brmiversity: Um lá inteligence a teoretická informatika
|
|
- Šimon Jelínek
- před 9 lety
- Počet zobrazení:
Transkript
1 brmiversity: Um lá inteligence a teoretická informatika P edná²ka. 6 Petr Baudi² pasky@ucw.cz brmlab 2011
2 Outline 1 Pravd podobnost 2 Um lá inteligence 3 Sloºitost 4 Datové struktury
3 Pravd podobnost Pravd podobnost: Stane nebo nestane se n jaká náhodná událost? Dv interpretace Subjektivisti: Stav mysli, stupe víry. Frekventisti: Konvergence série experiment. (Fuzzy logika pracuje se stupni pravdivosti, to je n co jiného!) Provádíme sérii pokus, ty nám dávají výsledky, mnoºiny výsledk jsou náhodné jevy.
4 Matematická pravd podobnost Náhodný jev A má pravd podobnost P(A) [0, 1] Sou et pravd podobností v²ech základních jev (jendotlivých výsledk ) je 1; negace jevu je 1 p Jednoduchý p ípad rovnom rn náhodný jev A má po n pokusech, z toho m úsp ²ných, P(A) m/n Stane se A nebo B? P(A B) = P(A) + P(B) P(A B) Nezávislé jevy A, B pravd podobnost jednoho nezávisí na výskytu druhého Stane se A a B zárove? P(A B) = P(A) P(B), jsou-li nezávislé
5 Matematická pravd podobnost Podmín ná pravd podobnost jevy A, B nejsou nezávislé Stane se A za p edpokladu B? P(A B) P(A B) = P(A B) P(B) Bayesova v ta P(A B) = P(B A)P(A) P(B) Diskrétní booleovský jev A P(A) ºe (ne)nastane Spojitý jev X interval ísel, o ekávaná hodnota E[X ]
6 Statistika Teorie pravd podobnosti se zabývá abstraktními pravd podobnostmi jev Statistika se zabývá pravd podobnostmi, které jsme nam ili Zákon velkých ísel: Pr m r (st ední hodnota) nam ených hodnot konverguje k o ekávané hodnot Jak daleko jsou nam ené hodnoty od pr m ru? Rozptyl je st ední kvadratická odchylka Sm rodatná odchylka je odmocnina rozptylu
7 Pravd podobnostní rozd lení p=0.5 and n=20 p=0.7 and n=20 p=0.5 and n= p=0.5 and N=20 p=0.7 and N=20 p=0.5 and N= Pravd podobnostní rozd lení popisuje pravd podobnosti r zných hodnot p i ur itém typu pokusu Dává nám st ední hodnotu a rozptyl pro dané parametry pokusu Bernoulliho rozd lení (p): Hod mincí Binomiální rozd lení (p, n): Série Bernoulliho trial Poissonovo rozd lení (λ, k): Po et výskyt události za as
8 Normální rozd lení μ= 0, σ = 0.2, 2 μ= 0, σ = 1.0, 2 μ= 0, σ = 5.0, 2 μ= 2, σ = 0.5, μ= 0, σ = 0.2, 2 μ= 0, σ = 1.0, 2 μ= 0, σ = 5.0, 2 μ= 2, σ = 0.5, φ μ,σ 2( x) Φ μ,σ 2(x) x Máme-li mnoho m ení, konvergují k normálnímu rozd lení: 1 (x µ)2 e 2σ 2 2πσ 2 x Interval spolehlivosti: S pravd podob. p bude E[X ] = µ ± ɛ ODS by volilo 20% ± 3% lidí s n jakou pravd podobností (t eba 5%) by to bylo je²t více nebo mén 95% interval je 1.96σ
9 Outline 1 Pravd podobnost 2 Um lá inteligence 3 Sloºitost 4 Datové struktury
10 Zpracování neur ité informace Data o sv t jsou neur itá Úkony ve sv t jsou neur itá... takºe reálný sv t je neur itý Neur itost: Usuzování, rozhodování, modelování, u ení
11 Bayesovské sít Chceme modelovat sv t provázaných náhodných jev Bayesovská sí : Graf (DAG), uzly jsou jevy, hrany jsou podmín né vazby Co se stane, kdyº vidím tohle? Co bych m l zjistit, abych si co nejvíce up esnil obraz o sv t? Na em nejvíce závisí, ºe se tohle stane? Kv li emu se asi stalo tohle?
12 Pravd podobnostní rozhodovací stromy Chceme posoudit dopady svých rozhodnutí Posloupnost rozhodnutí a neur itých jev vede k r znému uºitku Rozhodovací stromy: V tvení na rozhodnutích a jevech, list je uºitek (Pozor, rozhodovací stromy se íká i n emu jinému!) Kterou cestou má jet robot?
