brmiversity: Um lá inteligence a teoretická informatika
|
|
- Daniel Bláha
- před 8 lety
- Počet zobrazení:
Transkript
1 brmiversity: Um lá inteligence a teoretická informatika P edná²ka. 4 Petr Baudi² pasky@ucw.cz brmlab 2011
2 Outline 1 Neuronové sít 2 Um lá inteligence 3 Základní algoritmy 4 Sloºitost 5 Vy íslitelnost
3 Um lá neuronová sí Um lé neurony (výpo etní krabi ky) dostávají vstupy ( ísla) a na jejich základ generují výstup ( íslo) Obvykle: Vrstvy striktn odd lené, vstupní vrstva se vstupy zvn j²ku, výstupní vrstva s výstupem pro uºivatele, skryté vrstvy vyhodnocují r zné charakteristiky vstup Dnes: Jediný um lý neuron Input Hidden Output
4 Perceptron n vstup a práh výstup X1 X2 X3 X4 X5 X6 X7 W1 W2 W3 W4 W5 W6 W7 f y Lineární kombinace vstupy mají r zné váhy, vynásobíme, se teme a otestujeme Výstup je 1/0 nebo n co sloºit j²ího
5 Perceptron n vstup a práh výstup X1 X2 X3 X4 X5 X6 X7 W1 W2 W3 W4 W5 W6 W7 f y Lineární kombinace vstupy mají r zné váhy, vynásobíme, se teme a otestujeme Výstup je 1/0 nebo n co sloºit j²ího Vstup x, váhový vektor w, práh b n i=0 w i x i > b Zjednodu²ení virtuální vstup pro práh
6 Geometrická interpretace Non-free artwork. See /10/31/kernel-perceptron-in-python/
7 Co dokáºe perceptron? Lze vzorky ist rozd lit podrovinou? Lineární separabilita mnoºin Omezení nap. XOR pot ebuje dv áry Non-free artwork omitted. See massey.ac.nz/notes/ 59318/l7.html
8 U ení perceptronu Rota ní algoritmus Náhodná inicializace p ímky Iterujeme u ení podle vstupních mnoºin: Postupn iterujeme body a klasikujeme Správná klasikace ned láme nic patná klasikace pooto íme vektor, aby pojmul i nový bod Non-free artwork omitted. See ~gorr/classes/cs449/classification/perceptron.html
9 U ení perceptronu Geometrické pozorování: w x > 0, pak úhel mezi nimi je men²í neº 90 deg Geometrické pozorování: Se teme-li dva vektory, vyjde nám vektor mezi Výstup je 0 a m l být 1: w i = w i + x i (t) Výstup je 1 a m l být 0: w i = w i x i (t) Non-free artwork omitted. See ~gorr/classes/cs449/classification/perceptron.html
10 Otázky? P í²t : Vícevrstvé neuronové sít a jejich u ení (backpropagation).
11 Outline 1 Neuronové sít 2 Um lá inteligence 3 Základní algoritmy 4 Sloºitost 5 Vy íslitelnost
12 Filosoe Silná vs. slabá AI AI-complete úlohy Bude víc Dnes jeden p íklad slabé AI (je AI-complete?)
13 Matematické hry Teorie her hrá i se st ídají v akcích, kaºdý dostane n jakou výplatu po dokon ení sekvence akcí Hry dvou hrá s úplnou informací a nulovým sou tem
14 Minimaxový strom Adversarial planning Tah je tak dobrý jako nejnep íjemn j²í tah protihrá e Omezení na hloubku stromu vyhodnocovací funkce
15 α, β pro ezávání Základní urychlovací heuristika Pamatujeme si nejhor²í a nejlep²í hodnoty z minimaxových soused, za ízneme prohledávání uzlu, je-li jasné, ºe bude hor²í (max, α) nebo lep²í (min, β) Pro efektivitu je d leºité po adí vyhodnocování tah 6 MAX MIN MAX MIN MAX
16 Dal²í vylep²ení Transpozi ní tabulky Pro ezávání, singular extensions, atd. Problémy dobrá funkce, v tvící faktor, efekt horizontu
