optika0 Světlo jako vlna
|
|
- Martina Urbanová
- před 9 lety
- Počet zobrazení:
Transkript
1 optika0 Světlo jako vlna Spor o postatě světla se přenesl z oblasti filozofických úvah o reality koncem 17. století. Vlnovou teorii světla uveřejnil v knize Pojenání o světle (190) holanský fyziky Christiaan Huygens. Své přesvěčení, že světlo tvoří vlny, založil na jenouché otázce: Poku by světlo tvořily třeba malinké letící částice, jak vysvětlit některé optické jevy, které příroověci už řau let popisovali? Christiaan Huygens byl sice slavným věcem, ale jeho činnost byla přece jen ve stínu jeho současníka Isaaca Newtona ( ). Ten ve svém spisu Optika (úplný název: Optics or a Treatise of Reflections, Refractions, Inflections an Colours of Light,1704) přeložil vlastní teorii světla. Tvril, že postatou světla je prou částic. Newtonův věhlas byl již v té obě tak ohromný, že většina věců považovala jeho částicovou (korpuskulární) teorii světla za správnou, ba co víc, záhy se stala nezpochybnitelnou až o objevu interference světla. K rozhoujícím pokusům, jež nám pomohly vybrat správný z obou názorů na charakter světla, jsme se ostali již při pokusech se zvukem. Při skláání vou stejných zvuků z vojice reprouktorů jsme viěli (vlastně slyšeli), že v některých místech ošlo k zeslabení zvuku, tzv. estruktivní interferenci. Tehy jsme se ozvěěli, že: Destruktivní interference je ěj typický pro všechny ruhy vlnění. Jestli je tey světlo prouem částic, mělo by se světlo ze vou zrojů vžy zesílit. Poku je světlo vlněním, mohlo by něke ocházet k estruktivní interferenci. Problém při pokusu se světlem spočívá v tom, že neokážeme vytvořit va světelné zroje vysílající zcela shoné světelné vlny. Řešení, které jste sami našli, spočívalo v tom, že jsme světlo z jenoho zroje rozělili. Na olních obrázcích jsou schematicky zachyceny va pokusy, jimiž se nám to poařilo. Třetím pokusem, který jsme proveli, bylo orážení světla soíkové výbojky na pření a zaní stěně tenoulinké slíové estičky. I ze jsme viěli, že oražené světelné vlny se v některých místech zesílily, v jiných místech zeslabily.
2 Vlnová élka světla Pokus s průchoem světla vojštěrbinou nám umožnil alespoň hrubě určit vlnovou élku c T světla laseru, jenž jsme použili. Na obrázku je schematický obrázek naší sestavy (pro názornost je velmi zkreslen). Již víme, že v místě, ke je maximum 1. řáu, je rozíl vzáleností o obou zrojů (ze štěrbin) právě jena vlnová élka. Stačí tey oečíst o přepony zeleného pravoúhlého trojúhelníka přeponu morého pravoúhlého trojúhelníka a máme hrubý oha vlnové élky světla laseru. 0, m 0, m m Viíme, že vlnová élka červeného světla laseru je velmi malá ve srovnání s vlnovými élkami zvuku. Přitom je o světlo červené barvy, které (jak uviíme) světlo ostatních barev svou vlnovou élkou převyšuje. Světelné vlny jsou elektromagnetické. To znamená, že se o zrojů šíří změna elektrického a magnetického pole, aniž by přitom byla nezbytná látka, jejíž částečky by nějak kmitaly. Stojí sna za připomenutí, že v počátečních úvahách o světelných vlnách byl takový nositel vln ve vakuu přepokláán (tzv. světelný éter). Elektromagnetické vlny, jež vnímáme zrakem viitelné světlo, přestavuje v celém oboru elektromagnetických vln jen nepatrný žďabínek, který je na olním obrázku značně roztažený. Přehlené spektrum všech elektromagnetických vln hrubě ukazuje horní část obrázku.
