4. FRAUNHOFERŮV OHYB NA ŠTĚRBINĚ
|
|
- Radek Říha
- před 6 lety
- Počet zobrazení:
Transkript
1 4. FRAUNHOFERŮV OHYB NA ŠTĚRBINĚ Měřicí potřeby 1 helium-neonový laser měrná obélníková štěrbina 3 stínítko s měřítkem 4 stínítko s fotočlánkem 5 zapisovač Obecná část Při opau rovinné monochromatické vlny na štěrbinu ochází k tzv. ohybovému jevu (viz obr.1. Jev vysvětlujeme pomocí Huygensova principu. Boy roviny, které vymezuje obélníková štěrbina, chápeme jako elementární zroje vlnění vysílající vlnění všemi směry. Charakter vlnění na stínítku za štěrbinou pak opovíá součtu vlnění o elementárních zrojů. Ze uvažujeme tzv. Fraunhoferův ohyb, k němuž ochází ve velké vzálenosti o štěrbiny. Rovinu štěrbiny rozělíme po élce na n elementárních zrojů. Ve směru P 0, kolmém k rovině štěrbiny, jsou všechny zroje ve fázi, a proto výslená amplitua vlnění A(P 0 ve směru P 0 je rovna A(P 0 = n. A, (1 ke A je amplitua vlnění elementárního zroje. B B' C C' A P 0 Obr. 1 Ohyb světla na štěrbině AB štěrbina, šířka štěrbiny, α úhel ohybu, δ ráhové Ve směru P nejsou již jenotlivé vlny ve fázi, ale mají jistý fázový rozíl. Vlnění vycházející z bou B ve směru P má proti vlně vycházející z bou A ráhový rozíl δ =.. Dvě sousení elementární vlny mají ráhový rozíl δ. =. ( n n To opovíá fázovému rozílu (v raiánech π δ π. ϕ = =, (3 n n ke je vlnová élka záření laseru ( = 63,8 nm. Celková amplitua ve směru P je ána vektorovým součtem fázorů jenotlivých elementárních vln (viz obr. nϕ nϕ A (P = r. = A, (4 ϕ P 51
2 A ke r =. (5 ϕ Vztahy (1 a (4 použijeme pro výpočet poměru intenzit. Platí nϕ π. A(P = =. A(P ϕ π. 0 n. n. n Jestliže přejeme k limitě pro n, platí π. π. lim n. =. n n Potom π. u A(P = A(P π. 0 = A(P0, ke u =. (6 π. u Protože intenzita vlny je úměrná čtverci amplituy, platí u I (P = I(P0, (7 u ke I(P 0 je intenzita ve směru P 0. Z rozboru této závislosti vyplývá, že minimum intenzity pozorujeme ve směrech aných vztahem α = k, (8 ke k = ± 1, ±,. Maximální intenzita je ána pomínkou tg u = u. Řešením této rovnice ostaneme pomínky pro maxima ( ( 0 = 0 ± 3 = ± 3, ( ± 1 = ± 1, ( ± 4 = ± 4, (9 ( ± = ±, ( ± 5 = ± 5, A. Fraunhoferův ohyb pozorovaný na stínítku Jak bylo výše řečeno, vzniknou při ohybovém jevu na stínítku světlé proužky (maxima oělené minimy intenzity záření, pro něž platí α = k = s k, (10 5
3 ke je vlnová élka opaajícího světla, α je úhel, po kterým pozorujeme minimum a k = ± 1, ±,. Za přepoklau, že ifrakční obraz je symetrický vzhleem k přímému paprsku 1 (x +k = x k = x k, určíme polohu minima x k na stínítku měřením souřanic l +k a l k (viz obr. 3. Potom platí l+ k l k xk ( měř =. (11 Směroatnou chybu honoty x a k(měř stanovte sami pole praviel uveených v kapitole Chyby měře- I 3 ní, ost. B a C (chyba stupnice a chyba nepřímo měřené veličiny. x x x x x x x Polohu minima x k lze stanovit též teoreticky výpočtem ze 0 l x (měř l 4 + vztahu x k = a.tg α = Obr. 3 Průběh intenzity I na stínítku při ohybovém jevu. (kótování proveeno pro k = ± 1 paprsek laseru, štěrbina, 3 stínítko, 4 měřítko s noniem, a vzálenost štěrbiny o stínítka = a. 1 = α a. s 1 k sk, (1 ke za je osazeno z (10 a a je vzálenost štěrbiny o stínítka. Teoretická honota vypočtená ze vztahu (1 má ovšem rovněž svoji chybu je funkcí několika veličin, z nichž kažá přispívá svojí chybou k chybě výslené. Výslenou chybu musíme tey stanovit pole věty o přenosu chyby (kap. Chyby měření, ost. C. Zanebáme-li chybu vlnové élky světla laseru, jež je velmi malá, ostaneme xk xk sk a δx ( ( k = δa + δsk δa + δs 3 k a = s, (13 k 1 sk (1 sk ke δ sk je absolutní chyba veličiny s k a δ a je chyba v určení vzálenosti štěrbina stínítko. Chybu δ s určíme opět pole věty o přenosu chyby jako k ( ξ ( ξ ξ s k = +, δ sk = sk. ξsk (14 Relativní chyba vlnové élky ξ je ve srovnání s relativní chybou šířky štěrbiny ξ zanebatelná, takže lze psát ξs k ξ. Veškeré informace týkající se chyb měření najete v úvoní části skript v kapitole Chyby měření. Vztah (1 lze považovat za experimentálně potvrzený, jestliže souhlasí x k(měř s x k vypočteným v rámci chyb měření (pravilo σ. 53
