Experimentální hodnocení bezpečnosti mobilní fotbalové brány
|
|
- Pavel Kopecký
- před 9 lety
- Počet zobrazení:
Transkript
1 ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní Ústav mechaniky, biomechaniky a mechatroniky Odbor mechaniky a mechatroniky Název zprávy Experimentální hodnocení bezpečnosti mobilní fotbalové brány Abstrakt Zpráva shrnuje návrh metodiky hodnocení bezpečnosti mobilní fotbalové brány a popisuje experimentální aplikaci metodiky na vybrané vzorky branek Číslo zprávy 12105/09/08 Autoři Ing. Pavel Steinbauer, Ph.D., Ing. Jan Zavřel, Ph.D. Autoři kontakt Vedoucí ústavu Pavel.Steinbauer@fs.cvut.cz, Jan.Zavrel@fs.cvut.cz Tel.: Prof. Ing. Michael Valášek, DrSc. Verze: 1.0 Organizace ČVUT v Praze Fakulta strojní Ústav mechaniky, biomechaniky a mechatroniky Odbor mechaniky a mechatroniky Adresa Karlovo nám Praha 2 Czech Republic Phone: Fax: WWW: mechanika@fsik.cvut.cz Datum:
2 Úvod Cílem pilotního projektu je experimentální hodnocení bezpečnosti mobilní fotbalové brány nové konstrukce z kompozitních materiálů ve srovnání s brankami užívanými v současné době. Jedná se o vysoce aktuální téma, protože mobilní branky jsou často na sportovištích užívány v rozporu s pokyny výrobce a příslušnou normou bez zakotvení zadní části dostatečnou hmotou. Byla definována metodika pro hodnocení míry bezpečnosti, provedeny experimenty pro získání údajů na hodnocení podle zvolené metodiky a jejich vyhodnocení. Metodika pro hodnocení míry bezpečnosti brány Míra pro hodnocení bezpečnosti konstrukce fotbalové brány je založena na hodnocení rovnovážných poloh branky. Nebezpečnou možností pádu je překlopení okolo paty branky směrem dopředu. Lze tedy problém hodnotit jako rovinný případ rotace okolo osy dané patami svislých sloupků branky. Poloha S1 y Poloha L y y Poloha S2 T T y T x T x x x Obrázek 1 Definice hraničních poloh branky Branka se může nacházet v jedné ze tří rovnovážných poloh S1, L a S2 (viz Obr. 1) Obrázek 2 Branka v labilní poloze L a stabilní poloze S2 - po pádu při experimentech Polohy S1 a S2 jsou stabilní. To znamená, že po vychýlení z rovnovážné polohy o malý úhel se konstrukce působením tíhové síly vrátí zpět. Těžiště branky T je ve výšce y t. Branka je v labilní poloze L, pokud je těžiště právě nad osou rotace, tíhová síla působící v těžišti nemá proto otáčivý účinek. Avšak při vychýlení byť i jen o velmi malý úhel se branka nevrátí zpět do polohy
3 L, ale vlivem otáčivého účinku tíhové síly v těžišti pokračuje do jedné se stabilních poloh S1 nebo S2. Těžiště branky je v labilní poloze ve výšce dané vzdáleností těžiště od paty branky. Ve stabilní poloze S2 je těžiště ve výšce x t., tj. původně vodorovné vzdálenosti těžiště branky od předních tyčí v poloze S1. Základním postavením branky je poloha S1, po pádu je branka v poloze S2. k překlopení je třeba branku minimálně naklopit do labilní polohy L. Těžiště se tak zdvihá a je tedy nutné dodat energii vykonat mechanickou práci ke změně potenciální energie při přesunu těžiště z polohy S1 do polohy L. Čím větší je tato energie, tím obtížněji lze branku překlopit, tím vyšší je tedy míra stability branky. Tato energie potřebná k překlopení branky je dána rozdílem potenciálních energií poloh S1 a L a je zvolena hlavním kriteriem míry stability branky a tedy její bezpečnosti. Pokračuje-li branka v pohybu za labilní polohu L a dopadne do stabilní polohy S2, je její kinetická energie při dopadu minimálně dána rozdílem potenciálních energií branky v polohách S2 a L. Tato kinetická energie by měla být co nejmenší. Další kinetickou energii dodá brance tíhová síla působící na fotbalistu visícího na břevně či jeho dynamické účinky na břevno. Tato kinetická energie je dána hmotností fotbalisty a jeho pohybovými schopnostmi (nelze konstrukcí brány ovlivnit), výškou branky (dáno pravidly hry), dobou, po kterou je fotbalista schopen udržet pevný úchop břevna (můžeme ovlivnit tloušťkou břevna) a momentem setrvačnosti branky k ose rotace. Tloušťka břevna možnost pevného úchopu zároveň ovlivňuje i možnost překlopení z polohy S1 do labilní polohy L. Jako podpůrná kriteria hodnocení bezpečnosti branky lze tedy zvolit tloušťku břevna kinetickou energii při dopadu moment setrvačnosti branky k ose patek branky Provedené experimenty Byly hodnoceny tři různé branky 1. nová konstrukce z kompozitů 2. ocelová konstrukce 3. duralová konstrukce Experimenty byly provedeny v laboratořích Ústavu mechaniky, biomechaniky a mechatroniky v Dejvicích. Pro každou bránu byla zjištěna poloha těžiště zavěšením ve dvou různých místech (Obr. 2), hmotnost brány m vážením, moment setrvačnosti Ip odkýváním, průměr břevna r měřením průměru.