3 Světlo se šíří ve vakuu rychlostí (označení c ) c 3 10 m/s. Je o maximální rychlost, jíž nemůže žáný objekt osáhnout. V látkách je rychlost světla vžy menší než ve vakuu. Příklay rychlostí světla v několika látkách uváí tabulka. látka vzuch le voa glycerol sůl sklo iamant rychlost světla (m/s) 2, , , , , , až 1,9 10-1, Rozkla světla mřížkou Optická mřížka je soustava velkého počtu stejně širokých rovnoběžných štěrbin v malé vzálenosti o sebe. Na obrázku je pro názornost vzálenost štěrbin tisícinásobně zvětšena. Kvalitní mřížky mají stovky štěrbin na jenom milimetru. Kyž mřížku osvětlíme rovnoběžnými svazkem světla laseru, oje k interferenci světelných vln procházejících štěrbinami poobně jako na vojštěrbině. Na stínítku zachycená maxima jsou velmi ostrá a jsou o sebe vzálena tím více, čím jsou štěrbiny mřížky blíž u sebe. Při opau bílého světla na optickou mřížku je nulté maximum bílé, protože je pro všechny složky světla společné. V alších interferenčních maximech vzniká rozkla světla. Vznikající maxima vyšších řáů jsou symetricky rozložena o nultého maxima. Na obrázku je zachyceno maximum nultého řáu a maxima 1. řáu světla žárovky rozloženého mřížkou, která měla 500 štěrbin na 1 mm ( m). Pokusme se najít pomínku pro směr α, v němž jsou o půvoního směru ochýlena maxima jenotlivých barev. Buou to směry, ve kterých je ráhový rozíl jena (nebo několik) vlnových élek. Z obrázku je viět, že pro úhel α v trojúhelníku ABC platí: sin α sin α je vzálenost štěrbin mřížky (tzv. mřížková konstanta) vlnová élka světla α ochýlení max.1. řáu o směru opaajícího světla
4 Z uveeného vztahu je viět, ve shoě s pokusem, že nejméně ochýlené světlo je fialové má nejmenší vlnovou élku. Červené světlo je ochýleno nejvíce, jeho vlnová élka je největší. Pro směry maxim 2., 3. a vyšších řáů je výslený vzorec obobný: sin α n, ke n je celé číslo. Pokus, jejž jsme proveli, nám umožnil hrubě ověřit interval vlnových élek o fialového po červené světlo žárovičky. Na tabuli vytvořila mřížka (vzálená 7,5 m o tabule), která měla 500 štěrbin na 1 mm ( m), spektrum (1. řáu) tak, že červený okraj byl vzálen o nultého maxima 145 cm, fialový okraj spektra byl vzálen 25 cm. Pomocí funkce tg α ochylka : vzálenost o mřížky nám vychází pro ochýlení: tg α FIALOVE 0,197 α FIALOVE 11 O, otu sin α FIALOVE 0,19 a pro FIALOVE 400 nm. tg α CERVENE 0,30 α CERVENE 21 O, otu sin α CERVENE 0,3 a pro α CERVENE 700 nm. Výsleky jsou v obré shoě s úaji z tabulek. Se sklááním světelných vln si můžete pohrát v appletu coloraské university na arese: Úlohy 1. K orientačním honotám vlnových élek různých elektromagnetických vln vypočtěte frekvence a perioy kmitů. Zaokrouhlujte na 1 platnou cifru. vlnová élka 0,01 nm 1 nm 100 nm 400 nm 700 nm 1 mm 1 cm 1 m 1 km perioa (s) frekvence (Hz) Uveďte typ elektromagnetické vlny, jež a) může způsobit fluorescenci b) se ohýbá kolem kopců c) se používá v raaru ) prochází kovy e) je vyávána horkými látkami f) je vnímána okem 3. Jaká je vlnová élka elektromagnetických vln, která se používá pro přenos rozhlasového signálu stanice o frekvenci 100 MHz? Řešení: c / f 3 10 / m 3 m 4. Buíky a náramkové hoinky řízené ráiem se říí louhovlnným signálem z Meinflingenu u Frankfurtu na Mohanem. O kolik se liší úaj na takových hoinkách v Praze o správného času? (Meinflingen Praha 30 km) Řešení: 3 Δs m Δt 0,0012 s 1,2 ms, zpožění je zanebatelné c 3 10 m/s 5. Vložíme-li o mikrovlnné trouby, z níž jsme vynali otáčecí talíř, několik plátků trustového chleba a na několik minut troubu zapneme, objeví se na chlebu spálená místa v oblastech intenzivního ohřevu. Jsou to místa, ke byly kmitny stojatého elektromagnetického vlnění, které v mikrovlnce vzniká. Změřením vzáleností spálenin můžeme ohanout vlnovou élku a frekvenci f, na níž mikrovlnka pracuje.