4 Měření Prověření vztahu (10 proveeme na zařízení, které je znázorněno na obr. 4. Zrojem monochromatického záření je helium-neonový laser pracující na vlnové Obr. 4 Zařízení pro pozorování Fraunhoferova ohybu 1 stínítko, oečítací lupa, 3 měřítko s noniem, 4 mikrometrický šroub, 5 štěrbina, 6 voítko, 7 výstup z laseru, 8 laser, 9 ifrakční obraz na stínítku, 10 nosník zařízení élce = 63,8 nm. Laser je napájen vysokým napětím ze zroje, který se uvee o chou síťovým vypínačem. Výstupní paprsek laseru nesmí opaat přímo o oka. Expozice po obu řáově několik esetin sekuny může způsobit poškození sítnice oka. Štěrbina má plynule nastavitelnou šířku pomocí mikrometrického šroubu 4 s ělením stupnice po 0,01 mm. Polohy minim na stínítku oečítáme měřítkem s esetiílkovým noniem a zapisujeme o prvních tří sloupců tabulky 1. Pracovní úkol 1 Změřte všechny viitelné (tj. minimálně 3! polohy minim pro tři různé šířky štěrbiny. Z naměřených honot vypočtěte x k(měř a její chybu měření δ x k(měř. Vypočítejte teoretickou honotu x k a její chybu δ x k pole vztahů (1 a (13. 3 Srovnejte x k(měř a x k vypočtenou. Pro zápis naměřených a vypočtených honot (včetně jenotek! použijte tabulku 1. Tabulka 1 Měřené Vypočtené k l +k l k xk(měř δ x k(měř x k δ x k 54
5 B. Fraunhoferův ohyb na štěrbině registrovaný fotočlánkem Na zařízení, schematicky znázorněném na obr. 5, prověříme platnost vztahů (7 a (1. Namísto stínítka je ze posuvný fotočlánek, jímž lze proměřit intenzitu 6 IN 1 3 Schema uspořáání měřicí aparatury a 1 - kloubová hříel - posuvná skříňka s fotočlánkem a vstupní štěrbinou 3 - pohybový šroub pro posuv skříňky 4 - štěrbina, na níž vzniká ifrakce 5 - He-Ne laser, = 63,8 nm 6 - zapisovač s pohonnou jenotkou 4 5 Obr. 5 světla I ve všech boech osy x (viz obr. 3. Pro polohu x ohybových vln na stínítku platí x = a.tgα, ke a je vzálenost štěrbiny o stínítka. I (P je naměřená intenzita ve směru P (obr. 1. O této honoty musíme oečíst intenzitu I, kterou změříme při zacloněném laserovém paprsku abychom vyloučili vliv enního světla. Skutečnou intenzitu ve směru P tey ostaneme jako I(P = I (P I. I( P Z naměřených honot spočítáme pro kažé maximum experimentální poměr I( P 0 a pole vztahu (7 poměr teoretický, ke I(P 0 je intenzita v přímém směru. Obě honoty by v rámci chyb měly souhlasit. Měření 1 Zapněte laser, nastavte šířku štěrbiny a vzálenost a štěrbiny o fotočlánku. Nastavte na zapisovači (obr. 6 vhoný poměr otáček pohonného mechanismu vzhleem k posuvu papíru knoflíkem 9. Stoupání pohybového šroubu je 1 mm, takže při jené otáčce se fotočlánek posune o 1 mm. 3 Nastavte vhonou rychlost posuvu papíru knoflíkem 6 ( v sec/cm. 4 Nastavte knoflík 5 o polohy J 5 Knoflíkem 4 volte vhoný prouový rozsah. Protože je poměr intenzit hlavního maxima (přímý paprsek a velejších maxim velmi velký, bue nutné pro zápis 55
6 Obr. 6 Zapisovač 1 síťový vypínač spuštění posuvu papíru 3 nastavení nuly 4 přepínač rozsahů (100 je nejnižší citlivost 5 přepínač měření napětí/prou 6 rychlost posuvu papíru 7 výstupní otvor pohonné jenotky 8 páčka pro přepínání smyslu otáčení (v mezipoloze je možno s hříelí otáčet ručně 9 nastavení rychlosti otáček vzhleem k rychlosti papíru (v cm/otáčku 10 otvor pro vkláání pera 11 páčka pro spuštění pera hlavního maxima použít jiný rozsah než pro ostatní maxima. Celou operaci přepínání rozsahů je vhoné si vyzkoušet nanečisto bez spuštěného pera zapisovače. Použité rozsahy je nutné si zaznamenat pro alší vyhonocení! 6 Není-li zápis symetrický vzhleem k nultému maximu, neopaá paprsek kolmo na štěrbinu. Pracovní úkol 1 Změřte průběh intenzity světla při ohybu na štěrbině pro tři různé šířky štěrbiny. Vypočtěte poměr intenzit pole vztahu (7 a porovnejte s naměřenými honotami. Pro zápis honot použijte tabulku. 3 Oečtěte ze záznamu polohy maxim a minim, zapište o tabulky 3 a porovnejte s teoretickými honotami vypočtenými pole vztahů (8 a (9. Tabulka = [mm] a = [m] I = Řá I( P I( P Maxima I (P I(P P 0 P I( měř I( vyp 56
