } výběr z rozdělení s F (x, θ), θ={θ 1,..., θ r } - vektor reálných neznámých param. θ Θ R k. Θ parametrický prostor. Dva základní způsoby odhadu neznámého
, 1. skupina (16:15-17:45) Jméno: se. Postup je třeba odůvodnit (okomentovat) nebo uvést výpočet. Výsledek bez uvedení jakéhokoliv
42206, skupina (6:5-7:45) Jméno: Zápočtový test z PSI Nezapomeňte podepsat VŠECHNY papíry, které odevzdáváte Škrtejte zřetelně a stejně zřetelně pište i věci, které platí Co je škrtnuto, nebude bráno v
Náhodné chyby přímých měření
Náhodné chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně pravděpodobná.
Matematické modelování Náhled do ekonometrie. Lukáš Frýd
Matematické modelování Náhled do ekonometrie Lukáš Frýd Výnos akcie vs. Výnos celého trhu - CAPM model r it = r ft + β 1. (r mt r ft ) r it r ft = α 0 + β 1. (r mt r ft ) + ε it Ekonomický (finanční model)
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Teorie náhodných matic aneb tak trochu jiná statistika
Teorie náhodných matic aneb tak trochu jiná statistika B. Vlková 1, M.Berg 2, B. Martínek 3, O. Švec 4, M. Neumann 5 Gymnázium Uničov 1, Gymnázium Václava Hraběte Hořovice 2, Mendelovo gymnázium Opava
12. cvičení z PST. 20. prosince 2017
1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace
Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6)
1. Lineární diferenciální rovnice řádu n [MA1-18:P1.7] rovnice typu y n) + p n 1 )y n 1) +... + p 1 )y + p 0 )y = q) 6) počáteční podmínky: y 0 ) = y 0 y 0 ) = y 1 y n 1) 0 ) = y n 1. 7) Věta 1.3 : Necht
Aproximace binomického rozdělení normálním
Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Příklad Sybilla a Kassandra tvrdí, že mají telepatické schopnosti, a chtějí to dokázat následujícím pokusem: V jedné
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).
Kvantily a písmenové hodnoty E E E E-02
Na úloze ukážeme postup průzkumové analýzy dat. Při výrobě calciferolu se provádí kontrola meziproduktu 3,5 DNB esteru calciferolu metodou HPLC. Sleduje se také obsah přítomného ergosterinu jako nečistoty,
Jednofaktorová analýza rozptylu
I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých
AVDAT Náhodný vektor, mnohorozměrné rozdělení
AVDAT Náhodný vektor, mnohorozměrné rozdělení Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Opakování, náhodná veličina, rozdělení Náhodná veličina zobrazuje elementární
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Přednáška. Další rozdělení SNP. Limitní věty. Speciální typy rozdělení. Další rozdělení SNP Limitní věty Speciální typy rozdělení
VI Přednáška Další rozdělení SNP Limitní věty Speciální typy rozdělení Rovnoměrné rozdělení R(a,b) Příklad Obejít celý areál trvá strážnému 30 minut. Jaká je pravděpodobnost, že u vrátnice budete čekat
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
I. D i s k r é t n í r o z d ě l e n í
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu.
6. NÁHODNÝ VEKTOR Průvodce studiem V počtu pravděpodobnosti i v matematické statistice se setkáváme nejen s náhodnými veličinami, jejichž hodnotami jsou reálná čísla, ale i s takovými, jejichž hodnotami
Pravděpodobnost a statistika I KMA/K413
Pravděpodobnost a statistika I KMA/K413 Konzultace 3 Přírodovědecká fakulta Katedra matematiky jiri.cihlar@ujep.cz Kovariance, momenty Definice kovariance: Kovariance náhodných veličin Dále můžeme dokázat:,
Testování statistických hypotéz
Testování statistických hypotéz Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 11. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 27 Obsah 1 Testování statistických hypotéz 2
Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f
Výklad Globální extrémy mají stejný význam jako u funkcí jedné proměnné. Hledáme je bud na celém definičním oboru dané funkce, nebo na předem zadané podmnožině definičního oboru. Definice 6..1. Řekneme,
Náhodné (statistické) chyby přímých měření
Náhodné (statistické) chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně
Téma 22. Ondřej Nývlt
Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené
MATEMATIKA II - vybrané úlohy ze zkoušek v letech
MATEMATIKA II - vybrané úlohy ze zkoušek v letech 2009 2012 doplněné o další úlohy 3. část KŘIVKOVÉ INTEGRÁLY, GREENOVA VĚTA, POTENIÁLNÍ POLE, PLOŠNÉ INTEGRÁLY, GAUSSOVA OSTROGRADSKÉHO VĚTA 7. 4. 2013
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
p(x) = P (X = x), x R,
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie LS 2014/15 Cvičení 7: Autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Autokorelace - teorie Zopakujte si G-M
Relativní chybu veličiny τ lze určit pomocí relativní chyby τ 1. Zanedbáme-li chybu jmenovatele ve vzorci (2), platí *1+:
Pracovní úkol 1. Změřte charakteristiku Geigerova-Müllerova detektoru pro záření gamma a u jednotlivých měření stanovte chybu a vyznačte ji do grafu. Určete délku a sklon plata v charakteristice detektoru
STATISTICKÉ ZJIŠŤOVÁNÍ
STATISTICKÉ ZJIŠŤOVÁNÍ ÚVOD Základní soubor Všechny ryby v rybníce, všechny holky/kluci na škole Cílem určit charakteristiky, pravděpodobnosti Průměr, rozptyl, pravděpodobnost, že Maruška kápne na toho
Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
jevu, čas vyjmutí ze sledování byl T j, T j < X j a T j je náhodná veličina.