17 Monte Carlo Tree Search Technika Monte Carlo Minimaxový strom s o ekáváními Multi-armed bandit Non-free artwork.
18 Otázky? P í²t : Prohledávání v grafech.
19 Outline 1 Neuronové sít 2 Um lá inteligence 3 Základní algoritmy 4 Sloºitost 5 Vy íslitelnost
20 Leven²teinova edita ní vzdálenost Dva stringy; editace jsou p idání, zm na, odebrání Dynamický algoritmus:
21 Dal²í zp soby porovnávání Myers v algoritmus (nejdel²í spole ná podposloupnost neboli edita ní skript; jen + a ) bdi (nejdel²í spole ný pod et zec rekurzivn ) xdelta (rsync; Rabinovo hashování)
22 Outline 1 Neuronové sít 2 Um lá inteligence 3 Základní algoritmy 4 Sloºitost 5 Vy íslitelnost
23 Metody tvorby algoritm Kucha ka pro efektivní algoritmy na obecné t ídy problém Rozd l a panuj problém rozd líme na podproblémy a ty po ítáme rekurzivn Hladový algoritmus problém budujeme inkrementáln, v kaºdé chvíli víme, kudy dál Dynamický algoritmus problém budujeme inkrementáln, sdílíme výsledky jednodu²²ích podproblém
24 Rozd l a panuj p íklad Binární vyhledávání: Quicksort Asymptotická sloºitost Master Theorem (matematika viz Wikipedie)
25 Rozd l a panuj p íklad Binární vyhledávání: Quicksort Asymptotická sloºitost Master Theorem (matematika viz Wikipedie)
26 Rozd l a panuj p íklad Binární vyhledávání: Quicksort Asymptotická sloºitost Master Theorem (matematika viz Wikipedie)
27 Rozd l a panuj p íklad Binární vyhledávání: Quicksort Asymptotická sloºitost Master Theorem (matematika viz Wikipedie)
28 Rozd l a panuj p íklad Binární vyhledávání: Quicksort Asymptotická sloºitost Master Theorem (matematika viz Wikipedie)
29 Rozd l a panuj p íklad Binární vyhledávání: Quicksort Asymptotická sloºitost Master Theorem (matematika viz Wikipedie)
30 Rozd l a panuj p íklad Binární vyhledávání: Quicksort Asymptotická sloºitost Master Theorem (matematika viz Wikipedie)
31 Hladový algoritmus p íklad Minimální kostra (p ipomenutí) Rozvrhovací problém Dijkstra
32 Hladový algoritmus p íklad Minimální kostra (p ipomenutí) Rozvrhovací problém Dijkstra Hladový algoritmus lze pouºít, pokud problém vykazuje optimální podstrukturu Matematická abstrakce matroid M = (E, I ), E je základní mnoºina, I je systém nezávislých podmnoºin: I (prázdná mnoºina je nezávislá) A I, A A A I A, A (d di nost) A I B I A > B x A, B x I
33 Dynamický algoritmus Edita ní vzdálenost Fibonacciho posloupnost Dijkstra Optimální podstruktura a p ekrývající se podproblémy
34 T íd ní Jak dlouho trvá t íd ní? Spodní odhad je O(n log n) Vyhledávací strom modeluje rozhodovací strom algoritmu Nebo ano? Radix sort, ale je to podvod!
35 Otázky? P í²t : Pravd podobnostní algoritmy.
36 Outline 1 Neuronové sít 2 Um lá inteligence 3 Základní algoritmy 4 Sloºitost 5 Vy íslitelnost
37 Rekapitulace Rekapitulace: Nezajímá nás, jak rychle to pob ºí, ale jestli to n kdy dob hne. Zkoumáme výpo etní moºnosti algoritm. Minule jsme p emý²leli, ím v²ím lze algoritmy vykonávat (a ºe je to ekvivalentní). Zapomn li jsme (mj.) na celulární automaty!
38 Halting Problem Máme program z = x(y); x, y, z jsou ísla (kód, parametr / vstup, návratová hodnota / výstup) Program dob hne (v kone ném ase) a vrátí hodnotu ( e²í problém), nebo se zacyklí
39 Halting Problem Máme program z = x(y); x, y, z jsou ísla (kód, parametr / vstup, návratová hodnota / výstup) Program dob hne (v kone ném ase) a vrátí hodnotu ( e²í problém), nebo se zacyklí Nekone ná smy ka v závislosti na datech, schovaná uprost ed sloºitého kódu Halting Problem: Zacyklí se program x na vstupu y? Dokáºeme napsat program, který e²í halting problem?
40 Halting Problem: D kaz D kaz sporem dejme tomu, ºe máme funkci HALT (x, y), x je kód programu (c(funkce)) a y je vstup Ukáºeme, ºe existence takové funkce zp sobuje logické trhliny v asoprostoru
41 Halting Problem: D kaz D kaz sporem dejme tomu, ºe máme funkci HALT (x, y), x je kód programu (c(funkce)) a y je vstup Ukáºeme, ºe existence takové funkce zp sobuje logické trhliny v asoprostoru Trik: Nadenujme si funkci PODRAZ(x) HALT (x, x) = NE Tedy PODRAZ (x) zavolá funkci HALT (x, x) Pokud by se program x na vstupu x (kód sama sebe) zastavil, PODRAZ (x) se zacyklí Pokud by se program x na vstupu x (kód sama sebe) zacyklil, PODRAZ (x) dob hne
42 Halting Problem: D kaz D kaz sporem dejme tomu, ºe máme funkci HALT (x, y), x je kód programu (c(funkce)) a y je vstup Ukáºeme, ºe existence takové funkce zp sobuje logické trhliny v asoprostoru Trik: Nadenujme si funkci PODRAZ(x) HALT (x, x) = NE Tedy PODRAZ (x) zavolá funkci HALT (x, x) Pokud by se program x na vstupu x (kód sama sebe) zastavil, PODRAZ (x) se zacyklí Pokud by se program x na vstupu x (kód sama sebe) zacyklil, PODRAZ (x) dob hne Zavolejme PODRAZ(c(PODRAZ))! HALT (c(podraz), c(podraz)) = ANO PODRAZ(c(PODRAZ)) HALT (c(podraz), c(podraz)) = NE To je spor, ANO NE.