7 Tabulka 3 číslo = [mm] a = [m] maxima/minima x min (měř. x min (vyp. x max (měř. x max (vyp
Vypracoval Datum Hodnocení. V celé úloze jsme používali He-Ne laser s vlnovou délkou λ = 632, 8 nm. Paprsek jsme nasměrovali
Název a číslo úlohy - Difrakce světelného záření Datum měření 3.. 011 Měření proveli Tomáš Zikmun, Jakub Kákona Vypracoval Tomáš Zikmun Datum. 3. 011 Honocení 1 Difrakční obrazce V celé úloze jsme používali
MĚŘENÍ JEDNODUCHÝCH SPEKTER DIFRAKČNÍM SPEKTROMETREM
Úloha č. 9 MĚŘENÍ JENOUCHÝCH SPEKTER IFRAKČNÍM SPEKTROMETREM ÚKOL MĚŘENÍ:. Kalibrujte spektrometr pomocí He spektra a určete mřížkovou konstantu použité ifrakční mřížky.. Stanovte vlnovou élku spektrálních
Měření vlnové délky spektrálních čar rtuťové výbojky pomocí optické mřížky
Měření vlnové délky spektrálních čar rtuťové výbojky pomocí optické mřížky Úkol : 1. Určete mřížkovou konstantu d optické mřížky a porovnejte s hodnotou udávanou výrobcem. 2. Určete vlnovou délku λ jednotlivých
Laboratorní úloha č. 7 Difrakce na mikro-objektech
Laboratorní úloha č. 7 Difrakce na mikro-objektech Úkoly měření: 1. Odhad rozměrů mikro-objektů z informací uváděných výrobcem. 2. Záznam difrakčních obrazců (difraktogramů) vzniklých interakcí laserového
Obrázek 2: Experimentální zařízení pro E-I. [1] Dřevěná základna [11] Plastové kolíčky [2] Laser s podstavcem a držákem [12] Kulaté černé nálepky [3]
Stránka 1 ze 6 Difrakce na šroubovici (Celkový počet bodů: 10) Úvod Rentgenový difrakční obrázek DNA (obr. 1) pořízený v laboratoři Rosalindy Franklinové, známý jako Fotka 51 se stal základem pro objev
STUDIUM OHYBOVÝCH JEVŮ LASEROVÉHO ZÁŘENÍ
Úloha č. 7a STUDIUM OHYBOVÝCH JEVŮ ASEROVÉHO ZÁŘENÍ ÚKO MĚŘENÍ: 1. Na stínítku vytvořte difrakční obrazec difrakční mřížky, štěrbiny a vlasu. Pro všechny studované objekty zaznamenejte pomocí souřadnicového
Měření a analýza mechanických vlastností materiálů a konstrukcí. 1. Určete moduly pružnosti E z ohybu tyče pro 4 různé materiály
FP 1 Měření a analýza mechanických vlastností materiálů a konstrukcí Úkoly : 1. Určete moduly pružnosti E z ohybu tyče pro 4 různé materiály 2. Určete moduly pružnosti vzorků nepřímo pomocí měření rychlosti
Kolmost rovin a přímek
Kolmost rovin a přímek 1.Napište obecnou rovnici roviny, která prochází boem A[ 7; ;3] a je kolmá k přímce s parametrickým vyjářením x = + 3 t, y = t, z = 7 t, t R. Řešení: Hleanou rovinu si označíme α:
optika0 Světlo jako vlna
optika0 Světlo jako vlna Spor o postatě světla se přenesl z oblasti filozofických úvah o reality koncem 17. století. Vlnovou teorii světla uveřejnil v knize Pojenání o světle (190) holanský fyziky Christiaan
MĚŘENÍ VLNOVÝCH DÉLEK SVĚTLA MŘÍŽKOVÝM SPEKTROMETREM
MĚŘENÍ VLNOVÝCH DÉLEK SVĚTLA MŘÍŽKOVÝM SPEKTROMETREM Difrakce (ohyb) světla je jedním z několika projevů vlnových vlastností světla. Z těchto důvodů světlo při setkání s překážkou nepostupuje dále vždy
5 Poměr rychlostí autobusu a chodce je stejný jako poměr drah uražených za 1 hodinu: v 1 = s 1
Řešení úloh 1 kola 7 ročníku fyzikální olympiáy Kategorie C Autoři úloh: J Thomas (1,, 3), J Jírů (4, ), J Šlégr (6) a T Táborský (7) 1a) Označme stranu čtverce na mapě Autobus za 1 hoinu urazí ráhu s
Úloha 10: Interference a ohyb světla
Úloha 10: Interference a ohyb světla FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 29.3.2010 Jméno: František Batysta Pracovní skupina: 5 Ročník a kroužek: 2. ročník, pond. odp. Spolupracovník: Štěpán
Jméno a příjmení. Ročník. Měřeno dne Příprava Opravy Učitel Hodnocení. Vlnové vlastnosti světla difrakce, laser
FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Petr Švaňa Ročník 1 Předmět IFY Kroužek 38 ID 155793 Spolupracoval Měřeno dne Odevzdáno dne Lukáš Teuer 8.4.2013 22.4.2013 Příprava Opravy
Laboratorní práce č. 3: Měření vlnové délky světla
Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 3: Měření vlnové délky světla G Gymnázium Hranice Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Gymnázium G Hranice Test