4 Obrázek 3 Zavěšení branek pro zjištění polohy těžiště a momentu setrvačnosti Pro kontrolu byl fotogrammetricky vyhodnocen pád brány z labilní polohy L do polohy S2. Tab. 1 Poloha těžiště Hmotnost Průměr břevna Charakter břevna xt yt m r [m] [m] [kg] [m] Branka I kompozit -0,67 0, ,094 Kulatý průřez Branka II - ocelove tyce -0,56 0, ,049 Kulatý průřez Branka III - duralová -0,24 1, ,1 0,117 Pozn. Oválný průřez Úhlová rychlost při dopadu Absolutní rychlost břevna při dopadu Moment setrvačnosti k patě omega v_brevna Ip [rad.s-1] [m.s-1] [kg.m2] Branka I kompozit 2,2 4,422 56,5 Branka II - ocelove tyce 1,835 3, ,6 Branka III - duralová 4,38 8, ,9 Na branku po celou dobu experimentu působilo tíhové zrychlení m.s-2. Ze získaných údajů byly vypočteny hodnoty energie potřebné k překlopení E S1-P a minimální kinetická energie při dopadu E L-S2. E p-s1 =mgy t E p-l =mgh t E p-s2 =mgx t
5 Tab. 2 Ep_S1 [J] Ep_L [J] Ep_S2 [J] E_S1-L [J] E_L-S2 [J] Branka I - kompozit Branka II - ocelove tyce Branka III - duralová Výsledky jsou uspořádány do grafů 1 a 2. Graf 1 Graf 2
6 Závěry Při hodnocení chování konstrukce branky a zejména účinků setrvačných sil je třeba mít na zřeteli, že při pádu i překlápění do labilní polohy koná rotační pohyb. V takovém případě je velmi významnou veličinou moment setrvačnosti vyjádřený k ose rotace, který popisuje rozložení hmoty. Samotná hmotnost je důležitá z hlediska působení tíhové síly. Podle zvoleného kriteria stability vychází jako nejstabilnější branka nové konstrukce (číslo 1). Ocelová branka (číslo 2) byla zhruba o třetinu méně stabilní, duralová branka měla míru stability 17x menší (viz Graf 1). Ocelová branka má tenké břevno, umožňuje tedy snadný úchop a je velmi pravděpodobné dodání energie k překlopení houpáním zavěšené osoby. Hodnocení branek podle podpůrného kriteria kinetické energie pádu z labilní polohy L do stabilní polohy S2 vyznívá zcela ve prospěch nové branky z kompozitů ( číslo 1). Ocelová branka (číslo 2) byla zhruba 3x horší a nejnebezpečnější je duralová branka zhruba 4x horší (viz Graf 2). Při řešení pilotního projektu byl vytipován velký potenciál dalšího zlepšení bezpečnosti branky inovativními konstrukčními opatřeními podle kvalitativních závěrů výpočtů a uplatněním moderních výpočetních metod více-kriteriální optimalizace konstrukce branky při respektování omezení vyplývajících z pravidel kopané i příslušné normy. Materiálové a mechanické charakteristiky osob, na které branka dopadá, nebyly předmětem experimentu.