13 Inuen ní diagramy Podstromy rozhodovacích strom se asto opakují, nezáleºí na p edchozích rozhodnutích a jevech Inuen ní diagramy (rozhodovací grafy): Obecný graf, uºitkové uzly udávají zm nu uºitku, kdyº skrze n projdeme
14 Otázky? P í²t UI: Modelování Markovské modely, Kalman v ltr.
15 Outline 1 Pravd podobnost 2 Um lá inteligence 3 Sloºitost 4 Datové struktury
16 Pravd podobnostní algoritmy Po algoritmu obvykle chceme, aby nám vrátil p esný výsledek za p esný as Co kdyº akceptujeme ur itou malou chybu? Co kdyº akceptujeme, ºe jen asi dob hneme v as? Model: Probabilistický Turing v stroj
17 Monte Carlo Monte Carlo algoritmus: ƒím déle b ºíme, tím p esn j²í výsledek dostaneme. T ída sloºitosti BPP: Problém e²itelný na probabilistickém TS v polynomiálním ase s pravd podobností chyby 1/3 Obsah pr niku kruºnic Ur itý integrál (plocha pod k ivkou) Prvo íselné testy Monte Carlo Tree Search
18 Las Vegas Las Vegas algoritmus: O ekávaná doba b hu je jiná neº nejhor²í T ída sloºitosti ZPP: Problém e²itelný na probabilistickém TS v o ekávaném polynomiálním ase Quicksort s náhodnou volbou pivota Je Las Vegas a Monte Carlo ekvivalentní?
19 Otázky? P í²t : Míry sloºitosti, Savitchova v ta, konstruovatelné funkce.
20 Outline 1 Pravd podobnost 2 Um lá inteligence 3 Sloºitost 4 Datové struktury
21 Hashování Hash tabulka (v pam ti interní) Musíme e²it kolize r zné metody ukládání do tabulky Zajímá nás o ekávaná délka et zc l, po et test p i úsp ²ném (t + ) a neúsp ²ném (t ) lookupu
22 Druhy hashování Separované et zce: klasický hash se spojáky Uspo ádané et zce: trochu lep²í t (a co skiplisty?) S p emis ováním: spoják p ímo v tabulce, p i kolizi p emíst ní Se dv ma ukazateli: ukazatel na za átek et zce Sr stající hashování: et zec po nejbliº²í volné polí ko, triviální implementace, vkládáme na r zná místa, p íp. i do pomocné oblasti Dvojité hashování: jako sr stající, ale ská u chaoticky
23 Perfektní a univerzální hashování Perfektní hashování: Chceme vyrobit read-only hash tabulku bez kolizí. Univerzální hashování: Chceme vyrobit hashovací funkci odolnou k nerovnom rnému rozd lení vstupu.
24 Otázky? P í²t : Univerzální a perfektní hashování. A n kdy dod láme ty haldy a externí hashování.
25 D kuji vám P í²t : Um lá inteligence. Neuronové sít (statistické zpracování dat). Adaptivní agenti (komunikace a znalosti). Datové struktury.
1. (18 bod ) Náhodná veli ina X je po et rub p i 400 nezávislých hodech mincí. a) Pomocí ƒeby²evovy nerovnosti odhadn te pravd podobnost
(8 bod ) Náhodná veli ina X je po et rub p i nezávislých hodech mincí a) Pomocí ƒeby²evovy nerovnosti odhadn te pravd podobnost P ( X EX < ) (9 bod ) b) Formulujte centrální limitní v tu a pomocí ní vypo
P íklad 1 (Náhodná veli ina)
P íklad 1 (Náhodná veli ina) Uvaºujeme experiment: házení mincí. Výsledkem pokusu je rub nebo líc, ºe padne hrana neuvaºujeme. Pokud hovo íme o náhodné veli in, musíme p epsat výsledky pokusu do mnoºiny
Vektor náhodných veli in - práce s více prom nnými
Vektor náhodných veli in - práce s více prom nnými 12. kv tna 2015 N kdy k popisu n jaké situace pot ebujeme více neº jednu náhodnou veli inu. Nap. v k, hmotnost, vý²ku. Mezi t mito veli inami mohou být
brmiversity: Um lá inteligence a teoretická informatika
brmiversity: Um lá inteligence a teoretická informatika Úvodní p edná²ka brmlab 2011 Outline 1 Slovo úvodem 2 Um lá inteligence 3 Neuronové sít 4 Adaptivní agenti 5 Evolu ní algoritmy 6 Sloºitost 7 Datové
brmiversity: Um lá inteligence a teoretická informatika
brmiversity: Um lá inteligence a teoretická informatika P edná²ka. 7 Petr Baudi² pasky@ucw.cz brmlab 2011 Outline 1 Um lá inteligence 2 Neuronové sít 3 Adaptivní agenti 4 Datové struktury Zpracování neur
P íklady k prvnímu testu - Pravd podobnost
P íklady k prvnímu testu - Pravd podobnost 28. února 204 Instrukce: Projd te si v²echny p íklady. Kaºdý p íklad se snaºte pochopit. Pak vymyslete a vy- e²te p íklad podobný. Tím se ujistíte, ºe p íkladu
Unfolding - uºivatelský manuál
Unfolding - uºivatelský manuál Bc. Martin Veselý Fakulta jaderná a fyzikáln inºenýrská Katedra softwarového inºenýrství v ekonomii Skupina aplikované matematiky a stochastiky p i kated e matematiky Obsah
Pravd podobnost a statistika - cvi ení. Simona Domesová místnost: RA310 (budova CPIT) web:
Pravd podobnost a statistika - cvi ení Simona Domesová simona.domesova@vsb.cz místnost: RA310 (budova CPIT) web: http://homel.vsb.cz/~dom0015 Cíle p edm tu vyhodnocování dat pomocí statistických metod
T i hlavní v ty pravd podobnosti
T i hlavní v ty pravd podobnosti 15. kv tna 2015 První p íklad P edstavme si, ºe máme atomy typu A, které se samovolným radioaktivním rozpadem rozpadají na atomy typu B. Pr m rná doba rozpadu je 3 hodiny.