43 Otázky? P í²t : Rekurzivní a rekurzivn spo etné mnoºiny.
44 D kuji vám P í²t : Nebude. Pop í²t : Prohledávání graf a hledání cesty (základní algoritmy, um lá inteligence, adaptivní agenti), neuronové sít, vy íslitelnost.
brmiversity: Um lá inteligence a teoretická informatika
brmiversity: Um lá inteligence a teoretická informatika P edná²ka. 6 Petr Baudi² pasky@ucw.cz brmlab 2011 Outline 1 Pravd podobnost 2 Um lá inteligence 3 Sloºitost 4 Datové struktury Pravd podobnost Pravd
Vektor náhodných veli in - práce s více prom nnými
Vektor náhodných veli in - práce s více prom nnými 12. kv tna 2015 N kdy k popisu n jaké situace pot ebujeme více neº jednu náhodnou veli inu. Nap. v k, hmotnost, vý²ku. Mezi t mito veli inami mohou být
Pravd podobnost a statistika - cvi ení. Simona Domesová místnost: RA310 (budova CPIT) web:
Pravd podobnost a statistika - cvi ení Simona Domesová simona.domesova@vsb.cz místnost: RA310 (budova CPIT) web: http://homel.vsb.cz/~dom0015 Cíle p edm tu vyhodnocování dat pomocí statistických metod
P íklad 1 (Náhodná veli ina)
P íklad 1 (Náhodná veli ina) Uvaºujeme experiment: házení mincí. Výsledkem pokusu je rub nebo líc, ºe padne hrana neuvaºujeme. Pokud hovo íme o náhodné veli in, musíme p epsat výsledky pokusu do mnoºiny
brmiversity: Um lá inteligence a teoretická informatika
brmiversity: Um lá inteligence a teoretická informatika P edná²ka. 3 brmlab 2011 Outline 1 Adaptivní agenti 2 Evolu ní algoritmy 3 Základní algoritmy 4 Datové struktury 5 Sloºitost Autonomní adaptivní
Skalární sou in. Úvod. Denice skalárního sou inu
Skalární sou in Jedním ze zp sob, jak m ºeme dva vektory kombinovat, je skalární sou in. Výsledkem skalárního sou inu dvou vektor, jak jiº název napovídá, je skalár. V tomto letáku se nau íte, jak vypo
brmiversity: Um lá inteligence a teoretická informatika
brmiversity: Um lá inteligence a teoretická informatika P edná²ka. 7 Petr Baudi² pasky@ucw.cz brmlab 2011 Outline 1 Um lá inteligence 2 Neuronové sít 3 Adaptivní agenti 4 Datové struktury Zpracování neur
brmiversity: Um lá inteligence a teoretická informatika
brmiversity: Um lá inteligence a teoretická informatika Úvodní p edná²ka brmlab 2011 Outline 1 Slovo úvodem 2 Um lá inteligence 3 Neuronové sít 4 Adaptivní agenti 5 Evolu ní algoritmy 6 Sloºitost 7 Datové
brmiversity: Um lá inteligence a teoretická informatika
brmiversity: Um lá inteligence a teoretická informatika P edná²ka. 8 brmlab 2011 Outline 1 Adaptivní agenti 2 Neuronové sít 3 Vy íslitelnost Metody pro ízení agent Animat: Sensory um lá mysl efektory Action
Text m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková
Tento text není samostatným studijním materiálem. Jde jen o prezentaci promítanou na p edná²kách, kde k ní p idávám slovní komentá. N které d leºité ásti látky pí²u pouze na tabuli a nejsou zde obsaºeny.
P íklady k prvnímu testu - Pravd podobnost
P íklady k prvnímu testu - Pravd podobnost 28. února 204 Instrukce: Projd te si v²echny p íklady. Kaºdý p íklad se snaºte pochopit. Pak vymyslete a vy- e²te p íklad podobný. Tím se ujistíte, ºe p íkladu
1. (18 bod ) Náhodná veli ina X je po et rub p i 400 nezávislých hodech mincí. a) Pomocí ƒeby²evovy nerovnosti odhadn te pravd podobnost
(8 bod ) Náhodná veli ina X je po et rub p i nezávislých hodech mincí a) Pomocí ƒeby²evovy nerovnosti odhadn te pravd podobnost P ( X EX < ) (9 bod ) b) Formulujte centrální limitní v tu a pomocí ní vypo
brmiversity: Um lá inteligence a teoretická informatika
brmiversity: Um lá inteligence a teoretická informatika P edná²ka. 14 Petr Baudi² pasky@ucw.cz brmlab 2011 Outline 1 Um lá inteligence 2 Datové struktury 3 Vy íslitelnost Automatické plánování Projek ní
Statistika pro geografy. Rozd lení etností DEPARTMENT OF GEOGRAPHY
Statistika pro geografy Rozd lení etností DEPARTMENT OF GEOGRAPHY Faculty of Science Palacký University Olomouc t. 17. listopadu 1192/12, 771 46 Olomouc Pojmy etnost = po et prvk se stejnou hodnotou statistického
brmiversity: Um lá inteligence a teoretická informatika
brmiversity: Um lá inteligence a teoretická informatika P edná²ka. 13 Petr Baudi² pasky@ucw.cz brmlab 2011 Outline 1 Um lá inteligence a adaptivní agenti 2 Sloºitost 3 Datové struktury Reprezentace znalostí
Aplikace pravd podobnostních model v kurzovém sázení
Aplikace pravd podobnostních model v kurzovém sázení 28.4.2016 Obsah 1 Kurzové sázení Tenis Kurz jako odhad pravd podobnosti Hodnocení kvality odhadu pravd podobnosti 2 Predikce pr b hu utkání Základní
Obsah. KAPITOLA 1 Dříve než začneme 19 Kdysi dávno aneb střípky z historie algoritmických strojů 20 1801 21 1833 21 1890 22 třicátá léta 22
Předmluva 11 Čím se tato kniha liší od jiných příruček? 11 Proč C++? 12 Jak číst tuto knihu? 12 Čím se budeme zabývat? 13 Kapitola 1: Dříve než začneme 13 Kapitola 2: Rekurze 13 Kapitola 3: Analýza složitosti
Integrování jako opak derivování
Integrování jako opak derivování V tomto dokumentu budete seznámeni s derivováním b ºných funkcí a budete mít moºnost vyzkou²et mnoho zp sob derivace. Jedním z nich je proces derivování v opa ném po adí.