MJ ČESKÉ VYSOKÉ UČENí TECHNIC'KÉ V PRAZE
MJ ČESKÉ VYSOKÉ UČENí TECHNIC'KÉ V PRAZE FAKULTA STROJNí Prof.lng. František Hrdlička, CSc. děkan V Praze dne 5.1.2010 Návrh kriterií pro výběrové řízení - Koncept bezpečné fotbalové branky 1. Splnění
Experimentální hodnocení bezpečnosti mobilní fotbalové brány vzor V/2010
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní Ústav mechaniky, biomechaniky a mechatroniky Odbor mechaniky a mechatroniky Název zprávy Experimentální hodnocení bezpečnosti mobilní fotbalové brány
TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný
Mechanika tuhého tělesa
Mechanika tuhého tělesa Tuhé těleso je ideální těleso, jehož tvar ani objem se působením libovolně velkých sil nemění Síla působící na tuhé těleso má pouze pohybové účinky Pohyby tuhého tělesa Posuvný
Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa
Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala
BIOMECHANIKA. 3,Geometrie lidského těla, těžiště, stabilita, moment síly
BIOMECHANIKA 3,Geometrie lidského těla, těžiště, stabilita, moment síly Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D. TĚŽIŠTĚ TĚLESA Tuhé těleso je složeno z velkého
1 Tuhé těleso a jeho pohyb
1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité
Analýza dynamiky pádu sportovní branky, vč. souvisejících aspektů týkajících se materiálu
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická katedra řídicí techniky Technická 2, 166 27 Praha 6 13. listopadu 2009 Analýza dynamiky pádu sportovní branky, vč. souvisejících aspektů týkajících
Test jednotky, veličiny, práce, energie, tuhé těleso
DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost
Určení hlavních geometrických, hmotnostních a tuhostních parametrů železničního vozu, přejezd vozu přes klíny
Určení hlavních geometrických, hmotnostních a tuhostních parametrů železničního vozu, přejezd vozu přes klíny Název projektu: Věda pro život, život pro vědu Registrační číslo: CZ.1.07/2.3.00/45.0029 V
MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU
Úloha č 5 MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU ÚKOL MĚŘENÍ: Určete moment setrvačnosti ruhové a obdélníové desy vzhledem jednotlivým osám z doby yvu Vypočtěte moment setrvačnosti ruhové a obdélníové
Fyzika - Kvinta, 1. ročník
- Fyzika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence k učení Učivo fyzikální
Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D.
Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D. Ze zadaných třinácti příkladů vypracuje každý posluchač samostatně
Měření tíhového zrychlení matematickým a reverzním kyvadlem
Úloha č. 3 Měření tíhového zrychlení matematickým a reverzním kyvadlem Úkoly měření: 1. Určete tíhové zrychlení pomocí reverzního a matematického kyvadla. Pro stanovení tíhového zrychlení, viz bod 1, měřte
Vliv přepravovaných nákladů na jízdní vlastnosti vozidel
Vliv přepravovaných nákladů na jízdní vlastnosti vozidel Doc. Ing. Miroslav Tesař, CSc. Havlíčkův Brod 20.5.2010 1. Úvod 2. Definování základních pojmů 3. Stabilita vozidel 4. Stabilita proti překlopení
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU
Obsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8
Obsah 1 Tuhé těleso 1 2 Moment síly 2 3 Skládání sil 3 3.1 Skládání dvou různoběžných sil................. 3 3.2 Skládání dvou rovnoběžných, různě velkých sil......... 3 3.3 Dvojice sil.............................