Cvi ení 7. Docházka a testík - 15 min. Distfun 10 min. Úloha 1
Cvi ení 7 Úkol: generování dat dle rozd lení, vykreslení rozd lení psti, odhad rozd lení dle dat, bodový odhad parametr, centrální limitní v ta, balí ek Distfun, normalizace Docházka a testík - 15 min.
Reálná ísla a posloupnosti Jan Malý
Reálná ísla a posloupnosti Jan Malý Obsah 1. Reálná ísla 1 2. Posloupnosti 2 3. Hlub²í v ty o itách 4 1. Reálná ísla 1.1. Úmluva (T leso). Pod pojmem t leso budeme v tomto textu rozum t pouze komutativní
Jevy, nezávislost, Bayesova v ta
Jevy, nezávislost, Bayesova v ta 17. b ezna 2015 Instrukce: Projd te si v²echny p íklady. Kaºdý p íklad se snaºte pochopit. Pak vymyslete a vy- e²te p íklad podobný. Tím se ujistíte, ºe p íkladu rozumíte.
na za átku se denuje náhodná veli ina
P íklad 1 Generujeme data z náhodné veli iny s normálním rozd lením se st ední hodnotou µ = 1 a rozptylem =. Rozptyl povaºujeme za známý, ale z dat chceme odhadnout st ední hodnotu. P íklad se e²í v následujícím
RNÉ MATERIÁLY. PSYCHODIAGNOSTIKA - VYHODNOCENÍ z , 13:19 hodin
Strana 1 z 11 RNÉ MATERIÁLY PSYCHODIAGNOSTIKA - VYHODNOCENÍ z 14.11.2012, 13:19 hodin Kód probanda íjmení Jméno k Objednavatel el testování 3D60001025 íklad - Sériové íslo: Verze íslo: Vyhodnoceno: BFC6BC9F0D91
brmiversity: Um lá inteligence a teoretická informatika
brmiversity: Um lá inteligence a teoretická informatika P edná²ka. 9 Petr Baudi² pasky@ucw.cz brmlab 2011 Outline 1 Um lá inteligence 2 Neuronové sít 3 Evolu ní algoritmy 4 Datové struktury Strojové u
2C06028-00-Tisk-ePROJEKTY
Stránka. 27 z 50 3.2. ASOVÝ POSTUP PRACÍ - rok 2009 3.2.0. P EHLED DÍL ÍCH CÍL PLÁNOVANÉ 2009 íslo podrobn Datum pln ní matematicky formulovat postup výpo t V001 výpo etní postup ve form matematických
brmiversity: Um lá inteligence a teoretická informatika
brmiversity: Um lá inteligence a teoretická informatika P edná²ka. 4 Petr Baudi² pasky@ucw.cz brmlab 2011 Outline 1 Neuronové sít 2 Um lá inteligence 3 Základní algoritmy 4 Sloºitost 5 Vy íslitelnost Um
3 D leºitá rozd lení náhodné veli iny
3 D leºitá rozd lení náhodné veli iny Co to znamená, kdyº prohlásíme, ºe jsou n jaká d leºitá rozd lení? Rozd lení náhodné veli iny je její popis. A náhodná veli ina p edstavuje ur itý náhodný pokus (kde
Aplikace pravd podobnostních model v kurzovém sázení
Aplikace pravd podobnostních model v kurzovém sázení 28.4.2016 Obsah 1 Kurzové sázení Tenis Kurz jako odhad pravd podobnosti Hodnocení kvality odhadu pravd podobnosti 2 Predikce pr b hu utkání Základní
DISKRÉTNÍ ROZDĚLENÍ PRAVDĚPODOBNOSTI. 5. cvičení
DISKRÉTNÍ ROZDĚLENÍ PRAVDĚPODOBNOSTI 5. cvičení Rozdělení pravděpodobnosti NV Rozdělení náhodné veličiny X je předpis, kterým definujeme pravděpodobnost jevu, jež lze touto náhodnou veličinou popsat. U
ST1 - Úkol 1. [Minimáln 74 K /láhev]
ST1 - Úkol 1 P íklad 1 Myslivecký spolek po ádá sv j tradi ní ples. Mimo jiné bylo nakoupeno lahvové víno podle rozpisu v Tabulce 1.1. P edpokládá se (podle historických zku²eností), ºe v²echny láhve budou