Teorie her. Klasikace. Pomocný text
Pomocný text Teorie her Milí e²itelé, první ty i úlohy kaºdé série spojuje jisté téma a vám bude poskytnut text, který vás tímto tématem mírn provede a pom ºe vám p i e²ení t chto úloh. Teorie her, jiº
Domácí úkol 2. Obecné pokyny. Dbejte na formáln správný zápis výpo tu! Pro vy íslení výsledku pro binomické rozd lení pouºijte nap. Maple nebo Matlab.
Domácí úkol 2 Obecné pokyny Dbejte na formáln správný zápis výpo tu! Pro vy íslení výsledku pro binomické rozd lení pouºijte nap. Maple nebo Matlab. Návod pro výpo et v Matlabu Jestliºe X Bi(n, p), pak
e²ení systém lineárních rovnic pomocí s ítací, dosazovací a srovnávací metody
e²ení systém lineárních rovnic pomocí s ítací, dosazovací a srovnávací metody V praxi se asto setkávame s p ípady, kdy je pot eba e²it více rovnic, takzvaný systém rovnic, obvykle s více jak jednou neznámou.
Soft Computing (SFC) 2014/2015 Demonstrace u ení sít RCE, Java aplikace
Soft Computing (SFC) 2014/2015 Demonstrace u ení sít RCE, Java aplikace Franti²ek N mec (xnemec61) xnemec61@stud.t.vutbr.cz 1 Úvod Úkolem tohoto projektu bylo vytvo it aplikaci, která bude demonstrovat
Derivování sloºené funkce
Derivování sloºené funkce V tomto letáku si p edstavíme speciální pravidlo pro derivování sloºené funkce (te funkci obsahující dal²í funkci). Po p e tení tohoto tetu byste m li být schopni: vysv tlit pojem
Limity funkcí v nevlastních bodech. Obsah
Limity funkcí v nevlastních bodech V tomto letáku si vysv tlíme, co znamená, kdyº funkce mí í do nekone na, mínus nekone na nebo se blíºí ke konkrétnímu reálnému íslu, zatímco x jde do nekone na nebo mínus
Úvod do kombinatorické teorie her
Úvod do kombinatorické teorie her Lucie Mohelníková Lucka.Mohelnikova@gmail.com Lucie Mohelníková Úvod do kombinatorické teorie her 1 / 21 P ehled 1 Úvod 2 Základní typy her 3 Teorie okolo pi²kvorek 4
brmiversity: Um lá inteligence a teoretická informatika
brmiversity: Um lá inteligence a teoretická informatika P edná²ka. 10 Petr Baudi² pasky@ucw.cz brmlab 2011 Outline 1 Um lá inteligence a adaptivní agenti 2 Strojové u ení U ící se agent: Datový vstup a
Ergodické Markovské et zce
1. b ezen 2013 Denice 1.1 Markovský et zec nazveme ergodickým, jestliºe z libovolného stavu m ºeme p ejít do jakéhokoliv libovolného stavu (ne nutn v jednom kroku). Denice 1.2 Markovský et zec nazveme
brmiversity: Um lá inteligence a teoretická informatika
brmiversity: Um lá inteligence a teoretická informatika P edná²ka. 9 Petr Baudi² pasky@ucw.cz brmlab 2011 Outline 1 Um lá inteligence 2 Neuronové sít 3 Evolu ní algoritmy 4 Datové struktury Strojové u
na za átku se denuje náhodná veli ina
P íklad 1 Generujeme data z náhodné veli iny s normálním rozd lením se st ední hodnotou µ = 1 a rozptylem =. Rozptyl povaºujeme za známý, ale z dat chceme odhadnout st ední hodnotu. P íklad se e²í v následujícím
Umělá inteligence I. Roman Barták, KTIML. roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak
Umělá inteligence I Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Dnes Dosud popisované algoritmy nepředpokládaly přítomnost dalších agentů v prostředí, zvlášť ne agentů,
Binární operace. Úvod. Pomocný text
Pomocný text Binární operace Úvod Milí e²itelé, binární operace je pom rn abstraktní téma, a tak bude ob as pot eba odprostit se od konkrétních p íklad a podívat se na v c s ur itým nadhledem. Nicmén e²ení
Po etní geometrie. Výpo et délky p epony: c 2 = a 2 + b 2 Výpo et délky odv sny: a 2 = c 2 b 2, b 2 = c 2 a 2
Po etní geometrie Pythagorova v ta Obsah tverce nad p eponou je roven sou tu obsah tverc nad ob ma odv snami. Výpo et délky p epony: c = a + b Výpo et délky odv sny: a = c b, b = c a P íklad 1: Vypo t
Cvi ení 2. Cvi ení 2. Modelování systém a proces. Mgr. Lucie Kárná, PhD. March 5, 2018
Modelování systém a proces Mgr. Lucie Kárná, PhD karna@fd.cvut.cz March 5, 2018 1 Gracké moºnosti Matlabu 2 Zobrazení signálu 3 4 Analýza signálu Gracké moºnosti Matlabu Základní gracké p íkazy I Graf
Reálná ísla a posloupnosti Jan Malý
Reálná ísla a posloupnosti Jan Malý Obsah 1. Reálná ísla 1 2. Posloupnosti 2 3. Hlub²í v ty o itách 4 1. Reálná ísla 1.1. Úmluva (T leso). Pod pojmem t leso budeme v tomto textu rozum t pouze komutativní
GENERAL GAME PLAYING Marika Ivanová Seminář Herní Algoritmy, 12. 12. 2012
GENERAL GAME PLAYING Marika Ivanová Seminář Herní Algoritmy, 12. 12. 2012 Obsah Koncept GGP Herní model Reprezentace znalostí Hráči (General Game Players) Řídící systém Závěr Koncept GGP Snaha o vytvoření
Matematická logika cvi ení 47
Matematická logika cvi ení 47 Libor B hounek www.cs.cas.cz/behounek/teaching/malog12 LS 2012/13, P F OU, 4.25. 3. 2013 Cvi ení 1. Posu te následující výroky z hlediska adekvátnosti dvojhodnotové sémantiky
5. Dynamické programování
5. Dynamické programování BI-EP1 Efektivní programování 1 ZS 2011/2012 Ing. Martin Kačer, Ph.D. 2010-11 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické
Jevy, nezávislost, Bayesova v ta
Jevy, nezávislost, Bayesova v ta 17. b ezna 2015 Instrukce: Projd te si v²echny p íklady. Kaºdý p íklad se snaºte pochopit. Pak vymyslete a vy- e²te p íklad podobný. Tím se ujistíte, ºe p íkladu rozumíte.