Měření momentu setrvačnosti
Měření momentu setrvačnosti Úkol : 1. Zjistěte pro dané těleso moment setrvačnosti, prochází-li osa těžištěm. 2. Zjistěte moment setrvačnosti daného tělesa k dané ose metodou torzních kmitů. Pomůcky :
MECHANIKA TUHÉHO TĚLESA
MECHANIKA TUHÉHO TĚLESA. Základní teze tuhé těleso ideální těleso, které nemůže být deformováno působením žádné (libovolně velké) vnější síly druhy pohybu tuhého tělesa a) translace (posuvný pohyb) všechny
MOMENT SETRVAČNOSTI 2009 Tomáš BOROVIČKA B.11
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta biomedicínského inženýrství LABORATORNÍ PRÁCE MOMENT SETRVAČNOSTI 2009 Tomáš BOROVIČKA B.11 Obsah ZADÁNÍ... 4 TEORIE... 4 Metoda torzních kmitů... 4 Steinerova
F - Mechanika tuhého tělesa
F - Mechanika tuhého tělesa Učební text pro studenty dálkového studia a shrnující text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem
Únosnost kompozitních konstrukcí
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní Ústav letadlové techniky Únosnost kompozitních konstrukcí Optimalizační výpočet kompozitních táhel konstantního průřezu Technická zpráva Pořadové číslo:
6. MECHANIKA TUHÉHO TĚLESA
6. MECHANIKA TUHÉHO TĚLESA 6.1. ZÁKLADNÍ VLASTNOSTI A POJMY Tuhé těleso: Tuhé těleso je fyzikální model tělesa u kterého uvažujeme s jeho.. a. Zanedbáváme.. Pohyb tuhého tělesa: 1). Při posuvném pohybu
Přijímací zkouška na navazující magisterské studium Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy
Přijímací zkouška na navazující magisterské studium 013 Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy Studijní program Učitelství pro základní školy - obor Učitelství fyziky
Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony
Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony OPVK CZ.1.07/2.2.00/28.0220, "Inovace studijních programů zahradnických oborů s důrazem na jazykové a odborné dovednosti a konkurenceschopnost
Výpočtový program DYNAMIKA VOZIDLA Tisk výsledků
Zadané hodnoty: n motoru M motoru [ot/min] [Nm] 1 86,4 15 96,4 2 12,7 25 14,2 3 16 35 11 4 93,7 45 84,9 5 75,6 55 68,2 Výpočtový program DYNAMIKA VOZIDLA Tisk výsledků m = 1265 kg (pohotovostní hmotnost
DIPLOMOVÁ PRÁCE OPTIMALIZACE MECHANICKÝCH
DIPLOMOVÁ PRÁCE OPTIMALIZACE MECHANICKÝCH VLASTNOSTÍ MECHANISMU TETRASPHERE Vypracoval: Jaroslav Štorkán Vedoucí práce: prof. Ing. Michael Valášek, DrSc. CÍLE PRÁCE Sestavit programy pro kinematické, dynamické
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ TĚŽIŠTĚ
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.10 TĚŽIŠTĚ Těžiště (hmotný střed) je působiště tíhové síly působící na těleso. Těžiště zavádíme jako působiště
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_6_Mechanika tuhého tělesa Ing. Jakub Ulmann 6 Mechanika tuhého tělesa 6.1 Pohyb tuhého tělesa 6.2 Moment
Digitální učební materiál
Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ..07/.5.00/4.080 Zkvalitnění výuky prostřednictvím ICT III/ Inovace a zkvalitnění výuky prostřednictvím
DYNAMIKA ROTAČNÍ POHYB
DYNAMIKA ROTAČNÍ POHYB Dynamika rotačního pohybu hmotného bodu kolem pevné osy - při rotační pohybu hmotného bodu kolem stálé osy stálými otáčkami kolem pevné osy (pak hovoříme o rovnoměrném rotačním pohybu)
Fyzikální učebna vybavená audiovizuální technikou, fyzikální pomůcky
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Mechanika 1. ročník, kvinta 2 hodiny Fyzikální učebna vybavená audiovizuální technikou, fyzikální pomůcky Úvod Žák vyjmenuje základní veličiny
Dynamika vázaných soustav těles
Dynamika vázaných soustav těles Většina strojů a strojních zařízení, s nimiž se setkáváme v praxi, lze považovat za soustavy těles. Složitost dané soustavy závisí na druhu řešeného případu. Základem pro
FYZIKA I. Pohyb setrvačníku. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Pohyb setrvačníku Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar
TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD. 9, m s.
TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD Soustavu souřadnic spojenou se Zemí můžeme považovat prakticky za inerciální. Jen při několika jevech vznikají odchylky, které lze vysvětlit vlastním pohybem Země vzhledem
ZATÍŽENÍ KŘÍDLA - I. Rozdělení zatížení. Aerodynamické zatížení vztlakových ploch
ZATÍŽENÍ KŘÍDLA - I Rozdělení zatížení - Letová a pozemní letová = aerodyn.síly, hmotové síly (tíha + setrvačné síly), tah pohon. jednotky + speciální zatížení (střet s ptákem, pozemní = aerodyn. síly,
3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky
3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -
DIONYSIS KONSTANTINOU ANDREAS MEIER ZBIGNIEW TRZMIEL HLAVNĚ ABY SE NEDOTKL ZEMĚ
46 DIONYSIS KONSTANTINOU ANDREAS MEIER ZBIGNIEW TRZMIEL HLAVNĚ ABY SE NEDOTKL ZEMĚ HLAVNĚ ABY SE NEDOTKL ZEMĚ 47 pohyb, rotace, valivý pohyb, translační kinetická energie, rotační kinetická energie, tření
Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK
Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 1 Mechanika 1.1 Pohyby přímočaré, pohyb rovnoměrný po kružnici 1.2 Newtonovy pohybové zákony, síly v přírodě, gravitace 1.3 Mechanická
Obsah 11_Síla _Znázornění síly _Gravitační síla _Gravitační síla - příklady _Skládání sil _PL:
Obsah 11_Síla... 2 12_Znázornění síly... 5 13_Gravitační síla... 5 14_Gravitační síla - příklady... 6 15_Skládání sil... 7 16_PL: SKLÁDÁNÍ SIL... 8 17_Skládání různoběžných sil působících v jednom bodě...