Úloha č. 1 pomůcky Šíření tepla v ustáleném stavu základní vztahy
Úloha č. pomůcky Šíření tepla v ustáleném stavu záklaní vztahy Veení Fourriérův zákon veení tepla, D: Hustota tepelného toku je úměrná změně teploty ve směru šíření tepla, konstantou úměrnosti je součinitel
STACIONÁRNÍ MAGNETICKÉ POLE
Příklay: 1. Přímý voič o élce 0,40 m, kterým prochází prou 21 A, leží v homogenním magnetickém poli kolmo k inukčním čarám. Velikost vektoru magnetické inukce je 1,2 T. Vypočtěte práci, kterou musíme vykonat
Interference a ohyb světla
Fyzikální praktikum FJFI ČVUT v Praze Úloha č. 10 : Interference a ohyb světla Jméno: Ondřej Ticháček Pracovní skupina: 7 Kruh: ZS 7 Datum měření: 25.3.2013 Klasifikace: Interference a ohyb světla 1 Zadání
je dána vzdáleností od pólu pohybu πb
7_kpta Tyč tvaru le obrázku se pohybuje v rohu svislé stěny tak, že bo A se o rohu (poloha A 0 ) vzaluje s konstantním zrychlením a A 1. m s. Počáteční rychlost bou A byla nulová. Bo B klesá svisle olů.
Youngův dvouštěrbinový experiment
Youngův dvouštěrbinový experiment Cíl laboratorní úlohy: Cílem laboratorní úlohy je pochopit princip dvouštěrbinové interference a určit vlnovou délku světla na základě rozteče pozorovaných interferenčních
UNIVERZITA KARLOVA V PRAZE Přírodovědecká fakulta
Chromatografie Zroj: http://www.scifun.org/homeexpts/homeexpts.html [34] Diaktický záměr: Vysvětlení pojmu chromatografie. Popis: Žáci si vyzkouší velmi jenouché ělení látek pomocí papírové chromatografie.
F (x, h(x)) T (g)(x) = g(x)
11 Implicitní funkce Definice 111 (implicitní funkce) Nechť F : R 2 R je funkce a [x 0, y 0 ] R 2 je takový bo, že F (x 0, y 0 ) = 0 Řekneme, že funkce y = f(x) je v okolí bou [x 0, y 0 ] zaána implicitně
2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná.
1 Pracovní úkoly 1. Změřte tloušťku tenké vrstvy ve dvou různých místech. 2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná. 3. Okalibrujte
Měření výkonu jednofázového proudu
Měření výkonu jednofázového proudu Návod k laboratornímu cvičení Úkol: a) eznámit se s měřením činného výkonu zátěže elektrodynamickým wattmetrem se dvěma možnými způsoby zapojení napěťové cívky wattmetru.
Laboratorní práce č. 1: Měření délky
Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.
Difrakce NedÏlnÌ odpoledne na ostrovï La Grande Jatte
37 Difrakce Georges Seurat namaloval NeÏlnÌ opolene na ostrovï La Grane Jatte nikoli obvykl mi tahy ötïtcem, ale pouze velk m poëtem mal ch barevn ch teëek, coû je malì sk styl naz van pointilismus. StojÌte-li
Interference vlnění
8 Interference vlnění Umět vysvětlit princip interference Umět vysvětlit pojmy interferenčního maxima a minima 3 Umět vysvětlit vznik stojatého vlnění 4 Znát podobnosti a rozdíly mezi postupnýma stojatým
odrazu. Ohyb světla je projevem jeho vlnové povahy a v praxi hraje velmi důležitou úlohu, nebot
Laboratorní úloha Fraunhoferův ohyb světla na štěrbině a mřížce 1.1 Úkol měření 1. Pro dvě šířky štěrbiny a dvě vlnové délky ověřte platnost vzorce pro Fraunhoferův ohyb na štěrbině.. Určete mřížkovou
Difrakce na mřížce. Úkoly měření: Použité přístroje a pomůcky: Základní pojmy, teoretický úvod: Úloha č. 7
Úloha č. 7 Difrakce na mřížce Úkoly měření: 1. Prostudujte difrakci na mřížce, štěrbině a dvojštěrbině. 2. Na základě měření určete: a) Vzdálenost štěrbin u zvolených mřížek. b) Změřte a vypočítejte úhlovou
Přijímací zkouška na navazující magisterské studium 2015
Přijímací zkouška na navazující magisterské stuium 05 Stuijní program: Stuijní obor: Řešení příklaů pečlivě oůvoněte. Příkla (5 boů) Spočtěte ke M {(y, x) R ; x 0, x + y a}. Příkla (5 boů) Nalezněte supremum
3. OHYB A INTERFERENCE SVĚTLA OPTICKOU MŘÍŽKOU
3. OHYB A INTERFERENCE SVĚTLA OPTICKOU MŘÍŽKOU Měřicí potřeby 1) spektrometr ) optická mřížka 3) sodíková výbojka 4) Balmerova lampa Teorie Optická mřížka na průchod světla je skleněná destička, na níž
ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Ampérův zákon
ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Ampérův zákon Peter Dourmashkin MIT 26, překla: Jan Pacák (27) Obsah 5 AMPÉRŮV ZÁKON 3 51 ÚKOLY 3 52 ALGORITMUS PRO ŘEŠENÍ PROBLÉMŮ 3 ÚLOHA 1: VÁLCOVÝ PLÁŠŤ
Úloha II.E... čočkování
Úloha II.E... čočkování 8 boů; průměr 5,46; řešilo 65 stuentů V obálce jste spolu se zaáním ostali i vě čočky. Vaším úkolem je změřit jejich parametry ruh a ohniskovou vzálenost. Poznámka Poku nejste stávající
Zakřivený nosník. Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly. Stavební statika, 1.ročník bakalářského studia
Stavební statika, 1.ročník bakalářského stuia Zakřivený nosník Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly Katera stavební mechaniky Fakulta stavební, VŠB - Technická univerzita
Petr Šafařík 21,5. 99,1kPa 61% Astrofyzika Druhý Třetí
1 Petr Šafařík Astrofyzika Druhý Třetí 1,5 11 99,1kPa 61% Fyzikální praktika 11 Měření tloušt ky tenkých vrstev Tolanského metodou Průchod světla planparalelní deskou a hranolem Petr Šafařík 0. listopadu
Střední průmyslová škola elektrotechnická a informačních technologií Brno
Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu: CZ.1.07/1.5.00/34.0521 Investice do vzdělání nesou nejvyšší úrok Autor: Ing. Bohumír Jánoš Tématická sada:
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 10: Interference a ohyb světla
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 8.4.2011 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Úloha 10: Interference a ohyb
5. Statika poloha střediska sil
5. Statika poloha střediska sil 5.1 Rovnoběžné sily a jejich střed Uvažujeme soustavu vzájemně rovnoběžných sil v prostoru s pevnými působišti. Každá síla má působiště dané polohovým vektorem. Všechny
Laboratorní úloha č. 2 Vzájemná induktivní vazba dvou kruhových vzduchových cívek - Faradayův indukční zákon. Max Šauer
Laboratorní úloha č. Vzájemná induktivní vazba dvou kruhových vzduchových cívek - Faradayův indukční zákon Max Šauer 14. prosince 003 Obsah 1 Popis úlohy Úkol měření 3 Postup měření 4 Teoretický rozbor
CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI
CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI Stojící povrch, Pohybující se povrch Příklad č. 1: Vodorovný volný proud vody čtvercového průřezu o straně 25 cm dopadá kolmo na rovinnou desku. Určete velikost
Fyzikální praktikum FJFI ČVUT v Praze
Fyzikální praktikum FJFI ČVUT v Praze Úloha 6: Geometrická optika Datum měření: 8. 4. 2016 Doba vypracovávání: 10 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: V přípravě
Fyzika II. Marek Procházka Vlnová optika II
Fyzika II Marek Procházka Vlnová optika II Základní pojmy Reflexe (odraz) Refrakce (lom) jevy na rozhraní dvou prostředí o různém indexu lomu. Disperze (rozklad) prostorové oddělení složek vlnění s různou
Zadání. Pracovní úkol. Pomůcky
Pracovní úkol Zadání 1. Najděte směr snadného průchodu polarizátoru užívaného v aparatuře. 2. Ověřte, že zdroj světla je polarizován kolmo k vodorovné rovině. 3. Na přiložených vzorcích proměřte závislost
Postup při měření rychlosti přenosu dat v mobilních sítích dle standardu LTE (Metodický postup)
Praha 15. srpna 2013 Postup při měření rchlosti přenosu at v mobilních sítích le stanaru LTE (Metoický postup Zveřejněno v souvislosti s vhlášením výběrového řízení za účelem uělení práv k vužívání ráiových
Laboratorní úloha č. 3 Spřažená kyvadla. Max Šauer
Laboratorní úloha č. 3 Spřažená kyvadla Max Šauer 17. prosince 2003 Obsah 1 Úkol měření 2 2 Seznam použitých přístrojů a pomůcek 2 3 Výsledky měření 2 3.1 Stanovení tuhosti vazbové pružiny................
Název: Měření vlnové délky světla pomocí interference a difrakce
Název: Měření vlnové délky světla pomocí interference a difrakce Autor: Doc. RNDr. Milan Rojko, CSc. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: fyzika, matematika
Měření parametrů světelných zdrojů a osvětlení
FP 4 Měření parametrů světelných zdrojů a osvětlení Úkoly : 1. Určete a porovnejte normované prostorové vyzařovací charakteristiky určených světelných zdrojů (žárovky, LD dioda) pomocí fotogoniometru 2.