5 Řešení: 2 0,05 m f c m/s 0,13m 2, 3 10 Hz 2,3GHz. Vypočítejte úhlovou šířku Δα α CERVENE - α FIALOVE spektra v maximu 2. řáu, vytvořeného mřížkou, která měla 250 štěrbin na 1 mm. Použijte známé honoty vlnových élek okrajů viitelného spektra. Řešení: sinα sinα 2 CERVENE CERVENE 0,35 α CERVENE FIALOVE FIALOVE 0,20 α FIALOVE 4 10 Δα α CERVENE - α FIALOVE 9 O Úhlová šířka spektra 2. řáu je v tomto přípaě 9 stupňů.. Ukažte, že se v přecházejícím přípaě ) překrývá červený okraj spektra 2. řáu s fialovým okrajem spektra 3. řáu. Řešení: Vypočtěte sin α FIALOVE pro n 3 a sin α CERVENE pro n 2 a porovnejte úhly α FIALOVE. s α CERVENE. 11,5 20,5 o o
Vypracoval Datum Hodnocení. V celé úloze jsme používali He-Ne laser s vlnovou délkou λ = 632, 8 nm. Paprsek jsme nasměrovali
Název a číslo úlohy - Difrakce světelného záření Datum měření 3.. 011 Měření proveli Tomáš Zikmun, Jakub Kákona Vypracoval Tomáš Zikmun Datum. 3. 011 Honocení 1 Difrakční obrazce V celé úloze jsme používali
VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník
VLNOVÁ OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník Vlnová optika Světlo lze chápat také jako elektromagnetické vlnění. Průkopníkem této teorie byl Christian Huyghens. Některé jevy se dají
Laboratorní práce č. 3: Měření vlnové délky světla
Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 3: Měření vlnové délky světla G Gymnázium Hranice Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Gymnázium G Hranice Test
4.5.5 Magnetické působení rovnoběžných vodičů s proudem
4.5.5 Magnetické působení rovnoběžných voičů s prouem Přepoklay: 4502, 4503, 4504 Př. 1: Dvěma velmi louhými svislými voiči prochází elektrický prou. Rozhoni pomocí rozboru magnetických inukčních čar polí
Laboratorní úloha č. 7 Difrakce na mikro-objektech
Laboratorní úloha č. 7 Difrakce na mikro-objektech Úkoly měření: 1. Odhad rozměrů mikro-objektů z informací uváděných výrobcem. 2. Záznam difrakčních obrazců (difraktogramů) vzniklých interakcí laserového
Digitální učební materiál
Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.07/1.5.00/3.080 Zkvalitnění výuky prostřednictvím ICT III/ Inovace a zkvalitnění výuky prostřednictvím
Elektromagnetické vlnění
Elektromagnetické vlnění kolem vodičů elmag. oscilátoru se vytváří proměnné elektrické i magnetické pole http://www.walter-fendt.de/ph11e/emwave.htm Radiotechnika elmag vlnění vyzářené dipólem můžeme zachytit
4. FRAUNHOFERŮV OHYB NA ŠTĚRBINĚ
4. FRAUNHOFERŮV OHYB NA ŠTĚRBINĚ Měřicí potřeby 1 helium-neonový laser měrná obélníková štěrbina 3 stínítko s měřítkem 4 stínítko s fotočlánkem 5 zapisovač Obecná část Při opau rovinné monochromatické
Název: Měření vlnové délky světla pomocí interference a difrakce
Název: Měření vlnové délky světla pomocí interference a difrakce Autor: Doc. RNDr. Milan Rojko, CSc. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: fyzika, matematika
Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu
Otázky z optiky Základní vlastnosti, lom, odraz, index lomu ) o je světlo z fyzikálního hlediska? Jaké vlnové délky přísluší viditelnému záření? - elektromagnetické záření (viditelné záření) o vlnové délce
Vlnové vlastnosti světla. Člověk a příroda Fyzika
Název vzdělávacího materiálu: Číslo vzdělávacího materiálu: Autor vzdělávací materiálu: Období, ve kterém byl vzdělávací materiál vytvořen: Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Tematická
Podpora rozvoje praktické výchovy ve fyzice a chemii
VLNOVÁ DÉLKA A FREKVENCE SVĚTLA 1) Vypočítejte frekvenci fialového světla, je-li jeho vlnová délka 390 nm. Rychlost světla ve vakuu je 3 10 8 m s 1. = 390 nm = 390 10 9 m c = 3 10 8 m s 1 f=? (Hz) Pro
Optika. Co je světlo? Laser vlastnosti a využití. Josef Štěpánek Fyzikální ústav MFF UK
Optika Co je světlo? Laser vlastnosti a využití Josef Štěpánek Fyzikální ústav MFF UK Optika Vědecká disciplína zabývající se světlem a zářením obdobných vlastností (optické záření) z hlediska jeho vzniku,
UNIVERZITA KARLOVA V PRAZE Přírodovědecká fakulta
Chromatografie Zroj: http://www.scifun.org/homeexpts/homeexpts.html [34] Diaktický záměr: Vysvětlení pojmu chromatografie. Popis: Žáci si vyzkouší velmi jenouché ělení látek pomocí papírové chromatografie.