Parametrické metody odhadů z neúplných výběrů 2 1 Metoda maximální věrohodnosti pro cenzorované výběry 11 Náhodné cenzorování Při sledování složitých reálných systémů často nemáme možnost uspořádat experiment
5. B o d o v é o d h a d y p a r a m e t r ů
5. B o d o v é o d h a d y p a r a m e t r ů Na základě hodnot náhodného výběru z rozdělení určitého typu odhadujeme parametry tohoto rozdělení, tak aby co nejlépe odpovídaly hodnotám výběru. Formulujme
Stochastické signály (opáčko)
Stochastické signály (opáčko) Stochastický signál nemůžeme popsat rovnicí, ale pomocí sady parametrů. Hodit se bude statistika a pravděpodobnost (umíte). Tohle je jen miniminiminiopáčko, později probereme
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y
9. T r a n s f o r m a c e n á h o d n é v e l i č i n Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota závisí nějakým způsobem na vstupní, je její funkcí = f(x). Pokud
NMAF 051, ZS Zkoušková písemná práce 26. ledna x. x 1 + x dx. q 1. u = x = 1 u2. = 1 u. u 2 (1 + u 2 ) (1 u 2 du = 2.
Jednotlivé kroky při výpočtech stručně, ale co nejpřesněji odůvodněte Pokud používáte nějaké tvrzení, nezapomeňte ověřit splnění předpokladů Jméno a příjmení: Skupina: Příklad 4 Celkem bodů Bodů 5 6 8
NÁHODNÁ VELIČINA. 3. cvičení
NÁHODNÁ VELIČINA 3. cvičení Náhodná veličina Náhodná veličina funkce, která každému výsledku náhodného pokusu přiřadí reálné číslo. Je to matematický model popisující více či méně dobře realitu, který
MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015)
MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015 doplněné o další úlohy 13. 4. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi ( e-mail: Frantisek.Mraz@fs.cvut.cz.
5 ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI SPOJITÉ NÁHODNÉ VELIČINY
5 ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI SPOJITÉ NÁHODNÉ VELIČINY 5. Rovnoměrné rozdělení R(a,) - má náhodná veličina X, která má stejnou možnost naýt kterékoliv hodnoty z intervalu < a, >; a, R Definice
ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN
ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN Rovnoměrné rozdělení R(a,b) rozdělení s konstantní hustotou pravděpodobnosti v intervalu (a,b) f( x) distribuční funkce 0 x a F( x) a x b b a 1 x b b 1 a x a a x b
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
Stavový model a Kalmanův filtr
Stavový model a Kalmanův filtr 2 prosince 23 Stav je veličina, kterou neznáme, ale chtěli bychom znát Dozvídáme se o ní zprostředkovaně prostřednictvím výstupů Příkladem může býapř nějaký zašuměný signál,
Bodové odhady parametrů a výstupů
Bodové odhady parametrů a výstupů 26. listopadu 2013 Máme rozdělení s neznámými parametry a chceme odhadnout jeden nebo několik příštích výstupů. Již víme, že úplnou informaci v této situaci nese sdružené
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1
Chyby měření 210DPSM
Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 5. Odhady parametrů základního souboru Mgr. David Fiedor 16. března 2015 Vztahy mezi výběrovým a základním souborem Osnova 1 Úvod, pojmy Vztahy mezi výběrovým a základním
Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)
Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik
Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
TEST 1 (40 bodů) (9 4)! 2. Nejméně kolikrát musíme hodit kostkou, abychom měli alespoň 80% pravděpodobnost, že padne alespoň jedna šestka?
TEST (40 bodů) Jméno:. Pin karty se skládá ze čtyř náhodně vybraných číslic až 9, z nichž se žádné neopakuje. Jaká je pravděpodobnost, že všechny čtyři číslice budou liché? podíl všech možností,jak vybrat
Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci
Zpracování dat v edukačních vědách - Testování hypotéz Kamila Fačevicová Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Obsah seminářů 5.11. Úvod do matematické