Předpokládáme vlny, které jsou časově nestabilní z hlediska fáze. Jako model zvolíme vlnu kdy se fáze mění skokem, ale je konstantní během doby

Rozměr: px
Začít zobrazení ze stránky:

Download "Předpokládáme vlny, které jsou časově nestabilní z hlediska fáze. Jako model zvolíme vlnu kdy se fáze mění skokem, ale je konstantní během doby"

Transkript

1 . Koherence.. Časová koherence.. Souvslost časově proměnného sgnálu se spektrální závslostí.3. nterference nemonochromatckého záření.4. Fourerova spektroskope.5. Prostorová koherence. Koherence Koherence znamená souvslost. V našem přípaě se rozumí souvslost mez vlnam světla. Projeví se přeevším př skláání vln. Záklaním prncpem zůstává prncp superpozce, tzn. sečítání, přípaně ntegrace, ntenzt elektrckého a magnetckého pole v prostoru a čase. Vzhleem k povaze etektorů světla měříme nejčastěj tok energe a z hleska jejch setrvačnost praktcky vžy měříme stření časové honoty a z hleska prostorového rozložení stření prostorové honoty. Koherence úzce souvsí s kvaltou nterferenčního jevu, často se v této souvslost používá termín vtelnost. Př sečítání koherentních vln postupujeme stanarně, tak je popsáno v přecházejícím ostavc. Výslekem je zpravla jasný nterferenční jev. V přípaě částečně koherentních vln bue nterference zeslabena, vtelnost bue menší. V přípaě nekoherentních vln je možné přímo sečítat toky energe, respektve ntenzty světla. Poku jsou vlny nekoherentní nebo částečně koherentní vlvem závslost fáze na čase mluvíme o časové koherenc. Protože exstuje vzájemná souvslost tohoto typu závslost a spektrálního složení světla, patří rovněž efekty spojené s touto skutečností o stejné kategore koherence. Poku sečítáme vlny z různých míst plošného zroje s omezenou souvslostí mluvíme o prostorové koherenc... Časová koherence Přepoklááme vlny, které jsou časově nestablní z hleska fáze. Jako moel zvolíme vlnu ky se fáze mění skokem, ale je konstantní během oby, jejch průměrná honota je. Fourerovou transformací tomu opovíají vlny s frekvenčním ntervalem vz kap3.3. Zaveeme élku l, pak l c c.. Poku je ráhový rozíl mez vlnam tohoto typu menší než l, pak vlny nterferují, protože vzájemné fáze jsou relatvně stablní, v opačném přípaě je nterference slabá nebo žáná. Vztahy rovněž obře vysvětlují souvslost mez časovou stabltou a spektrálním složením nterferujících vln. Analogcky lze postupovat se stejným závěry poku jako moel nterferujících vln zvolíme pulsy.

2 K popsu nterference a koherence se obře hoí přestava Youngova pokusu nebo Mchelsonova nterferometru. Přepokláejme, že časový rozíl obou rah je s / c, pak platí Et E t E t.. a pro ntenztu světla EE E E E E Re E te t..3 Zaveeme korelační funkc, která určuje vlastnost nterferenčního efektu E te t..4 a relatvní korelační funkc, respektve stupeň koherence smysl tohoto názvu bue zřejmý pozěj..5 Pak pro ntenztu lze psát a v přípaě Re Re..6 Re Re..7.. Souvslost časově proměnného sgnálu se spektrální závslostí Uvažujme kumulovanou ntenztu světla měřenou etektorem za velm louhou obu. V přípaě pulzů je to oba elší než oba jeho trvání, v přípaě kontnuálních zrojů je to oba za kterou průměrná velkost ntenzty se jž nemění. Z formálních matematckých ůvoů bueme ntegrovat ntenztu v nekonečných mezích, ale jsme s věom fyzkálního smyslu takové ntegrace. Současně přepoklááme stejné ampltuy pro E a E, jným slovy symetrcké rozělení ampltuy vlny v nterferometru. Pak E t, E t, t E te tt E t E t t Re E te t t nebo.. Pole Parsevalova teorému vz Apenx t, t tt t t Re E te t t.. tt t t..3 Tento výsleek lze rovněž nterpretovat tak, že celková kumulovaná energe měřená v louhém časovém ntervalu nebo šrokém ntervalu frekvencí, je stejná. Protože F.T. a nverzní F.T. nezmění třetí ntegrál.. E te t pak pole autokorelačního teorému, vz Apenx, platí t e e E te t t..4 e E te a po osazení o.. t t E E..5