DYNAMIKA - Dobový a dráhový účinek
Název projektu: Automatizace výrobních procesů ve strojírenství a řemeslech Registrační číslo: CZ.1.07/1.1.30/01.0038 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň, Klatovská 109 Tento projekt
FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D.
Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.
Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu
Měření momentu setrvačnosti prstence dynamickou metodou
Měření momentu setrvačnosti prstence dynamickou metodou Online: http://www.sclpx.eu/lab1r.php?exp=13 Tato úloha patří zejména svým teoretickým základem k nejobtížnějším. Pojem momentu setrvačnosti dělá
Návrh parametrů inertoru pro zlepšení vypružení vozidla
Návrh parametrů inertoru pro zlepšení vypružení vozidla Bc. Pavel Houfek 1 ČVUT v Praze, Fakulta strojní, Ústav mechaniky, mechatroniky a biomechaniky, Technická 4, 166 07 Praha 6, Česká republika Vedoucí
1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti.
1 Pracovní úkoly 1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti.. Určete složky jednotkového vektoru ve směru zadané obecné osy rotace kvádru v souřadné soustavě dané hlavními
Hydromechanické procesy Hydrostatika
Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_6_Mechanika tuhého tělesa Ing. Jakub Ulmann 6 Mechanika tuhého tělesa 6.1 Pohyb tuhého tělesa 6.2 Moment
3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9
Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................
České vysoké učení technické v Praze Fakulta biomedicínského inženýrství
České vysoké učení technické v Praze Fakulta biomedicínského inženýrství Úloha KA03/č. 6: Určování polohy těžiště stabilometrickou plošinou Metodický pokyn pro vyučující se vzorovým protokolem Ing. Patrik
1. Pro rovnoměrný přímočarý pohyb platí: A) t=s/v B) v=st C) s=v/t D) t=v/s 2. Při pohybu rovnoměrném přímočarém je velikost rychlosti:
1. Pro rovnoměrný přímočarý pohyb platí: A) t=s/v B) v=st C) s=v/t D) t=v/s 2. Při pohybu rovnoměrném přímočarém je velikost rychlosti: 3. V pravoúhlých souřadnicích je rychlost rovnoměrného přímočarého
Theory Česky (Czech Republic)
Q1-1 Dvě úlohy z mechaniky (10 bodíků) Než se pustíte do řešení, přečtěte si obecné pokyny ve zvláštní obálce. Část A. Ukrytý disk (3,5 bodu) Uvažujeme plný dřevěný válec o poloměru podstavy r 1 a výšce
Inovace výuky Fyzika F7/09. Těžiště tělesa
Inovace výuky Fyzika F7/09 Těžiště tělesa Vzdělávací oblast: Vzdělávací obor: Tematický okruh: Cílová skupina: Klíčová slova: Očekávaný výstup: Člověk a příroda Fyzika Pohyb těles. Síly. 7. ročník Těžiště
1.1. Metoda kyvů. Tato metoda spočívá v tom, že na obvod kola do vzdálenosti l od osy
MěřENÍ MOMENTU SETRVAčNOSTI KOLA TEREZA ZÁBOJNÍKOVÁ 1. Teorie Moment setrvačnosti kola lze měřit dvěma metodami. 1.1. Metoda kyvů. Tato metoda spočívá v tom, že na obvod kola do vzdálenosti l od osy otáčení
Základy fyziky + opakovaná výuka Fyziky I
Ústav fyziky a měřicí techniky Pohodlně se usaďte Přednáška co nevidět začne! Základy fyziky + opakovaná výuka Fyziky I Web ústavu: ufmt.vscht.cz : @ufmt444 1 Otázka 8 Rovinná rotace, valení válce po nakloněné
Stavební mechanika 1 (K132SM01)
Stavební mechanika 1 (K132SM01) Přednáší: doc. Ing. Matěj Lepš, Ph.D. Katedra mechaniky K132 Termín opravného/náhradního zápočtového testu: 17.12.2014, 16:00-18:00, místnost B286. Na opravný/náhradní test
PRÁCE, VÝKON, ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika
PRÁCE, VÝKON, ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika Mechanická práce Závisí na velikosti síly, kterou působíme na těleso, a na dráze, po které těleso posuneme Pokud má síla stejný
Abstrakt: Autor navazuje na svůj referát z r. 2014; pokusil se porovnat hodnoty extrémů některých slunečních cyklů s pohybem Slunce kolem barycentra
Úvaha nad slunečními extrémy - 2 A consideration about solar extremes 2 Jiří Čech Abstrakt: Autor navazuje na svůj referát z r. 2014; pokusil se porovnat hodnoty extrémů některých slunečních cyklů s pohybem
Moment síly Statická rovnováha
Moment síly Statická rovnováha Kopírování a šíření tohoto materiálu lze pouze se souhlasem autorky PhDr. Evy Tlapákové, CSc. Jedná se o zatím pracovní verzi, rok 2009 ZKRÁCENÁ VERZE Síla může mít rozdílný