Limity funkcí v nevlastních bodech. Obsah
Limity funkcí v nevlastních bodech V tomto letáku si vysv tlíme, co znamená, kdyº funkce mí í do nekone na, mínus nekone na nebo se blíºí ke konkrétnímu reálnému íslu, zatímco x jde do nekone na nebo mínus
Fakulta přírodovědně-humanitní a pedagogická. Okruhy otázek pro státní závěrečné zkoušky. Bakalářské studium
Fakulta přírodovědně-humanitní a pedagogická Okruhy otázek pro státní závěrečné zkoušky Bakalářské studium Informatika se zaměřením na vzdělávání Bc. Matematika: Funkce, její průběh a vlastnosti. Popisná
E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =
Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní
pracovní list studenta
Výstup RVP: Klíčová slova: pracovní list studenta Rovnice a jejich soustavy Petra Směšná žák měří dané veličiny, analyzuje a zpracovává naměřená data, rozumí pojmu řešení soustavy dvou lineárních rovnic,
DUM 02 téma: Popisové pole na výrobním výkrese
DUM 02 téma: Popisové pole na výrobním výkrese ze sady: 03 tematický okruh sady: Kreslení výrobních výkres ze šablony: 04_Technická dokumentace Ur eno pro :1. ro ník vzd lávací obor: 26-41-M/01 Elektrotechnika
nazvu obecnou PDR pro neznámou funkci
Denice. Bu n N a Ω R d otev ená, d 2. Vztah tvaru F (x, u(x), Du(x),..., D (n 1) u(x), D (n) u(x)) = 0 x Ω (1) nazvu obecnou PDR pro neznámou funkci u : Ω R d R Zde je daná funkce. F : Ω R R d R dn 1 R
Integrování jako opak derivování
Integrování jako opak derivování V tomto dokumentu budete seznámeni s derivováním b ºných funkcí a budete mít moºnost vyzkou²et mnoho zp sob derivace. Jedním z nich je proces derivování v opa ném po adí.
SEMESTRÁ LNÍ PRÁ CE. Licenč ní studium STATISTICKÉZPRACOVÁ NÍ DAT PŘ I KONTROLE A Ř ÍZENÍ JAKOSTI
SEMESTRÁ LNÍ PRÁ CE Licenč ní studium STATISTICKÉZPRACOVÁ NÍ DAT PŘ I KONTROLE A Ř ÍZENÍ JAKOSTI Předmě t STATISTICKÁ ANALÝ ZA JEDNOROZMĚ RNÝ CH DAT (ADSTAT) Ú stav experimentá lní biofarmacie, Hradec
Matematická logika cvi ení 47
Matematická logika cvi ení 47 Libor B hounek www.cs.cas.cz/behounek/teaching/malog12 LS 2012/13, P F OU, 4.25. 3. 2013 Cvi ení 1. Posu te následující výroky z hlediska adekvátnosti dvojhodnotové sémantiky
DUM 07 téma: P edepisování tolerancí
DUM 07 téma: P edepisování tolerancí ze sady: 03 tematický okruh sady: Kreslení výrobních výkres ze šablony: 04_Technická dokumentace Ur eno pro :1. ro ník vzd lávací obor: 26-41-M/01 Elektrotechnika 18-20-M/01
ST2 - Cvi ení 1 STATISTICKÁ INDUKCE
ST2 - Cvi ení 1 STATISTICKÁ INDUKCE P íklad 1.1 Po et závad jistého typu elektrospot ebi e b hem záru ní doby má Poissonovo rozd lení s parametrem λ = 0,2. Jaká je pravd podobnost, ºe po prodeji 75 spot
Prezentace. Ing. Petr V elák 6. b ezna 2009
Prezentace Ing. Petr V elák 6. b ezna 2009 1 OBSAH OBSAH Obsah 1 Úvodní slovo 3 2 P íprava prezentace 4 2.1 Jak prezentace ned lat........................ 4 2.1.1 Kontrast písma a pozadí...................