ALGORITMY A DATOVÉ STRUKTURY
Název tématického celku: Cíl: ALGORITMY A DATOVÉ STRUKTURY Metodický list č. 1 Časová složitost algoritmů Základním cílem tohoto tematického celku je vysvětlení potřebných pojmů a definic nutných k popisu
Pr b h funkce I. Obsah. Maxima a minima funkce
Pr b h funkce I Maxima a minima funkce V této jednotce ukáºeme jak derivování m ºe být uºite né pro hledání minimálních a maximálních hodnot funkce. Po p e tení tohoto letáku nebo shlédnutí instruktáºního
Rovnice a nerovnice. Posloupnosti.
.. Veronika Sobotíková katedra matematiky, FEL ƒvut v Praze, http://math.feld.cvut.cz/ 30. srpna 2018.. 1/75 (v reálném oboru) Rovnicí resp. nerovnicí v reálném oboru rozumíme zápis L(x) P(x), kde zna
2. Ur íme sudost/lichost funkce a pr se íky s osami. 6. Na záv r na rtneme graf vy²et ované funkce. 8x. x 2 +4
Pr b h funkce V této jednotce si ukáºeme jak postupovat p i vy²et ování pr b hu funkce. P edpokládáme znalost po ítání derivací a limit, které jsou dob e popsány v p edchozích letácích tohoto bloku. P
1. Spo t te limity (m ºete pouºívat l'hospitalovo pravidlo) x cotg x 1. c) lim. g) lim e x 1. cos(x) =
I. L'HOSPITALOVO PRAVIDLO A TAYLOR V POLYNOM. Spo t te limity (m ºete pouºívat l'hospitalovo pravidlo) a) lim tg sin ( + ) / e e) lim a a i) lim a a, a > P ipome me si: 3 tg 4 2 tg b) lim 3 sin 4 2 sin
Konceptuální modelování
Konceptuální modelování Ing. Michal Valenta PhD. Katedra softwarového inºenýrství Fakulta informa ních technologií ƒeské vysoké u ení technické v Praze c Michal Valenta, 2010 Databázové systémy BI-DBS
Algoritmizace Dynamické programování. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010
Dynamické programování Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Rozděl a panuj (divide-and-conquer) Rozděl (Divide): Rozděl problém na několik podproblémů tak, aby tyto podproblémy odpovídaly původnímu
Cvi ení 7. Docházka a testík - 15 min. Distfun 10 min. Úloha 1
Cvi ení 7 Úkol: generování dat dle rozd lení, vykreslení rozd lení psti, odhad rozd lení dle dat, bodový odhad parametr, centrální limitní v ta, balí ek Distfun, normalizace Docházka a testík - 15 min.
Magnetohydrodynamický pohon
aneb pohon bez p evod Jakub Klemsa David Kle ka Jakub Kubi² Fyzikální seminá Fakulta jaderná a fyzikáln inºenýrská 25. listopadu 2010 Obsah 1 P í ina hnací síly Proud v elektrolytu P idruºené jevy 2 Závislost
T i hlavní v ty pravd podobnosti
T i hlavní v ty pravd podobnosti 15. kv tna 2015 První p íklad P edstavme si, ºe máme atomy typu A, které se samovolným radioaktivním rozpadem rozpadají na atomy typu B. Pr m rná doba rozpadu je 3 hodiny.