Difrakce NedÏlnÌ odpoledne na ostrovï La Grande Jatte
37 Difrakce Georges Seurat namaloval NeÏlnÌ opolene na ostrovï La Grane Jatte nikoli obvykl mi tahy ötïtcem, ale pouze velk m poëtem mal ch barevn ch teëek, coû je malì sk styl naz van pointilismus. StojÌte-li
5.3.6 Ohyb na mřížce. Předpoklady: 5305
5.3.6 Ohy na mřížce Předpoklady: 5305 Optická mřížka = soustava rovnoěžných velmi lízkých štěrin. Realizace: Skleněná destička s rovnoěžnými vrypy, přes vryp světlo neprochází, prochází přes nepoškraaná
MĚŘENÍ VLNOVÝCH DÉLEK SVĚTLA MŘÍŽKOVÝM SPEKTROMETREM
MĚŘENÍ VLNOVÝCH DÉLEK SVĚTLA MŘÍŽKOVÝM SPEKTROMETREM Difrakce (ohyb) světla je jedním z několika projevů vlnových vlastností světla. Z těchto důvodů světlo při setkání s překážkou nepostupuje dále vždy
M I K R O S K O P I E
Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066
λ, (20.1) 3.10-6 infračervené záření ultrafialové γ a kosmické mikrovlny
Elektromagnetické vlny Optika, část fyziky zabývající se světlem, patří spolu s mechanikou k nejstarším fyzikálním oborům. Podle jedné ze starověkých teorií je světlo vyzařováno z oka a oko si jím ohmatává
Mikrovlny. K. Kopecká*, J. Vondráček**, T. Pokorný***, O. Skowronek****, O. Jelínek*****
Mikrovlny K. Kopecká*, J. Vondráček**, T. Pokorný***, O. Skowronek****, O. Jelínek***** *Gymnázium Česká Lípa, **,*****Gymnázium Děčín, ***Gymnázium, Brno, tř. Kpt. Jaroše,**** Gymnázium Františka Hajdy,
5.3.5 Ohyb světla na překážkách
5.3.5 Ohyb světla na překážkách Předpoklady: 3xxx Světlo i zvuk jsou vlnění, ale přesto jsou mezi nimi obrovské rozdíly. Slyšíme i to, co se děje za rohem x Co se děje za rohem nevidíme. Proč? Vlnění se
Název: Pozorování a měření emisních spekter různých zdrojů
Název: Pozorování a měření emisních spekter různých zdrojů Autor: Doc. RNDr. Milan Rojko, CSc. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: fyzika, chemie Ročník:
Jaký obraz vytvoří rovinné zrcadlo? Zdánlivý, vzpřímený, stejně velký. Jaký obraz vytvoří vypuklé zrcadlo? Zdánlivý, vzpřímený, zmenšený
Jan Olbrecht Jaký obraz vytvoří rovinné zrcadlo? Zdánlivý, vzpřímený, stejně velký Jaký obraz vytvoří vypuklé zrcadlo? Zdánlivý, vzpřímený, zmenšený Jaký typ lomu nastane při průchodu světla z opticky
Měření vlnové délky spektrálních čar rtuťové výbojky pomocí optické mřížky
Měření vlnové délky spektrálních čar rtuťové výbojky pomocí optické mřížky Úkol : 1. Určete mřížkovou konstantu d optické mřížky a porovnejte s hodnotou udávanou výrobcem. 2. Určete vlnovou délku λ jednotlivých
Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA
Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA OPTIKA ZÁKLADNÍ POJMY Optika a její dělení Světlo jako elektromagnetické vlnění Šíření světla Odraz a lom světla Disperze (rozklad) světla OPTIKA
Úloha II.E... čočkování
Úloha II.E... čočkování 8 boů; průměr 5,46; řešilo 65 stuentů V obálce jste spolu se zaáním ostali i vě čočky. Vaším úkolem je změřit jejich parametry ruh a ohniskovou vzálenost. Poznámka Poku nejste stávající
Úloha č. 1 pomůcky Šíření tepla v ustáleném stavu základní vztahy
Úloha č. pomůcky Šíření tepla v ustáleném stavu záklaní vztahy Veení Fourriérův zákon veení tepla, D: Hustota tepelného toku je úměrná změně teploty ve směru šíření tepla, konstantou úměrnosti je součinitel
Fyzika II. Marek Procházka Vlnová optika II
Fyzika II Marek Procházka Vlnová optika II Základní pojmy Reflexe (odraz) Refrakce (lom) jevy na rozhraní dvou prostředí o různém indexu lomu. Disperze (rozklad) prostorové oddělení složek vlnění s různou
MĚŘENÍ JEDNODUCHÝCH SPEKTER DIFRAKČNÍM SPEKTROMETREM
Úloha č. 9 MĚŘENÍ JENOUCHÝCH SPEKTER IFRAKČNÍM SPEKTROMETREM ÚKOL MĚŘENÍ:. Kalibrujte spektrometr pomocí He spektra a určete mřížkovou konstantu použité ifrakční mřížky.. Stanovte vlnovou élku spektrálních
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ODRAZ A LOM SVĚTLA 1) Index lomu vody je 1,33. Jakou rychlost má
STACIONÁRNÍ MAGNETICKÉ POLE
Příklay: 1. Přímý voič o élce 0,40 m, kterým prochází prou 21 A, leží v homogenním magnetickém poli kolmo k inukčním čarám. Velikost vektoru magnetické inukce je 1,2 T. Vypočtěte práci, kterou musíme vykonat
Vedení vvn a vyšší parametry vedení
Veení vvn a vyšší parametry veení Při řešení těchto veení je třeba vzhleem k jejich élce uvažovat nejenom opor veení R a inukčnost veení L, ale také kapacitu veení C. Svo veení G se obvykle zanebává. Tyto
5.2.11 Lupa, mikroskop
5.2.11 Lupa, mikroskop Přepokla: 5210 Rozlišovací schopnost oka (schopnost rozlišit va bo): závisí na velikosti obrazu přemětu na oční sítnici, poku chceme rozlišit va tmavé bo, nesmí jejich obraz opanout
Úloha 3: Mřížkový spektrometr
Petra Suková, 2.ročník, F-14 1 Úloha 3: Mřížkový spektrometr 1 Zadání 1. Seřiďte spektrometr pro kolmý dopad světla(rovina optické mřížky je kolmá k ose kolimátoru) pomocí bočního osvětlení nitkového kříže.