3. Vypočítejte chybu, které se dopouštíte idealizací reálného kyvadla v rámci modelu kyvadla matematického.
Pracovní úkoly. Změřte místní tíhové zrychlení g metodou reverzního kyvadla. 2. Změřte místní tíhové zrychlení g metodou matematického kyvadla. 3. Vypočítejte chybu, které se dopouštíte idealizací reálného
Měření tíhového zrychlení reverzním kyvadlem
43 Kapitola 7 Měření tíhového zrychlení reverzním kyvadlem 7.1 Úvod Tíhové zrychlení je zrychlení volného pádu ve vakuu. Závisí na zeměpisné šířce a nadmořské výšce. Jako normální tíhové zrychlení g n
9 OHŘEV NOSNÍKU VYSTAVENÉHO LOKÁLNÍMU POŽÁRU (řešený příklad)
9 OHŘEV NOSNÍKU VYSTAVENÉHO LOKÁLNÍMU POŽÁRU (řešený příklad) Vypočtěte tepelný tok dopadající na strop a nejvyšší teplotu průvlaku z profilu I 3 při lokálním požáru. Výška požárního úseku je 2,8 m, plocha
Literatura: a ČSN EN s těmito normami související.
Literatura: Kovařík, J., Doc. Dr. Ing.: Mechanika motorových vozidel, VUT Brno, 1966 Smejkal, M.: Jezdíme úsporně v silniční nákladní a autobusové dopravě, NADAS, Praha, 1982 Ptáček,P.:, Komenium, Praha,
ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ
7. cvičení ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ V této kapitole se probírají výpočty únosnosti průřezů (neboli posouzení prvků na prostou pevnost). K porušení materiálu v tlačených částech průřezu dochází: mezní
KARBONOVÉ PROFILY A PŘÍSLUŠENSTVÍ
KARBONOVÉ PROFILY A PŘÍSLUŠENSTVÍ Charakteristika Systém CarboSix je založen na strukturovaných modulárních profilech vyrobených z karbonových vláknových kompozitů za použití technologie pultruzního tažení.
NESTABILITY VYBRANÝCH SYSTÉMŮ. Úvod. Vzpěr prutu. Petr Frantík 1
NESTABILITY VYBRANÝCH SYSTÉMŮ Petr Frantík 1 Úvod Úloha pokritického vzpěru přímého prutu je řešena dynamickou metodou. Prut se statickým zatížením je modelován jako nelineární disipativní dynamický systém.
Návod k použití programu pro výpočet dynamické odezvy spojitého nosníku
Návod k použití programu pro výpočet dynamické odezvy spojitého nosníku Obsah. Úvod.... Popis řešené problematiky..... Konstrukce... 3. Výpočet... 3.. Prohlížení výsledků... 4 4. Dodatky... 6 4.. Newmarkova
Mechanika - síla. Zápisy do sešitu
Mechanika - síla Zápisy do sešitu Síla a její znázornění 1/3 Síla popisuje vzájemné působení těles (i prostřednictvím silových polí). Účinky síly: 1.Mění rychlost a směr pohybu 2.Deformační účinky Síla
Příklad 5.3. v 1. u 1 u 2. v 2
Příklad 5.3 Zadání: Elektron o kinetické energii E se srazí s valenčním elektronem argonu a ionizuje jej. Při ionizaci se část energie nalétávajícího elektronu spotřebuje na uvolnění valenčního elektronu
Dynamika. Dynamis = řecké slovo síla
Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při
Veletrh nápadů učitelů fyziky. Gravitační katapult
Gravitační katapult Jiří Bartoš (bartos@physics.muni.cz), Pavel Konečný Ústav teoretické fyziky a astrofyziky, Katedra obecné fyziky Přírodovědecká fakulta Masarykovy univerzity v Brně. Katapulty různé
Stavební mechanika 3 132SM3 Přednášky. Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků.