NPRG030 Programování I, 2018/19 1 / :03:07
NPRG030 Programování I, 2018/19 1 / 20 3. 12. 2018 09:03:07 Vnitřní třídění Zadání: Uspořádejte pole délky N podle hodnot prvků Měřítko efektivity: * počet porovnání * počet přesunů NPRG030 Programování
IB111 Úvod do programování skrze Python
Vyhledávání, řazení, složitost IB111 Úvod do programování skrze Python 2012 Otrávené studny 8 studen, jedna z nich je otrávená laboratorní rozbor dokáže rozpoznat přítomnost jedu ve vodě je drahý (je časově
Varianty Monte Carlo Tree Search
Varianty Monte Carlo Tree Search tomas.kuca@matfyz.cz Herní algoritmy MFF UK Praha 2011 Témata O čem bude přednáška? Monte Carlo Tree Search od her podobných Go (bez Go) k vzdálenějším rozdíly a rozšíření
Text m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková
Tento text není smosttným studijním mteriálem. Jde jen o prezentci promítnou n p edná²kách, kde k ní p idávám slovní komentá. N které d leºité ásti látky pí²u pouze n tbuli nejsou zde obsºeny. Text m ºe
2. SÉRIE: SOUSTAVY LINEÁRNÍCH ROVNIC, METODY E ENÍ. lineárních rovnic (prove te zkou²ku dosazením):
ZÁKLADY MATEMATIKY 2 2. SÉRIE: SOUSTAVY LINEÁRNÍCH ROVNIC, METODY E ENÍ P ípravní úlohy. V této sérii se p edpokládá, ºe uº umíte ur it v²echna e²ení jednoduchých soustav lineárních rovnic. Otestujte se
p (1) k 0 k 1 je pravd podobnost p echodu ze stavu k i v l ; 1 kroku do stavu k j
Markovovsk n hodn procesy U Markovovsk ho n hodn ho proces nez vis dal v voj na zp sobu, jak se proces dostal do sou asn ho stavu. Plat 8 t
Binární vyhledávací stromy pokročilé partie
Binární vyhledávací stromy pokročilé partie KMI/ALS lekce Jan Konečný 30.9.204 Literatura Cormen Thomas H., Introduction to Algorithms, 2nd edition MIT Press, 200. ISBN 0-262-5396-8 6, 3, A Knuth Donald
Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A
Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A st eda 19. listopadu 2015, 11:2013:20 ➊ (3 body) Pro diferenciální operátor ˆL je mnoºina W q denována p edpisem W q = { y(x) Dom( ˆL) : ˆL(y(x))
JEB007 Mikroekonomie I
JEB007 Mikroekonomie I Seminá 2 Petr Polák Institute of Economic Studies Faculty of Social Sciences Charles University 26. února 2014 Petr Polák (IES) JEB007 Mikroekonomie I 26. února 2014 1 / 12 Rekapitulace
Prioritní fronta, halda
Prioritní fronta, halda Priority queue, heap Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 2018 1 / 26 Prioritní fronta Halda Heap sort 2 / 26 Prioritní fronta (priority queue) Podporuje
Vytěžování znalostí z dat
Pavel Kordík, Josef Borkovec (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 8 1/26 Vytěžování znalostí z dat Pavel Kordík, Josef Borkovec Department of Computer Systems Faculty of Information
Záludnosti velkých dimenzí
Jan Vybíral KM/FJFI/ƒVUT 6. listopadu 2017 1/28 Warm-up Dva problémy na zah átí Geometrie R d Kolik bod je t eba rozmístit v jednotkové krychli [0, 1] d v dimenzi d, aby v kaºdém kvádru o objemu 1/10 leºel
Modelování v elektrotechnice
Katedra teoretické elektrotechniky Elektrotechnická fakulta ZÁPADOƒESKÁ UNIVERZITA V PLZNI Modelování v elektrotechnice Pánek David, K s Pavel, Korous Luká², Karban Pavel 28. listopadu 2012 Obsah 1 Úvod
Um lá inteligence II
Um lá inteligence II 13 http://ktiml.mff.cuni.cz/~bartak Roman Barták, KTIML roman.bartak@mff.cuni.cz Motivace! Uvažujme agenta, který se u í hrát šachy.! P i u ení s u itelem je pot eba pro každou pozici
Regrese a nelineární regrese
Kapitola 10 Regrese a nelineární regrese 10.1 Regrese V testech nezávislosti jsme zkoumali, zda dv veli iny x a y jsou nezávislé. Pokud nejsou nezávislé, m ºeme zkoumat, jaká závislost mezi nimi je. 10.1.1
Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A
Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A úterý 6. prosince 2016, 13:2015:20 ➊ (8 bod ) Vy²et ete stejnom rnou konvergenci ady na mnoºin R +. n=2 x n 1 1 4n 2 + x 2 ln 2 (n) ➋ (5 bod ) Detailn
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Grafové úlohy Daniela Szturcová Tento
Dolní odhad síly pro ztrátu stability obecného prutu