brmiversity: Um lá inteligence a teoretická informatika
brmiversity: Um lá inteligence a teoretická informatika P edná²ka. 3 brmlab 2011 Outline 1 Adaptivní agenti 2 Evolu ní algoritmy 3 Základní algoritmy 4 Datové struktury 5 Sloºitost Autonomní adaptivní
Kvantová logika podle Neumanna - problém nekone né dimenze
Kvantová logika podle Neumanna - problém nekone né dimenze Svatopluk Krýsl Matematický ústav Univerzity Karlovy Filozocké problémy informatiky 27. íjen 2015 1 Kvantová fyzika 2 Zachycující struktury -
I. Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb
I. Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb 1 VŠEOBECNĚ ČSN EN 1991-1-1 poskytuje pokyny pro stanovení objemové tíhy stavebních a skladovaných materiálů nebo výrobků, pro vlastní
Ergodické Markovské et zce
1. b ezen 2013 Denice 1.1 Markovský et zec nazveme ergodickým, jestliºe z libovolného stavu m ºeme p ejít do jakéhokoliv libovolného stavu (ne nutn v jednom kroku). Denice 1.2 Markovský et zec nazveme
Statistika pro geografy. Rozd lení etností DEPARTMENT OF GEOGRAPHY
Statistika pro geografy Rozd lení etností DEPARTMENT OF GEOGRAPHY Faculty of Science Palacký University Olomouc t. 17. listopadu 1192/12, 771 46 Olomouc Pojmy etnost = po et prvk se stejnou hodnotou statistického
Algoritmizace a programování
Algoritmizace a programování V algoritmizaci a programování je důležitá schopnost analyzovat a myslet. Všeobecně jsou odrazovým můstkem pro řešení neobvyklých, ale i každodenních problémů. Naučí nás rozdělit
Obsah. KAPITOLA 1 Dříve než začneme 19 Kdysi dávno aneb střípky z historie algoritmických strojů 20 1801 21 1833 21 1890 22 třicátá léta 22
Předmluva 11 Čím se tato kniha liší od jiných příruček? 11 Proč C++? 12 Jak číst tuto knihu? 12 Čím se budeme zabývat? 13 Kapitola 1: Dříve než začneme 13 Kapitola 2: Rekurze 13 Kapitola 3: Analýza složitosti
Binární operace. Úvod. Pomocný text
Pomocný text Binární operace Úvod Milí e²itelé, binární operace je pom rn abstraktní téma, a tak bude ob as pot eba odprostit se od konkrétních p íklad a podívat se na v c s ur itým nadhledem. Nicmén e²ení
NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?
NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU
Základní praktikum laserové techniky
Základní praktikum laserové techniky Fakulta jaderná a fyzikáln inºenýrská Úloha 4: Zna kování TEA CO 2 laserem a m ení jeho charakteristik Datum m ení: 1.4.2015 Skupina: G Zpracoval: David Roesel Kruh:
pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti.
3.1 Základy teorie pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. Co se dozvíte Náhodný pokus a náhodný jev. Pravděpodobnost, počítání s pravděpodobnostmi.
Neuronová síť. x 2 x 3. σ j. x 4. x 5. Menu: QCExpert Prediktivní metody
Neuronová síť Menu: QCExpert Prediktivní metody Neuronová síť Neuronová síť (Artificial Neural Network, ANN, resp. NN) je velmi populární a výkonná metoda, která se používá k modelování vztahu mezi vícerozměrnou
Statistika ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA DOPRAVNÍ. Jiří Volf, Adam Kratochvíl, Kateřina Žáková. Semestrální práce - 0 -
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA DOPRAVNÍ Jiří Volf, Adam Kratochvíl, Kateřina Žáková 2 34 Statistika Semestrální práce - 0 - 1. Úvod Popis úlohy: V této práci se jedná se o porovnání statistických
Domácí úkol 2. Obecné pokyny. Dbejte na formáln správný zápis výpo tu! Pro vy íslení výsledku pro binomické rozd lení pouºijte nap. Maple nebo Matlab.
Domácí úkol 2 Obecné pokyny Dbejte na formáln správný zápis výpo tu! Pro vy íslení výsledku pro binomické rozd lení pouºijte nap. Maple nebo Matlab. Návod pro výpo et v Matlabu Jestliºe X Bi(n, p), pak
Algoritmizace a programování
Pátek 14. října Algoritmizace a programování V algoritmizaci a programování je důležitá schopnost analyzovat a myslet. Všeobecně jsou odrazovým můstkem pro řešení neobvyklých, ale i každodenních problémů.
5. cvičení 4ST201_řešení
cvičící. cvičení 4ST201_řešení Obsah: Informace o 1. průběžném testu Pravděpodobnostní rozdělení 1.část Vysoká škola ekonomická 1 1. Průběžný test Termín: pátek 26.3. v 11:00 hod. a v 12:4 v průběhu cvičení
Obec Nová Ves. Zm na. 1, kterou se m ní Územní plán Nová Ves
Obec Nová Ves. j.: V Nové Vsi dne Zm na. 1, kterou se m ní Územní plán Nová Ves Zastupitelstvo obce Nová Ves, p íslu né podle ustanovení 6 odst. 5 písm. c) zákona. 183/2006 Sb., o územním plánování a stavebním
ST2 - Cvi ení 1 STATISTICKÁ INDUKCE