Stavební mechanika 12SM Přednášky Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků. Porovnání ODM a ZDM Příklad 1: (viz předchozí přednáška)
LET Z KULOVNICE. Petr Lenhard
LET Z KULOVNICE Petr Lenhard OBSAH Balistika Vnější balistika Síly a momenty Aerodynamické síly a momenty Výsledný rotační pohyb Shrnutí a literatura BALISTIKA ROZDĚLENÍ BALISTIKY Obor mechaniky zabývající
Digitální učební materiál
Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT III/2 Inovace a zkvalitnění výuky prostřednictvím
1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N?
MECHANICKÁ PRÁCE 1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? l = s = 6 cm = 6 10 2 m F = 120 N W =? (J) W = F. s W = 6 10 2 120 = 7,2 W = 7,2 J
ZÁKLADY FYZIKÁLNÍCH MĚŘENÍ FJFI ČVUT V PRAZE. Úloha 5: Měření tíhového zrychlení
ZÁKLADY FYZIKÁLNÍCH MĚŘENÍ FJFI ČVUT V PRAZE Datum měření: číslo skupiny: Spolupracovali: 1 Úvod 1.1 Pracovní úkoly [1] Úloha 5: Měření tíhového zrychlení Jméno: Ročník, kruh: Klasifikace: 1. V domácí
Dynamika rotačního pohybu
Číslo úlohy: 11 Jméno: Vojtěch HORNÝ Spolupracoval: Jaroslav Zeman Datum : 2. 11. 2009 Číslo kroužku: pondělí 13:30 Číslo skupiny: 6 Klasifikace: Fyzikální praktikum FJFI ČVUT v Praze Dynamika rotačního
1.7.7 Rovnovážná poloha, páka v praxi
.7.7 Rovnovážná poloha, páka v praxi Předpoklady: 00706 Př. : Najdi všechny způsoby, jak umístit kuželku na stůl tak, aby byla v rovnovážné poloze. Čím se jednotlivé způsoby liší? Máme tři možnosti: normální
(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace.
STUDUM OTÁčENÍ TUHÉHO TěLESA TEREZA ZÁBOJNÍKOVÁ 1. Pracovní úkol (1) Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti. (2) Určete složky jednotkového vektoru ve směru zadané obecné
Úvod do analytické mechaniky
Úvod do analytické mechaniky Vektorová mechanika, která je někdy nazývána jako Newtonova, vychází bezprostředně z principů, které jsou vyjádřeny vztahy mezi vektorovými veličinami. V tomto případě např.
VYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: NÁVRH VYZTUŽENÍ ŽELEZOBETONOVÉHO VAZNÍKU S VELKÝM OTVOREM
VYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: NÁVRH VYZTUŽENÍ ŽELEZOBETONOVÉHO VAZNÍKU S VELKÝM OTVOREM Projekt: Dílčí část: Vypracoval: Vyztužování poruchových oblastí železobetonové konstrukce
MKP analýza konstrukčních řetězců ovinovacího balicího stroje FEM Analysis of Construction Parts of Wrapping Machine
MKP analýza konstrukčních řetězců ovinovacího balicího stroje FEM Analysis of Construction Parts of Wrapping Machine Bc. Petr Kříbala Vedoucí práce: Ing. Jiří Mrázek, Ph.D., Ing. František Starý Abstrakt
Zadavatel: KRONEN LABE spol. s r. o. Tylova 410/24, 400 04 Trmice
ÚSTAV TECHNIK Y A ŘÍZENÍ V ÝROBY Ústav techniky a řízení výroby Univerzity J. E. Purkyně v Ústí nad Labem Na Okraji 11 Tel.: +42 475 285 511 96 Ústí nad Labem Fax: +42 475 285 566 Internet: www.utrv.ujep.cz
PRUŽNOST A PEVNOST 2 V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ PRUŽNOST A PEVNOST V PŘÍKLADECH Kvadratický moment II doc. Ing. Karel Frydrýšek, Ph.D., ING-PAED IGIP Ing. Milan Sivera Ing. Richard Klučka
KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině
KMITÁNÍ PRUŽINY Pomůcky: LabQuest, sonda siloměr, těleso kmitající na pružině Postup: Těleso zavěsíme na pružinu a tu zavěsíme na pevně upevněný siloměr (viz obr. ). Sondu připojíme k LabQuestu a nastavíme
Síla, vzájemné silové působení těles