Fyzika II, FMMI. 1. Elektrostatické pole
Fyzika II, FMMI 1. Elektrostatické pole 1.1 Jaká je velikost celkového náboje (kladného i záporného), který je obsažen v 5 kg železa? Předpokládejme, že by se tento náboj rovnoměrně rozmístil do dvou malých
Fyzika 2 - rámcové příklady vlnová optika, úvod do kvantové fyziky
Fyzika 2 - rámcové příklady vlnová optika, úvod do kvantové fyziky 1. Vysvětlete pojmy kulová a rovinná vlnoplocha. 2. Pomocí Hyugensova principu vysvětlete konstrukci tvaru vlnoplochy v libovolném budoucím
13. Vlnová optika I. Interference a ohyb světla
13. Vlnová optika I. Interference a ohyb světla Od časů Isaaca Newtona si lidstvo láme hlavu problémem, je-li světlo vlnění nebo proud částic. Tento spor rozdělil svět vědy na dva zdánlivě nesmiřitelné
ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Ampérův zákon
ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Ampérův zákon Peter Dourmashkin MIT 26, překla: Jan Pacák (27) Obsah 5 AMPÉRŮV ZÁKON 3 51 ÚKOLY 3 52 ALGORITMUS PRO ŘEŠENÍ PROBLÉMŮ 3 ÚLOHA 1: VÁLCOVÝ PLÁŠŤ
Optika CD přehrávače. Zdeněk Bochníček, Přírodovědecká fakulta MU v Brně
Optika CD přehrávače Zeněk Bochníček, Příroověecká fakulta MU v Brně V roce 1977, právě 100 let po vynálezu fonografu T. A. Eisona, byl firmami Sony a Philips uveen na trh nový revoluční systém reproukce
Jednou z nejstarších partií fyziky je nauka o světle tj. optika. Existovaly dva názory na fyzikální podstatu světla:
Optika Jednou z nejstarších partií fyziky je nauka o světle tj. optika. Existovaly dva názory na fyzikální podstatu světla: Světlo je proud částic (I. Newton, 1704). Ale tento částicový model nebyl schopen
Jméno a příjmení. Ročník. Měřeno dne Příprava Opravy Učitel Hodnocení. Vlnové vlastnosti světla difrakce, laser
FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Petr Švaňa Ročník 1 Předmět IFY Kroužek 38 ID 155793 Spolupracoval Měřeno dne Odevzdáno dne Lukáš Teuer 8.4.2013 22.4.2013 Příprava Opravy
Univerzita Tomáše Bati ve Zlíně
Uiverzita Tomáše Bati ve Zlíě LABORATORNÍ CVIČENÍ Z FYZIKY II Název úlohy: Iterferece a teké vrstvě Jméo: Petr Luzar Skupia: IT II/ Datum měřeí: 3.říja 007 Obor: Iformačí techologie Hooceí: Přílohy: 0
3. OHYB A INTERFERENCE SVĚTLA OPTICKOU MŘÍŽKOU
3. OHYB A INTERFERENCE SVĚTLA OPTICKOU MŘÍŽKOU Měřicí potřeby 1) spektrometr ) optická mřížka 3) sodíková výbojka 4) Balmerova lampa Teorie Optická mřížka na průchod světla je skleněná destička, na níž
Optika pro mikroskopii materiálů I
Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 OHYB SVĚTLA
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 OHYB SVĚTLA V paprskové optice jsme se zabývali optickým zobrazováním (zrcadly, čočkami a jejich soustavami).