ST2 - Cvi ení 1 STATISTICKÁ INDUKCE P íklad 1.1 Po et závad jistého typu elektrospot ebi e b hem záru ní doby má Poissonovo rozd lení s parametrem λ = 0,2. Jaká je pravd podobnost, ºe po prodeji 75 spot
Bayesovské metody. Mnohorozměrná analýza dat
Mnohorozměrná analýza dat Podmíněná pravděpodobnost Definice: Uvažujme náhodné jevy A a B takové, že P(B) > 0. Podmíněnou pravěpodobností jevu A za podmínky, že nastal jev B, nazýváme podíl P(A B) P(A
Semestrální práce z p edm tu URM (zadání), 2014/2015:
Semestrální práce z p edm tu URM (zadání), 2014/2015: 1. Vyzna te na globusu cestu z jihu Grónska na jih Afriky, viz Obrázek 1. V po áte ní a cílové destinaci bude zapíchnutý ²pendlík sm ující do st edu
1 Spojitý model. 1.1 Princip stochastického modelu
Spojitý model Veli iny v dopravním systému jsou náhodné posloupnosti indexované diskrétním asem t. V kaºdém asovém okamºiku to jsou náhodné veli iny, po zm ení dostaneme realizace náhodné veli iny. Tyto
Pravděpodobnost, náhoda, kostky
Pravděpodobnost, náhoda, kostky Radek Pelánek IV122, jaro 2015 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností krátké
Dnešní program odvozování v Bayesovských sítích exaktní metody (enumerace, eliminace proměnných) aproximační metody y( (vzorkovací techniky)
Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Bayesovská síť zachycuje závislosti mezi náhodnými proměnnými Pro zopakování orientovaný acyklický graf
RNÉ MATERIÁLY. PSYCHODIAGNOSTIKA - VYHODNOCENÍ z 15.07.2013, 11:45 hodin
Strana 1 z 15 RNÉ MATERIÁLY PSYCHODIAGNOSTIKA - VYHODNOCENÍ z 15.07.2013, 11:45 hodin Kód probanda íjmení Jméno k Objednavatel el testování D910001041 Pokus Pokus 30;3 let Sériové íslo: Verze íslo: Vyhodnoceno:
Testy pro více veli in
Kapitola 8 Testy pro více veli in 8.1 Testy parametr s více výb ry s p edpokladem normality dat 8.1.1 Testy s dv ma výb ry. P edpoklady: Pro spojité rozd lení normalita nebo velký výb r. Pro diskrétní
TROJFÁZOVÝ OBVOD SE SPOT EBI EM ZAPOJENÝM DO HV ZDY A DO TROJÚHELNÍKU
TROJFÁZOVÝ OBVOD E POT EBI EM ZAPOJENÝM DO HV ZDY A DO TROJÚHELNÍKU Návod do m ení Ing. Vít zslav týskala, Ing. Václav Kolá Únor 2000 poslední úprava leden 2014 1 M ení v trojázových obvodech Cíl m ení:
Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A
Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A st eda 19. listopadu 2015, 11:2013:20 ➊ (3 body) Pro diferenciální operátor ˆL je mnoºina W q denována p edpisem W q = { y(x) Dom( ˆL) : ˆL(y(x))
Rovnice a nerovnice. Posloupnosti.
.. Veronika Sobotíková katedra matematiky, FEL ƒvut v Praze, http://math.feld.cvut.cz/ 30. srpna 2018.. 1/75 (v reálném oboru) Rovnicí resp. nerovnicí v reálném oboru rozumíme zápis L(x) P(x), kde zna
brmiversity: Um lá inteligence a teoretická informatika
brmiversity: Um lá inteligence a teoretická informatika P edná²ka. 13 Petr Baudi² pasky@ucw.cz brmlab 2011 Outline 1 Um lá inteligence a adaptivní agenti 2 Sloºitost 3 Datové struktury Reprezentace znalostí
Matematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 4. října 2018 Podmíněná pravděpodobnost Při počítání pravděpodobnosti můžeme k náhodnému pokusu přidat i nějakou dodatečnou podmínku. Podmíněná pravděpodobnost
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
m = V = Sv t P i tomto pohybu rozpohybuje i tekutinu, kterou má v cest. Hmotnost této tekutiny je nepochybn
Odpor vzduchu JAKUB BENDA, MILAN ROJKO Gymnázium Jana Nerudy, Praha V kroužku experimentální fyziky jsme ov ovali vztah: F = ½ SC v (1) V tomto vztahu je F odporová aerodynamická síla p sobící na t leso
ZATÍŽENÍ SNĚHEM A VĚTREM
II. ročník celostátní konference SPOLEHLIVOST KONSTRUKCÍ Téma: Cesta k pravděpodobnostnímu posudku bezpečnosti, provozuschopnosti a trvanlivosti konstrukcí 21.3.2001 Dům techniky Ostrava ISBN 80-02-01410-3
Motivace. Náhodný pokus, náhodný n jev. Pravděpodobnostn. podobnostní charakteristiky diagnostických testů, Bayesův vzorec
Pravděpodobnostn podobnostní charakteristiky diagnostických testů, Bayesův vzorec Prof.RND.Jana Zvárov rová,, DrSc. Motivace V medicíně má mnoho problémů pravěpodobnostní charakter prognóza diagnoza účinnost
1. Přednáška. Ing. Miroslav Šulai, MBA
N_OFI_2 1. Přednáška Počet pravděpodobnosti Statistický aparát používaný ve financích Ing. Miroslav Šulai, MBA 1 Počet pravděpodobnosti -náhodné veličiny 2 Počet pravděpodobnosti -náhodné veličiny 3 Jevy
Skupina Testování obsahuje následující moduly: Síla a rozsah výběru, Testy a Kontingenční tabulka.