Síla, vzájemné silové působení těles Síla, vzájemné silové působení těles Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_02_01 Vytvořeno Leden 2014 Síla, značka a jednotka síly, grafické znázornění
Vyřešením pohybových rovnic s těmito počátečními podmínkami dostáváme trajektorii. x = v 0 t cos α (1) y = h + v 0 t sin α 1 2 gt2 (2)
Test a. Lučištník vystřelil z hradby vysoké 40 m šíp o hmotnosti 50 g rychlostí 60 m s pod úhlem 5 vzhůru vzhledem k vodorovnému směru. (a V jaké vzdálenosti od hradeb se šíp zabodl do země? (b Jaký úhel
5. Pro jednu pružinu změřte závislost stupně vazby na vzdálenosti zavěšení pružiny od uložení
1 Pracovní úkoly 1. Změřte dobu kmitu T 0 dvou stejných nevázaných fyzických kyvadel.. Změřte doby kmitů T i dvou stejných fyzických kyvadel vázaných slabou pružnou vazbou vypouštěných z klidu při počátečních
SÍLY A JEJICH VLASTNOSTI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda
SÍLY A JEJICH VLASTNOSTI Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vzájemné působení těles Silové působení je vždy vzájemné! 1.Působení při dotyku 2.Působení na dálku prostřednictvím polí gravitační pole
PRŮŘEZOVÉ CHARAKTERISTIKY
. cvičení PRŮŘEZOVÉ CHRKTERISTIKY Poznámka Pojem průřezu zavádíme u prutových konstrukčních prvků. Průřez je rovinný obrazec, který vznikne myšleným řezem vedeným kolmo k podélné ose nedeformovaného prutu,
7. Gravitační pole a pohyb těles v něm
7. Gravitační pole a pohyb těles v něm Gravitační pole - existuje v okolí každého hmotného tělesa - představuje formu hmoty - zprostředkovává vzájemné silové působení mezi tělesy Newtonův gravitační zákon:
5. Mechanika tuhého tělesa
5. Mechanika tuhého tělesa Rozměry a tvar tělesa jsou často při řešení mechanických problémů rozhodující a podstatně ovlivňují pohybové účinky sil, které na ně působí. Taková tělesa samozřejmě nelze nahradit
BIOMECHANIKA KINEMATIKA
BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti
ÍKLAD Rychlost st ely = 4 gramy = 1 tuny = 20,4 cm zákon pohybová energie náboje polohovou energii t p e el e n l ou en e e n r e gi r i
PŘÍKLAD Rychlost střely lze určit tak, že se vystřelí zblízka do dostatečně těžkého pytle s pískem, který je zavěšen na několikametrovém laně. Změří se, do jaké výšky vystoupalo těžiště T pytle. Odtud
SCLPX 11 1R Zákon zachování mechanické energie
Klasické provedení a didaktické aspekty pokusu Zákony zachování mají ve fyzice významné postavení. V učivu mechaniky se na střední škole věnuje pozornost zákonu zachování hybnosti a zákonu zachování energie
1 Švédská proužková metoda (Pettersonova / Felleniova metoda; 1927)
Teorie K sesuvu svahu dochází často podél tenké smykové plochy, která odděluje sesouvající se těleso sesuvu nad smykovou plochou od nepohybujícího se podkladu. Obecně lze říct, že v nesoudržných zeminách
ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil
ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil Peter Dourmashkin MIT 006, překlad: Jan Pacák (007) Obsah 6. MAGNETICKÁ SÍLA A MOMENT SIL 3 6.1 ÚKOLY 3 ÚLOHA 1: HMOTNOSTNÍ
Fyzikální praktikum 1
Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #11 Dynamika rotačního pohybu Jméno: Ondřej Finke Datum měření: 24.11.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) V domácí přípravě odvoďte
m.s se souřadnými osami x, y, z? =(0, 6, 12) N. Určete, jak velký úhel spolu svírají a jakou velikost má jejich výslednice.
Obsah VYBRANÉ PŘÍKLADY DO CVIČENÍ 2007-08 Vybrané příklady [1] Koktavý, Úvod do studia fyziky... 1 Vybrané příklady [2] Koktavý, Mechanika hmotného bodu... 1 Vybrané příklady [3] Navarová, Čermáková, Sbírka