Akustooptický modulátor s postupnou a stojatou akustickou vlnou
Úloha č. 8 pro laserová praktika (ZPLT) KFE, FJFI, ČVUT, Praha v. 2017/2018 Akustooptický modulátor s postupnou a stojatou akustickou vlnou Akustooptické modulátory (AOM), někdy též nazývané Braggovské
ODRAZ A LOM SVĚTLA. Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika
ODRAZ A LOM SVĚTLA Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika Odraz světla Vychází z Huygensova principu Zákon odrazu: Úhel odrazu vlnění je roven úhlu dopadu. Obvykle provádíme konstrukci pomocí
VF vedení. λ /10. U min. Obr.1.Stojaté vlnění na vedení
VF veení Rozělení Nejříve si položíme otázku, ky se stává z běžného voiče veení. Opověď rozělme na vě části. V analogových obvoech, poku je élka voiče srovnatelná s vlnovou élkou nebo větší, můžeme v prvním
Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454
Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 íé= Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Elektromagnetické
Interference světla Vlnovou podstatu světla prokázal až roku 1801 Thomas Young, když pozoroval jeho interferenci (tj. skládání). Youngův experiment interference světla na dvou štěrbinách (animace) http://micro.magnet.fsu.edu
a b c Q 1 Q 2 P E 1 E 2 Otázky pro studijní obor Biofyzika (celkem max. 15 bodů, minimum pro splnění 8 bodů)
Otázky pro stuijní obor Biofyzika (elkem max. 15 boů, minimum pro splnění 8 boů) Otázka č. 1 (3 boy) Dva boové náboje 1,5.10-7 C opačnýh znamének jsou vzáleny 10 m. Vypočtěte velikost intenzity elektrikého
OPTIKA. I. Elektromagnetické kmity
OPTIKA Optika se studuje elektromagnetické vlnění v určitém intervalu vlnových délek, které můžeme vnímat zrakem, a sice jevy světelné Rozlišujeme základní pojmy: Optické prostředí prostředí, kterým se
7 FYZIKÁLNÍ OPTIKA. Interference Ohyb Polarizace. Co je to ohyb? 27.2 Ohyb
1 7 FYZIKÁLNÍ OPTIKA Interference Ohyb Polarizace Co je to ohyb? 27.2 Ohyb Ohyb vln je jev charakterizovaný odchylkou od přímočarého šíření vlnění v témže prostředí. Ve skutečnosti se nejedná o nový jev
4. Z modové struktury emisního spektra laseru určete délku aktivní oblasti rezonátoru. Diskutujte,
1 Pracovní úkol 1. Změřte současně světelnou i voltampérovou charakteristiku polovodičového laseru. Naměřené závislosti zpracujte graficky. Stanovte prahový proud i 0. 2. Pomocí Hg výbojky okalibrujte
Difrakce na mřížce. Úkoly měření: Použité přístroje a pomůcky: Základní pojmy, teoretický úvod: Úloha č. 7
Úloha č. 7 Difrakce na mřížce Úkoly měření: 1. Prostudujte difrakci na mřížce, štěrbině a dvojštěrbině. 2. Na základě měření určete: a) Vzdálenost štěrbin u zvolených mřížek. b) Změřte a vypočítejte úhlovou
Válečkové řetězy. Tiskové chyby vyhrazeny. Obrázky mají informativní charakter.
Válečkové řetězy Technické úaje IN 8187 Hlavními rvky válečkového řevoového řetězu jsou: Boční tvarované estičky vzálené o sebe o šířku () Čey válečků s růměrem () Válečky o růměru () Vzálenost čeů určuje
Průřezové charakteristiky základních profilů.
Stření průmyslová škola a Vyšší oborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřenictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Průřezové
Lasery základy optiky
LASERY Lasery se staly jedním ze základních nástrojů moderních strojírenských technologií. Optimální využití laserových technologií předpokládá znalosti o jejich principech a o vlastnostech laserového
Fyzikální kabinet GymKT Gymnázium J. Vrchlického, Klatovy
Fzikální kbinet GmKT Gmnázium J. Vrchlického, Kltov stženo z http:kbinet.zik.net Optické přístroje Subjektivní optické přístroje - vtvářejí zánlivý (neskutečný) obrz, který pozorujeme okem (subjektivně)
Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm.
1. Podstata světla Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm. Vznik elektromagnetických vln (záření): 1. při pohybu elektricky nabitých částic s nenulovým zrychlením
Fyzika aplikovaná v geodézii
Průmyslová střední škola Letohrad Vladimír Stránský Fyzika aplikovaná v geodézii 1 2014 Tento projekt je realizovaný v rámci OP VK a je financovaný ze Strukturálních fondů EU (ESF) a ze státního rozpočtu
3.2.5 Odraz, lom a ohyb vlnění
3..5 Odraz, lom a ohyb vlnění Předpoklady: 304 Odraz a lom vlnění na rozhranní dvou prostředí s různou rychlostí šíření http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=16.0 Rovinná vlna dopadá šikmo
Světlo 1) Světlo patří mezi elektromagnetické vlnění (jako rádiový signál, Tv signál) elmg. vlnění = elmg. záření
OPTIKA = část fyziky, která se zabývá světlem Studuje zejména: vznik světla vlastnosti světla šíření světla opt. přístroje (opt. soustavami) Otto Wichterle (gelové kontaktní čočky) Světlo 1) Světlo patří
Předpokládáme vlny, které jsou časově nestabilní z hlediska fáze. Jako model zvolíme vlnu kdy se fáze mění skokem, ale je konstantní během doby
. Koherence.. Časová koherence.. Souvslost časově proměnného sgnálu se spektrální závslostí.3. nterference nemonochromatckého záření.4. Fourerova spektroskope.5. Prostorová koherence. Koherence Koherence
Akustooptický modulátor s postupnou a stojatou akustickou vlnou
Úloha č. 8 pro laserová praktika KFE, FJFI, ČVUT v Praze, verze 2010/1 Akustooptický modulátor s postupnou a stojatou akustickou vlnou Akustooptické modulátory (AOM), někdy též nazývané Braggovské cely,
Praktikum školních pokusů 2
Praktikum školních pokusů 2 Optika 3A Interference a difrakce světla Jana Jurmanová Přírodovědecká fakulta Masarykovy univerzity, Brno I Interference na dvojštěrbině Odvod te vztah pro polohu interferenčních
Jestliže rozkmitáme nějakou částici pevného, kapalného anebo plynného prostředí, tak síly pružnosti přenesou tento kmitavý pohyb na částici sousední
Jestliže rozkmitáme nějakou částici pevného, kapalného anebo plynného prostředí, tak síly pružnosti přenesou tento kmitavý pohyb na částici sousední a ta jej zase předá svému sousedovi. Částice si tedy
Úlohy domácí části I. kola kategorie C
67. ročník Matematické olympiáy Úlohy omácí části I. kola kategorie C 1. Najěte nejmenší čtyřmístné číslo abc takové, že rozíl ( ab ) 2 ( c ) 2 je trojmístné číslo zapsané třemi stejnými číslicemi. Řešení.