Testování Menu: QCExpert Testování Skupina Testování obsahuje následující moduly: Síla a rozsah výběru, Testy a Kontingenční tabulka. Síla a rozsah výběru Menu: QCExpert Testování Síla a rozsah výběru
p írodní zdroje energie a surovin odpady globální problémy ochrana p írody a krajiny nástroje spole nosti na ochranu životního
charakterizuje p sobení životního prost edí na lov ka a jeho zdraví; charakterizuje p írodní zdroje surovin a energie z hlediska jejich obnovitelnosti, posoudí vliv jejich využívání na prost edí; popíše
Pravděpodobnost, náhoda, kostky
Pravděpodobnost, náhoda, kostky Radek Pelánek IV122 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností připomenutí, souvislosti
P ÍPRAVY NA HODINU MATEMATIKA
Modernizace výuky v rámci odborných a všeobecných p edm t st ední školy. íslo projektu: CZ.1.07/1.1.10/01.0021 P ÍPRAVY NA HODINU MATEMATIKA Tyto p ípravy na hodinu jsou spolufinancovány Evropským sociálním
1)! 12 a) 14 a) K = { 1 }; b) K = { 6 }; c) K ={ 2 }; d) K ={ 3 }; e) K ={ 4 }; f) K = 0 ! ; N; 17 a) K =N; b) K ={ 2; 3;
Kombinatorika Peníze, nebo život? Kombinatorická pravidla) 7 a) NE b) ANO c) ANO d) NE e) ANO f) ANO [vínová zlatý potisk] [vínová stříbrný potisk] [vínová bílý potisk] [fialová zlatý potisk] [fialová
GEODÉZIE ENGINEERING s.r.o. Mezinár.výzkumné laserové centrum ELI Hrdlo ezská 21/31, 19000 Praha 9, tel: +420 284 810 346
GEODÉZIE ENGINEERING s.r.o. Mezinár.výzkumné laserové centrum ELI Hrdlo ezská 21/31, 19000 Praha 9, tel: +420 284 810 346 Dolní B ežany email: geopraha@geopraha.cz, web: www.geopraha.cz Projekt m ení posun
269/2015 Sb. VYHLÁŠKA
269/2015 Sb. - rozúčtování nákladů na vytápění a příprava teplé vody pro dům - poslední stav textu 269/2015 Sb. VYHLÁŠKA ze dne 30. září 2015 o rozúčtování nákladů na vytápění a společnou přípravu teplé
1 Úvod. 2 Pom cky. 3 Postup a výsledky. 3.1 Ov ení vlastností fotoodporu
Název a íslo úlohy #9 - Detekce optického zá ení Datum m ení 25. 2. 2015 M ení provedli Tereza Schönfeldová, David Roesel Vypracoval David Roesel Datum 27. 2. 1015 Hodnocení 1 Úvod Fotodetektory jsou p
Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)
Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik
TESTOVÁNÍ SOFTWARU PAM STAMP MODELOVÝMI ZKOUŠKAMI
TESTOVÁNÍ SOFTWARU PAM STAMP MODELOVÝMI ZKOUŠKAMI Petr Kábrt Jan Šanovec ČVUT FS Praha, Ústav strojírenské technologie Abstrakt Numerická simulace procesu lisování nachází stále větší uplatnění jako činný
1 Spo jité náhodné veli iny
Spo jité náhodné veli in. Základní pojm a e²ené p íklad Hustota pravd podobnosti U spojité náhodné veli in se pravd podobnost, ºe náhodná veli ina X padne do ur itého intervalu (a, b), po ítá jako P (X
brmiversity: Um lá inteligence a teoretická informatika
brmiversity: Um lá inteligence a teoretická informatika P edná²ka. 10 Petr Baudi² pasky@ucw.cz brmlab 2011 Outline 1 Um lá inteligence a adaptivní agenti 2 Strojové u ení U ící se agent: Datový vstup a
Skalární sou in. Úvod. Denice skalárního sou inu
Skalární sou in Jedním ze zp sob, jak m ºeme dva vektory kombinovat, je skalární sou in. Výsledkem skalárního sou inu dvou vektor, jak jiº název napovídá, je skalár. V tomto letáku se nau íte, jak vypo
21. Číslicový měřicí systém se sběrnicí IEEE 488 (základní seznámení)
21. Číslicový měřicí systém se sběrnicí IEEE 488 1/5 21. Číslicový měřicí systém se sběrnicí IEEE 488 (základní seznámení) Úkol měření : 1. Seznamte se s propojením přístrojů při měření předloženého převodníku
VYBRANÉ APLIKACE RIEMANNOVA INTEGRÁLU I. OBSAH A DÉLKA. (f(x) g(x)) dx.