1. Změřte Hallovo napětí v Ge v závislosti na proudu tekoucím vzorkem, magnetické indukci a teplotě. 2. Stanovte šířku zakázaného pásu W v Ge.
V1. Hallův jev Úkoly měření: 1. Změřte Hallovo napětí v Ge v závislosti na proudu tekoucím vzorkem, magnetické indukci a teplotě. 2. Stanovte šířku zakázaného pásu W v Ge. Použité přístroje a pomůcky:
Tabulka I Měření tloušťky tenké vrstvy
Pracovní úkol 1. Změřte tloušťku tenké vrstvy ve dvou různých místech. 2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná. 3. Okalibrujte
Fabry Perotův interferometr
Fabry Perotův interferometr Princip Dvě zrcadla jsou sestavena tak aby tvořila tzv. Fabry Perotův interferometr, s jehož pomocí je vyšetřován svazek paprsků vycházejících z laseru. Při experimentu se pohybuje
Měření délky, určení objemu tělesa a jeho hustoty
Úloha č. 1a Měření délky, určení objemu tělesa a jeho hustoty Úkoly měření: 1. Seznámení se s měřicími přístroji posuvné měřítko, mikrometr, laboratorní váhy. 2. Opakovaně (10x) změřte rozměry dvou zadaných
27. Vlnové vlastnosti světla
27. Vlnové vlastnosti světla Základní vlastnosti světla (rychlost světla, šíření světla v různých prostředích, barva tělesa) Jevy potvrzující vlnovou povahu světla Ohyb a polarizace světla (ohyb světla
Fyzikální praktikum FJFI ČVUT v Praze
Fyzikální praktikum FJFI ČVUT v Praze Úloha 10: Interference a ohyb větla Datum měření: 6. 5. 2016 Doba vypracovávání: 7 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klaifikace: 1 Zadání 1. Bonu:
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Stavba Michelsonova interferometru a ověření jeho funkce
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III. Úloha č. 20 Název: Stavba Michelsonova interferometru a ověření jeho funkce Pracoval: Lukáš Vejmelka obor (kruh) FMUZV
Studium ultrazvukových vln
Číslo úlohy: 8 Jméno: Vojtěch HORNÝ Spolupracoval: Jaroslav Zeman Datum měření: 12. 10. 2009 Číslo kroužku: pondělí 13:30 Číslo skupiny: 6 Klasifikace: Fyzikální praktikum FJFI ČVUT v Praze Studium ultrazvukových
Podle studijních textů k úloze [1] se divergence laserového svaku definuje jako
Úkoly 1. Změřte divergenci laserového svazku. 2. Z optické stavebnice sestavte Michelsonův interferometr. K rozšíření svazku sestavte Galileův teleskop. Ze známých ohniskových délek použitých čoček spočtěte,
E-II. Difrakce způsobená povrchovými vlnami na vodě
Strana 1 z 6 Difrakce způsobená povrchovými vlnami na vodě Úvod Vznik a šíření vln na povrchu kapaliny jsou důležité a dobře prozkoumané jevy. U těchto vln je vratná síla působící na kmitající tekutinu
OVMT Měření vnějších rozměrů
Měření vnějších rozměrů Základní pojmy Při kontrole výrobků se zjišťuje, zda odpovídají požadavkům rozměry, tvary a jakost ploch při použití předepsaných měřicích postupů. Zásady správného měření 1. Pro
- + C 2 A B V 1 V 2 - U cc
RIEDL 4.EB 10 1/6 1. ZADÁNÍ a) Změřte frekvenční charakteristiku operačního zesilovače v invertujícím zapojení pro růžné hodnoty zpětné vazby (1, 10, 100, 1000kΩ). Vstupní napětí volte tak, aby nedošlo
Teorie. iars 1/9 Čepové a kolíkové spoje
Čeové a kolíkové soje V článku jsou oužita ata, ostuy, algoritmy a úaje z oborné literatury a norem ANSI, ISO, DIN a alších. Seznam norem: ANSI B8.8., ANSI B8.8., ISO 338, ISO 339, ISO 30, ISO 3, ISO 8733,
Optika CD přehrávače. Zdeněk Bochníček, Přírodovědecká fakulta MU v Brně
Optika CD přehrávače Zeněk Bochníček, Příroověecká fakulta MU v Brně V roce 1977, právě 100 let po vynálezu fonografu T. A. Eisona, byl firmami Sony a Philips uveen na trh nový revoluční systém reproukce
LMF 2. Optická aktivita látek. Postup :
LMF 2 Optická aktivita látek Úkoly : 1. Určete specifickou otáčivost látky měřením pro známou koncentraci roztoku 2. Měření opakujte pro různé koncentrace a vyneste závislost úhlu stočení polarizační roviny
Průřezové charakteristiky základních profilů.