PRAVDĚPODOBNOSTNÍ PŘÍSTUP K HODNOCENÍ DRÁTKOBETONOVÝCH SMĚSÍ. Petr Janas 1 a Martin Krejsa 2
PAVDĚPODOBNOSTNÍ PŘÍSTUP K HODNOCENÍ DÁTKOBETONOVÝCH SMĚSÍ Petr Janas 1 a Martin Krejsa 2 Abstract The paper reviews briefly one of the propose probabilistic assessment concepts. The potential of the propose
Učební texty z fyziky 2. A OPTIKA. Obor zabývající se poznatky o a zákonitostmi světelných jevů. V posledních letech rozvoj optiky vynález a využití
OPTIKA Obor zabývající se poznatky o a zákonitostmi světelných jevů Světlo je vlnění V posledních letech rozvoj optiky vynález a využití Podstata světla Světlo je elektromagnetické vlnění Zdrojem světla
Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Úlohač.III. Název: Mřížkový spektrometr
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úlohač.III Název: Mřížkový spektrometr Vypracoval: Petr Škoda Stud. skup.: F14 Dne: 17.4.2006 Odevzdaldne: Hodnocení:
Balmerova série, určení mřížkové a Rydbergovy konstanty
Balmerova série, určení mřížkové a Rydbergovy konstanty V tomto laboratorním cvičení zkoumáme spektrální čáry 1. řádu vodíku a rtuti pomocí difrakční mřížky (mřížkového spektroskopu). Známé spektrální
Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 -
Geometrická optika Optika je část fyziky, která zkoumá podstatu světla a zákonitosti světelných jevů, které vznikají při šíření světla a při vzájemném působení světla a látky. Světlo je elektromagnetické
Vlnění, optika mechanické kmitání a vlnění zvukové vlnění elmag. vlny, světlo a jeho šíření zrcadla a čočky, oko druhy elmag. záření, rentgenové z.
Vlnění, optika mechanické kmitání a vlnění zvukové vlnění elmag. vlny, světlo a jeho šíření zrcadla a čočky, oko druhy elmag. záření, rentgenové z. Mechanické vlnění představte si závaží na pružině, které
Vlnové vlastnosti světla
Vlnové vlastnosti světla Odraz a lom světla Disperze světla Interference světla Ohyb (difrakce) světla Polarizace světla Infračervené světlo je definováno jako a) podélné elektromagnetické kmity o frekvenci
OPTIKA Světelné jevy TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
OPTIKA Světelné jevy TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Rozklad světla Když světlo prochází hranolem, v důsledku dvojnásobného lomu na rozhraních
5. Elektromagnetické vlny
5. Elektromagnetické vlny 5.1 Úvod Optika je část fyziky zabývající se světlem, patří spolu s mechanikou k nejstarším fyzikálním oborům. Podle jedné ze starověkých teorií je světlo vyzařováno z oka a oko
VY_42_Inovace_24_MA_2.04_Množiny ve slovních úlohách pracovní list
Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0394 VY_42_Inovace_24_MA_2.04_Množiny ve slovních úlohách pracovní list Název školy Stření oborná škola a Stření oborné učiliště, Hustopeče, Masarykovo
FYZIKA PRO IV. ROČNÍK GYMNÁZIA - OPTIKA 2. VLNOVÁ OPTIKA
FYZIKA PRO IV. ROČNÍK GYMNÁZIA - OPTIKA 2. VLNOVÁ OPTIKA Mgr. Monika Bouchalová Gymnázium, Havířov-Město, Komenského 2, p.o. Tento digitální učební materiál (DUM) vznikl na základě řešení projektu OPVK,
Mechanické kmitání a vlnění
Mechanické kmitání a vlnění Pohyb tělesa, který se v určitém časovém intervalu pravidelně opakuje periodický pohyb S kmitavým pohybem se setkáváme např.: Zařízení, které volně kmitá, nazýváme mechanický
Téma: Účinnost různých způsobů ohřevu vody
PROTOKOL O LABORATORNÍ PRÁCI Z FYZIKY Téma úlohy: Účinnost různých způsobů ohřevu vody Pracoval: Třída: Datum: Spolupracovali: Teplota: Tlak: Vlhkost vzduchu: Hodnocení: Téma: Účinnost různých způsobů
Zvuk. 1. základní kmitání. 2. šíření zvuku
Zvuk 1. základní kmitání - vzduchem se šíří tlakové vzruchy (vzruchová vlna), zvuk je systémem zhuštěnin a zředěnin - podstatou zvuku je kmitání zdroje zvuku a tím způsobené podélné vlnění elastického
ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0
Kmity základní popis kmitání je periodický pohyb, při kterém těleso pravidelně prochází rovnovážnou polohou mechanický oscilátor zařízení vykonávající kmity Základní veličiny Perioda T [s], frekvence f=1/t
2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná.