VYBRANÉ APLIKACE RIEMANNOVA INTEGRÁLU I. OBSAH A DÉLKA. Výpo et obsahu rovinných ploch a) Plocha ohrani ená k ivkami zadanými v kartézských sou adnicích. Obsah S rovinné plochy ohrani ené dv ma spojitými
5. Odhady parametrů. KGG/STG Zimní semestr
Základní soubor Výběr, výběrový (statistický) soubor Náhodný výběr Princip Odhad neznámých parametrů základního souboru na základz kladě charakteristik výběru. Přecházíme z části na celek, zevšeobec eobecňujeme
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Argumentace a ověřování Gradovaný řetězec úloh Autor: Stanislav Trávníček Úloha 1 (úroveň 1
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Základní pojmy diagnostiky a statistických metod vyhodnocení Učební text Ivan Jaksch Liberec 2012 Materiál vznikl
Státnice - Rekurzivní a rekurzivn spo etné mnoºiny
Kapitola 1 Státnice - Rekurzivní a rekurzivn spo etné mnoºiny 1.1 Rekurzivn spo etné mnoºiny Denice (Rekurzivní a rekurzivn spo etná mnoºina) Charakteristická funkce mnoºiny M ozna uje charakteristickou
B. (Obrázek není v elektronické podobµe k dispozici.)
Písemka..7 Cviµcení.. K úspµešnému absolvování zkoušky je potµreba nadpoloviµcní poµcet bod u z písemky. Kaµzdý pµríklad je hodnocen ;, nebo body a student odhadl, µze všechna bodová hodnocení jsou stejnµe
Socio-ekonomické systémy
Socio-ekonomické systémy Hynek Lavi ka 1 1 Katedra fyziky Fakulta jaderná a fyzikáln inºenýrská ƒeské vysoké u ení technicé v Praze January 24, 2008 Hynek Lavi ka () Socio-ekonomické systémy January 24,
Metodika k hodnocení biologické účinnosti insekticidních přípravků mořidel proti křísku polnímu v obilninách
Metodika k hodnocení biologické účinnosti insekticidních přípravků mořidel proti křísku polnímu v obilninách Poznámka: Tato metodika je doplněním metodiky EPPO 1/70 (3) Aphid vectors of BYDV. Je zaměřena
PARLAMENT ČESKÉ REPUBLIKY Poslanecká sněmovna 2005 IV. volební období
PARLAMENT ČESKÉ REPUBLIKY Poslanecká sněmovna 2005 IV. volební období 1207 Návrh poslanců Waltera Bartoše, Vlastimila Tlustého, Petra Nečase a dalších na vydání zákona, kterým se mění zákon č. 561/2004
Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A
Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A úterý 28. listopadu 2017, 9:2011:20 ➊ (8 bod ) Lze nebo nelze k rozhodnutí o stejnom rné konvergence ady ( 1) n+1 x ln(n) n 6 + n 2 x 4 na intervalu
Vektory. Vektorové veli iny
Vektor je veli ina, která má jak velikost tak i sm r. Ob tyto vlastnosti musí být uvedeny, aby byl vektor stanoven úpln. V této ásti je návod, jak vektory zapsat, jak je s ítat a od ítat a jak je pouºívat
Preference v u ívání prost edk elektronické komunikace áky a studenty
Preference v u ívání prost edk elektronické komunikace áky a studenty (dotazníkový pr zkum) Zuzana Pustinová Dne ní doba nabízí mnohé mo nosti, jak komunikovat, ani by se ú astníci hovoru nacházeli na
ARCHIMEDES. Dopravní pr zkum na k ižovatce Masarykova x Pa ížská x Brn nská
Dopravní pr zkum na k ižovatce x x 1 Úvod Znovuotev ením zrekonstruované komunikace Malá Hradební a U Nádraží se o ekává velký vliv na sm rování a chování dopravních proud. Aby bylo možné zhodnotit vliv
Derivování sloºené funkce
Derivování sloºené funkce V tomto letáku si p edstavíme speciální pravidlo pro derivování sloºené funkce (te funkci obsahující dal²í funkci). Po p e tení tohoto tetu byste m li být schopni: vysv tlit pojem
4.5.1 Magnety, magnetické pole
4.5.1 Magnety, magnetické pole Předpoklady: 4101 Pomůcky: magnety, kancelářské sponky, papír, dřevěná dýha, hliníková kulička, měděná kulička (drát), železné piliny, papír, jehla (špendlík), korek (kus
Po etní geometrie. Výpo et délky p epony: c 2 = a 2 + b 2 Výpo et délky odv sny: a 2 = c 2 b 2, b 2 = c 2 a 2
Po etní geometrie Pythagorova v ta Obsah tverce nad p eponou je roven sou tu obsah tverc nad ob ma odv snami. Výpo et délky p epony: c = a + b Výpo et délky odv sny: a = c b, b = c a P íklad 1: Vypo t
Agent pracující v částečně pozorovatelném prostředí udržuje na základě senzorického modelu odhaduje, jak se svět může vyvíjet.
Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Dnešní program Agent pracující v částečně pozorovatelném prostředí udržuje na základě senzorického modelu
Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 16. ZÁKLADY LOGICKÉHO ŘÍZENÍ
Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 16. ZÁKLADY LOGICKÉHO ŘÍZENÍ Obsah 1. Úvod 2. Kontaktní logické řízení 3. Logické řízení bezkontaktní Leden 2006 Ing.