Stření průmyslová škola a Vyšší oborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřenictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Průřezové
Měření fotometrických parametrů světelných zdrojů
FP 4 Měření fotometrických parametrů světelných zdrojů Úkoly : 1. Určete a porovnejte normované prostorové vyzařovací charakteristiky určených světelných zdrojů (žárovky, LED dioda) pomocí fotogoniometru
Beton 5. Podstata železobetonu
Beton 5 Pro. Ing. ilan Holický, DrSc. ČVUT, Šolínova 7, 166 08 Praha 6 Tel.: 435384, Fax: 43553 E-mail: milan.holicky@klok.cvut.cz, http://www.klok.cvut.cz Peagogická činnost Výuka bakalářských a magisterský
13 Měření na sériovém rezonančním obvodu
13 13.1 Zadání 1) Změřte hodnotu indukčnosti cívky a kapacity kondenzátoru RC můstkem, z naměřených hodnot vypočítej rezonanční kmitočet. 2) Generátorem nastavujte frekvenci v rozsahu od 0,1 * f REZ do
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Fyzikální praktikum 2
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Fyzikální praktikum 2 Zpracoval: Markéta Kurfürstová Naměřeno: 16. října 2012 Obor: B-FIN Ročník: II Semestr: III
Podpora rozvoje praktické výchovy ve fyzice a chemii
VLNOVÁ DÉLKA A FREKVENCE SVĚTLA 1) Vypočítejte frekvenci fialového světla, je-li jeho vlnová délka 390 nm. Rychlost světla ve vakuu je 3 10 8 m s 1. = 390 nm = 390 10 9 m c = 3 10 8 m s 1 f=? (Hz) Pro
Měření vlnové délky, impedance, návrh impedančního přizpůsobení
Měření vlnové délky, impedance, návrh impedančního přizpůsobení 1. Zadání: a) Změřte závislost v na kmitočtu pro f 8,12GHz. b) Změřte zadanou impedanci a impedančně ji přizpůsobte. 2. Schéma měřicí soupravy:
Fyzikální praktikum FJFI ČVUT v Praze
Fyzikální praktikum FJFI ČVUT v Praze Úloha 9: Měření s polarizovaným světlem Datum měření: 29. 4. 2016 Doba vypracovávání: 8 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání
Fyzika 2 - rámcové příklady vlnová optika, úvod do kvantové fyziky
Fyzika 2 - rámcové příklady vlnová optika, úvod do kvantové fyziky 1. Vysvětlete pojmy kulová a rovinná vlnoplocha. 2. Pomocí Hyugensova principu vysvětlete konstrukci tvaru vlnoplochy v libovolném budoucím
Fyzika pro chemiky II
Fyzika pro chemiky II P. Klang, J. Novák, R. Štoudek, Ústav fyziky kondenzovaných látek, PřF MU Brno 18. února 2004 1 Optika 1. Rovinná elektromagnetická vlna o frekvenci f = 5.45 10 14 Hz polarizovaná
ELEKTŘINA A MAGNETIZMUS
ELEKTŘINA A MAGNETIZMUS XIV. Interference a ohyb Obsah 14 INTERFERENCE A OHYB 14.1 SUPERPOZICE VLN 14. YOUNGŮV DVOJŠTĚRBINOVÝ EXPERIMENT 4 14.3 ROZLOŽENÍ INTENZITY 7 14.4 OHYB (DIFRAKCE) 11 14.5 OHYB NA
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK FYZIKÁLNÍ PRAKTIKUM III Úloha číslo: 16 Název: Měření indexu lomu Fraunhoferovou metodou Vypracoval: Ondřej Hlaváč stud. skup.: F dne:
PROTLAČENÍ. Protlačení 7.12.2011. Je jev, ke kterému dochází při působení koncentrovaného zatížení na malé ploše A load
7..0 Protlačení Je jev, ke kterému ochází při působení koncentrovaného zatížení na malé ploše A loa PROTLAČENÍ A loa A loa A loa Zatěžovací plochu A loa obyčejně přestavuje kontaktní plocha mezi sloupem
pracovní list studenta
Výstup RVP: Klíčová slova: pracovní list studenta Analytická geometrie lineárních útvarů Mirek Kubera žák řeší analyticky polohové a metrické úlohy o lineárních útvarech v rovině a prostoru souřadnice,
Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83
Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice
Střední průmyslová škola elektrotechnická a informačních technologií Brno
Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu: CZ.1.07/1.5.00/34.0521 Investice do vzdělání nesou nejvyšší úrok Autor: Ing. Bohumír Jánoš Tématická sada:
Fyzikální praktikum FJFI ČVUT v Praze
Fyzikální praktikum FJFI ČVUT v Praze Úloha 12: Sonar Datum měření: 5. 11. 2015 Skupina: 8, čtvrtek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: V domácí přípravě spočítejte úhel prvních
6. MĚŘENÍ SÍLY A KROUTICÍHO MOMENTU
6. MĚŘENÍ SÍLY A KROUTICÍHO MOMENTU 6.1. Úkol měření 6.1.1. Měření krouticího momentu a úhlu natočení a) Změřte krouticí moment M k a úhel natočení ocelové tyče kruhového průřezu (ČSN 10340). Měření proveďte
Přijímací zkouška na navazující magisterské studium Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy
Přijímací zkouška na navazující magisterské studium 013 Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy Studijní program Učitelství pro základní školy - obor Učitelství fyziky
Střední průmyslová škola elektrotechnická a informačních technologií Brno
Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu: CZ.1.07/1.5.00/34.0521 Investice do vzdělání nesou nejvyšší úrok Autor: Ing. Bohumír Jánoš Tematická sada:
Pulsní měnič pracující v prvním kvadrantu, step-down
FAKLA ELEKROECHNIKY A KOMNIKAČNÍCH ECHNOLOGIÍ VYSOKÉ ČENÍ ECHNICKÉ V BRNĚ Pulsní měnič pracující v prvním kvarantu, step-own BVEL Autoři textu: oc. Dr. Ing. Miroslav Patočka Ing. Petr Procházka, Ph.D červen
CVIČNÝ TEST 10. OBSAH I. Cvičný test 2. Mgr. Renáta Koubková. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 10 Mgr. Renáta Koubková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Pro x R řešte rovnici: 5 x 1 + 5 x + 5 x + 3 = 3 155. 2 Za předpokladu
Digitální učební materiál
Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.07/1.5.00/3.080 Zkvalitnění výuky prostřednictvím ICT III/ Inovace a zkvalitnění výuky prostřednictvím
Průmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavební mechaniky
Průmyslová střední škola Letohrad Ing. Soňa Chládková Sbírka příkladů ze stavební mechaniky 2014 Tento projekt je realizovaný v rámci OP VK a je financovaný ze Strukturálních fondů EU (ESF) a ze státního
STATICKY NEURČITÉ RÁMOVÉ KONSTRUKCE S PODDAJNOU PODPOROU SILOVÁ METODA
Zaání STATICKY NEURČITÉ RÁOVÉ KONSTRUKCE S PODDAJNOU PODPOROU SILOVÁ ETODA Příkla č. Vykreslete průěhy vnitřníh sil na konstruki zorazené na Or.. Voorovná část konstruke (příčle) je složena z průřezu a
VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník
VLNOVÁ OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník Vlnová optika Světlo lze chápat také jako elektromagnetické vlnění. Průkopníkem této teorie byl Christian Huyghens. Některé jevy se dají
4. Statika základní pojmy a základy rovnováhy sil
4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr
5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole
5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole 5.1. Zadání úlohy 1. Určete velikost tíhového zrychlení pro Prahu reverzním kyvadlem.. Stanovte chybu měření tíhového zrychlení.
4.5.5 Magnetické působení rovnoběžných vodičů s proudem
4.5.5 Magnetické působení rovnoběžných voičů s prouem Přepoklay: 4502, 4503, 4504 Př. 1: Dvěma velmi louhými svislými voiči prochází elektrický prou. Rozhoni pomocí rozboru magnetických inukčních čar polí
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 1.4.2011 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Měření s polarizovaným světlem
Balmerova série, určení mřížkové a Rydbergovy konstanty
Balmerova série, určení mřížkové a Rydbergovy konstanty V tomto laboratorním cvičení zkoumáme spektrální čáry 1. řádu vodíku a rtuti pomocí difrakční mřížky (mřížkového spektroskopu). Známé spektrální
Kuličkové šrouby a matice - ekonomické
Kuličkové šrouby a matice - ekonomické Tiskové chyby, rozměrové a konstrukční změny vyhrazeny. Obsah Obsah 3 Deformační zatížení 4 Kritická rychlost 5 Kuličková matice FSU 6 Kuličková matice FSE 7 Kuličková
Cvičení Kmity, vlny, optika Část interference, difrakce, fotometrie
Cvičení Kmity, vlny, optika Část interference, difrakce, fotometrie přednášející: Zdeněk Bochníček Tento text obsahuje příklady ke cvičení k předmětu F3100 Kmity, vlny, optika. Příklady jsou rozděleny
Měření absorbce záření gama
Měření absorbce záření gama Úkol : 1. Změřte záření gama přirozeného pozadí. 2. Změřte záření gama vyzářené gamazářičem. 3. Změřte záření gama vyzářené gamazářičem přes absorbátor. 4. Naměřené závislosti
Optika pro mikroskopii materiálů I
Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických
Praktikum III - Optika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 3 Název: Mřížkový spektrometr Pracoval: Matyáš Řehák stud.sk.: 13 dne: 10. 4. 2008 Odevzdal dne:...
Fyzikální praktikum 2. 9. Závislost indexu lomu skla na vlnové délce. Refraktometr
Ústav fyziky kondenzovaných látek Přírodovědecká fakulta, Masarykova univerzita, Brno Fyzikální praktikum 9. Závislost indexu lomu skla na vlnové délce. Refraktometr Úkoly k měření Povinná část Měření
Korekční křivka napěťového transformátoru
8 Měření korekční křivky napěťového transformátoru 8.1 Zadání úlohy a) pro primární napětí daná tabulkou změřte sekundární napětí na obou sekundárních vinutích a dopočítejte převody transformátoru pro
5.3.6 Ohyb na mřížce. Předpoklady: 5305
5.3.6 Ohy na mřížce Předpoklady: 5305 Optická mřížka = soustava rovnoěžných velmi lízkých štěrin. Realizace: Skleněná destička s rovnoěžnými vrypy, přes vryp světlo neprochází, prochází přes nepoškraaná