1 Pracovní úkoly 1. Změřte tloušťku tenké vrstvy ve dvou různých místech. 2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná. 3. Okalibrujte
Elektrický signál - základní elektrické veličiny
EVROPSKÝ SOCIÁLNÍ FOND Elektrický signál - základní elektrické veličiny PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206
Světlo jako elektromagnetické záření
Světlo jako elektromagnetické záření Základní pojmy: Homogenní prostředí prostředí, jehož dané vlastnosti jsou ve všech místech v prostředí stejné. Izotropní prostředí prostředí, jehož dané vlastnosti
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. x m. Ne čas!
MECHANICKÉ VLNĚNÍ I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í uveďte rozdíly mezi mechanickým a elektromagnetickým vlněním zdroj mechanického vlnění musí. a to musí být přenášeno vhodným prostředím,
Interference vlnění
8 Interference vlnění Umět vysvětlit princip interference Umět vysvětlit pojmy interferenčního maxima a minima 3 Umět vysvětlit vznik stojatého vlnění 4 Znát podobnosti a rozdíly mezi postupnýma stojatým
MODUL 4. OPTIKA 4.1. ÚVODNÍ POJMY, SVĚTLO, ŠÍŘENÍ SVĚTLA, INDEX LOMU SHRNUTÍ
MODUL 4. OPTIKA 4.1. ÚVODNÍ POJMY, SVĚTLO, ŠÍŘENÍ SVĚTLA, INDEX LOMU SHRNUTÍ Světlo - ze zdroje světla se světlo šíří jako elektromagnetické vlnění příčné, které má ve vakuu vlnovou délku c λ = υ, a to
Fyzikální podstata zvuku
Fyzikální podstata zvuku 1. základní kmitání vzduchem se šíří tlakové vzruchy (vzruchová vlna), zvuk je systémem zhuštěnin a zředěnin podstatou zvuku je kmitání zdroje zvuku a tím způsobené podélné vlnění
FYZIKA Elektromagnetické vlnění
Výukový materiál zpracován v rámci operačního projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0512 Střední škola ekonomiky, obchodu a služeb SČMSD Benešov, s.r.o. FYZIKA Elektromagnetické
Kuličkové šrouby a matice - ekonomické
Kuličkové šrouby a matice - ekonomické Tiskové chyby, rozměrové a konstrukční změny vyhrazeny. Obsah Obsah 3 Deformační zatížení 4 Kritická rychlost 5 Kuličková matice FSU 6 Kuličková matice FSE 7 Kuličková
je dána vzdáleností od pólu pohybu πb
7_kpta Tyč tvaru le obrázku se pohybuje v rohu svislé stěny tak, že bo A se o rohu (poloha A 0 ) vzaluje s konstantním zrychlením a A 1. m s. Počáteční rychlost bou A byla nulová. Bo B klesá svisle olů.
2. Pomocí Hg výbojky okalibrujte stupnici monochromátoru SPM 2.
1 Pracovní úkoly 1. Změřte současně světelnou i voltampérovou charakteristiku polovodičového laseru. Naměřené závislosti zpracujte graficky. Stanovte prahový proud i 0. 2. Pomocí Hg výbojky okalibrujte
24. Elektromagnetické kmitání a vlnění
24. Elektromagnetické kmitání a vlnění 1. Elektromagnetické kmity ( elektromagnetický oscilátor, rozbor elektromagnetických kmitů, elektromagnetický oscilátor v praxi ) 2. Elektromagnetické vlny ( jejich
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK FYZIKÁLNÍ PRAKTIKUM III Úloha číslo: 16 Název: Měření indexu lomu Fraunhoferovou metodou Vypracoval: Ondřej Hlaváč stud. skup.: F dne:
ELEKTROMAGNETICKÉ ZÁŘENÍ
VY_32_INOVACE_FY.16 ELEKTROMAGNETICKÉ ZÁŘENÍ Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Elektromagnetické záření Jakýkoli