ƒeské vysoké u ení technické v Praze 9. února 216 Vedoucí seminární práce: doc. RNDr. Ivana Pultarová, Ph.D. prof. Ing. Milan Jirásek, DrSc. Osnova 1 2 Cíl práce Cíl práce Nalézt velikost síly, která zp
Vektory. Vektorové veli iny
Vektor je veli ina, která má jak velikost tak i sm r. Ob tyto vlastnosti musí být uvedeny, aby byl vektor stanoven úpln. V této ásti je návod, jak vektory zapsat, jak je s ítat a od ítat a jak je pouºívat
Plánování výroby elekt iny a ízení rizik na liberalizovaném trhu
Plánování výroby elekt iny a ízení rizik na liberalizovaném trhu 23. listopadu 2011 prezentace k lánku Power Generation Planning and Risk Managment in a Liberalised Market Thor Bjorkvoll, Stein-Erik Fleten,
VYUŽITÍ NEURONOVÝCH SÍTÍ PROSTŘEDÍ MATLAB K PREDIKCI HODNOT NÁKLADŮ PRO ELEKTRICKÉ OBLOUKOVÉ PECE
VYUŽITÍ NEURONOVÝCH SÍTÍ PROSTŘEDÍ MATLAB K PREDIKCI HODNOT NÁKLADŮ PRO ELEKTRICKÉ OBLOUKOVÉ PECE V. Hon VŠB TU Ostrava, FEI, K455, 17. Listopadu 15, Ostrava Poruba, 70833 Abstrakt Neuronová síť (dále
brmiversity: Um lá inteligence a teoretická informatika
brmiversity: Um lá inteligence a teoretická informatika P edná²ka. 2 brmlab 2011 Outline 1 Úvod do neurofyziologie 2 Základní algoritmy 3 Vy íslitelnost 4 Sloºitost Neuron Divná bu ka: Axon, dendrity a
Úvod do teorie grafů
Úvod do teorie grafů Neorientovaný graf G = (V,E,I) V množina uzlů (vrcholů) - vertices E množina hran - edges I incidence incidence je zobrazení, buď: funkce: I: E V x V relace: I E V V incidence přiřadí
e²ení 1. série Úvodní gulá²
e²ení. série Úvodní gulá² Úloha.. Gulá²gvhevmnjdfs!!, ozvalo se uº o n co hlasit ji hladové monstrum dychtící po Lib n in specialit. Henry! Ví² moc dob e, ºe ti nedám, dokud neuhodne², na co myslím! Malinko
Testy pro více veli in
Kapitola 8 Testy pro více veli in 8.1 Testy parametr s více výb ry s p edpokladem normality dat 8.1.1 Testy s dv ma výb ry. P edpoklady: Pro spojité rozd lení normalita nebo velký výb r. Pro diskrétní
Základní praktikum laserové techniky
Základní praktikum laserové techniky Fakulta jaderná a fyzikáln inºenýrská Úloha 4: Zna kování TEA CO 2 laserem a m ení jeho charakteristik Datum m ení: 1.4.2015 Skupina: G Zpracoval: David Roesel Kruh:
Státní maturita 2011 Maturitní testy a zadání jaro 2011 Matematika: didaktický test - základní úrove obtíºnosti MAMZD11C0T02 e²ené p íklady
Státní maturita 0 Maturitní testy a zadání jaro 0 Matematika: didaktický test - základní úrove obtíºnosti MAMZDC0T0 e²ené p íklady Autor e²ení: Jitka Vachtová 0. srpna 0 http://www.vachtova.cz/ Obsah Úloha
Denice integrálu: Od Newtona k Bendové
Denice integrálu: Od Newtona k Bendové Jan MALÝ UK v Praze a UJEP v Ústí nad Labem OSMA, V B-TU Ostrava, 3. listopadu 2015 Jan MALÝ Od Newtona... 1 / 32 Toto není p edná²ka o historii matematiky. Jan MALÝ
Testování neuronových sítí pro prostorovou interpolaci v softwaru GRASS GIS
Testování neuronových sítí pro prostorovou interpolaci v softwaru GRASS GIS Veronika NEVTÍPILOVÁ Gisáček 2013 Katedra Geoinformatiky Univerzita Palackého v Olomouci Cíle otestovat kvalitu interpolace pomocí
Odhad sm si s datov závislým dynamickým ukazovátkem a statickými komponentami 1
Odhad sm si s datov závislým dynamickým ukazovátkem a statickými komponentami 1 smí²ený (spojitý i diskrétní) jednorozm rný výstup, bez ízení simulovaná data inicializace odhadu - datový vzorek klasikovaný
2C06028-00-Tisk-ePROJEKTY
Stránka. 27 z 50 3.2. ASOVÝ POSTUP PRACÍ - rok 2009 3.2.0. P EHLED DÍL ÍCH CÍL PLÁNOVANÉ 2009 íslo podrobn Datum pln ní matematicky formulovat postup výpo t V001 výpo etní postup ve form matematických
Fyzikální praktikum 3
Ústav fyzikální elekotroniky P írodov decká fakulta, Masarykova univerzita, Brno Fyzikální praktikum 3 Úloha 7. Opera ní zesilova Úvod Opera ní zesilova je elektronický obvod hojn vyuºívaný tém ve v²ech
Státní maturita 2010 Maturitní generálka 2010 Matematika: didaktický test - základní úrove obtíºnosti MAGZD10C0T01 e²ené p íklady
Státní maturita 00 Maturitní generálka 00 Matematika: didaktický test - základní úrove obtíºnosti MAGZD0C0T0 e²ené p íklady Autor e²ení: Jitka Vachtová 6. b ezna 0 http://www.vachtova.cz/ Obsah Úloha Úloha.
TGH06 - Hledání nejkratší cesty
TGH06 - Hledání nejkratší cesty Jan Březina Technical University of Liberec 26. března 2013 Motivační problémy Silniční sít reprezentovaná grafem. Najdi nejkratší/nejrychlejší cestu z místa A do místa
Státnice - Rekurzivní a rekurzivn spo etné mnoºiny
Kapitola 1 Státnice - Rekurzivní a rekurzivn spo etné mnoºiny 1.1 Rekurzivn spo etné mnoºiny Denice (Rekurzivní a rekurzivn spo etná mnoºina) Charakteristická funkce mnoºiny M ozna uje charakteristickou
ST1 - Úkol 1. [Minimáln 74 K /láhev]
ST1 - Úkol 1 P íklad 1 Myslivecký spolek po ádá sv j tradi ní ples. Mimo jiné bylo nakoupeno lahvové víno podle rozpisu v Tabulce 1.1. P edpokládá se (podle historických zku²eností), ºe v²echny láhve budou
Specifikace systému ESHOP
Nabídka: Specifikace systému ESHOP březen 2009 Obsah 1 Strana zákazníka 1 1.1 Nabídka produkt, strom kategorií..................... 1 1.2 Objednávka a ko²ík.............................. 1 1.3 Registrace
TEORIE ZÁVISLOSTI, VZTAHY, PRÁCE S DATY ČTENÍ A INTERPRETACE DAT - TŘÍDĚNÍ A EVIDENCE
TEORIE ZÁVISLOSTI, VZTAHY, PRÁCE S DATY ČTENÍ A INTERPRETACE DAT - TŘÍDĚNÍ A EVIDENCE Musíš zvolit vhodnou formu evidence a údaje přenést do tabulky. V některých úlohách eviduješ pouze objekty, v jiných
Aplikovaná matematika 1
Aplikovaná matematika 1 NMAF071 Tomá² Sala 1 MÚ UK, MFF UK ZS 2017-18 1 Tímto bych cht l pod kovat doc. RNDr. Mirkovi Rokytovi, CSc. a doc. Milanu Pokornému za poskytnutí podklad, které jsem pouze mírn
9. Lineárně elastická lomová mechanika K-koncepce. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík
9. Lineárně elastická lomová mechanika K-koncepce Únava a lomová mechanika Faktor intenzity napětí Předpokládáme ostrou trhlinu namáhanou třemi základními módy zatížení Zredukujeme-li obecnou trojrozměrnou
Příloha č. 7. ročník 9. 1h 1x za 14 dní. dotace. nepovinný. povinnost
Příloha č. 7 Seminář z matematiky V učebním plánu 2. druhého stupně se zařazuje nepovinný předmět Seminář z matematiky. V tematickém okruhu Čísla a početní operace na prvním stupni, na který navazuje a
Základní pojmy teorie mnoºin.
Základní pojmy teorie mnoºin. Mnoºina je základní stavební kámen moderní matematiky, i kdyº se v matematice tento pojem uºívá velmi dlouho. Uº anti tí e tí geomet i denovali kruºnici jako mnoºinu bod mající
Select sort: krok 1: krok 2: krok 3: atd. celkem porovnání. výběr nejmenšího klíče z n prvků vyžaduje 1 porovnání
Select sort: krok 1: výběr klíče z n prvků vyžaduje 1 porovnání krok 2: výběr klíče z 1 prvků vyžaduje 2 porovnání krok 3: výběr klíče z 2 prvků vyžaduje 3 porovnání atd. celkem porovnání Zlepšení = použít
www.pwc.cz/ Aktuality a trendy v převodních cenách 17. června 2014
www.pwc.cz/ Aktuality a trendy v převodních cenách 17. června 2014 Obsah 1. Aktuality na mezinárodní scéně - BEPS - Převodní ceny - Country-by-country reporting 2. Aktuality na české scéně - Novela od
5.2.1 Matematika povinný předmět
5.2.1 Matematika povinný předmět Učební plán předmětu 1. ročník 2. ročník 3. ročník 6. ročník 7. ročník 8. ročník 9. ročník 4 4+1 4+1 4+1 4+1 4 4 3+1 4+1 Vzdělávací oblast Matematika a její aplikace v
Algoritmizace a programování
Algoritmizace a programování V algoritmizaci a programování je důležitá schopnost analyzovat a myslet. Všeobecně jsou odrazovým můstkem pro řešení neobvyklých, ale i každodenních problémů. Naučí nás rozdělit
Stébla trávy. Úvod. 1 Buzení prouºku a vznik zvuku. Pavla Bére²ová December 19, 2015
Stébla trávy Pavla Bére²ová December 19, 2015 Abstract Foukáním p es list trávy, prouºek papíru nebo n co podobného lze vyvolat zvuk. Prozkoumejte tento jev. Úvod Tato úloha pochází ze zadání 28 ro níku
ízení Tvorba kritéria 2. prosince 2014
ízení. prosince 014 Spousta lidí má pocit, ºe by m la n co ídit. A n kdy to bývá pravda. Kdyº uº nás my²lenky na ízení napadají, m li bychom si poloºit následující t i otázky: ídit? Obrovskou zku²eností
2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického testu
Testovací aplikace Matematika není věda
Testovací aplikace Matematika není věda Příručka k http://matematika.komenacek.cz/ Příručka k portálu http://matematika.komenacek.cz/ 2 Uživatelská příručka k portálu 202 BrusTech s.r.o. Všechna práva
Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A
Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A úterý 28. listopadu 2017, 9:2011:20 ➊ (8 bod ) Lze nebo nelze k rozhodnutí o stejnom rné konvergence ady ( 1) n+1 x ln(n) n 6 + n 2 x 4 na intervalu
RNÉ MATERIÁLY. PSYCHODIAGNOSTIKA - VYHODNOCENÍ z , 13:19 hodin
Strana 1 z 11 RNÉ MATERIÁLY PSYCHODIAGNOSTIKA - VYHODNOCENÍ z 14.11.2012, 13:19 hodin Kód probanda íjmení Jméno k Objednavatel el testování 3D60001025 íklad - Sériové íslo: Verze íslo: Vyhodnoceno: BFC6BC9F0D91