3 t, t Re e..6 Zkráceně Defnujeme stupeň koherence Re..7 e..8 Nebo Re..9 Což je vztah formálně stejný s..7, musíme však rozlšovat způsob měření ntenzt. V zásaě platí, že zajímavá nformace o nterferenc je uložena ve funkc. Poznámka: Je zřejmé, že ntegrace v čase v neomezených mezích je velm výhoná pro matematckou formulac problému, zejména v tomto přípaě pro využtí Parsevalova teorému. Ve skutečnost vžy měříme v omezeném čase a to znamená omezení frekvencí, ale to v prax nemusí hrát vážnou rol. ntegrály pole času v nekonečných mezích lze spolehlvě nahrat střením honotam za fyzkálně rozumnou obu T. T / tt tt.. T T /.3. nterference nemonochromatckého záření Pro ntenztu nterferující jené monochromatcké vlny např. př Youngově pokusu platí cos k s cos.3. Ukázal jsme, že vlny s různým frekvencem praktcky nenterferují a tey můžeme sečítat přímo ntenzty světla, cos cos.3. Ve shoě s efncí funkce lze psát Re.3.3 Což je vztah totožný s..7. Poobně lze efnovat stupeň koherence e.3.4 Respektve cos Re Re.3.5 Nebo 3

4 Re.3.6 Je zřejmé, že o kvaltě nterference rozhouje stupeň koherence, přípaně. Pro posouzení vlvu koherence efnujeme koherentní obu, která uává obu zpožění za kterou se významně zeslabí nterference. Jena z možností efnc c.3.7 Poobně efnujeme koherentní élku l c.3.8 c c Kvaltu nterfenčního jevu posuzujeme pole vtelnost proužků max mn V.3.9 max mn Ke současně platí V.3. V častém přípaě spektrálního rozložení světla ve tvaru Gaussovy křvky e.3. Dostaneme z.3.4 po ntegrac e e.3. Respektve Re e cos cos.3.3 ke je obálka osclující funkce Re, vz obr

5 .9.8 =6.3e3 3.75e4.9e5.9.8 =6.3e3 3.75e4.9e rel s - x s x -4 Obr..3.. Spektrální složení světla ve tvaru Gauusovy křvky vztah.3. pro 3.45 e5s nm a obálka stupně koherence pro uveené, respektve pro nm,6 nm, nm. Je obré s všmnout, že šířka spektra je v ntenztě.3. ve jmenovatel exponentu a naopak v čtatel exponentu stupně koherence.3.3. Pak z.3.7 ostaneme l c c.3.4 c c c Pozn.: znovu s přpomeneme, že koherentní élka pro sluneční záření je řáově m, pro výbojku cm, pro lasery m a pro raovlny km. 5

6 .cos. =6.3e3.cos s x -4 =3.75e s x -4 =.9e5.cos s x -4 Obr..3.. Stupeň koherence Re pro pomínky jako v obr Fourerova spektroskope Spektroskope je metoa určování spektrálního složení světla. Má celou řau aplkací a šroce se používá praktcky ve všech příroních věách. Smyslem je najít závslost nebo relatvní spektrální funkc P P.4. Klascká nebo stanarní spektroskope využívá k rozklau světla pole frekvencí sperzní prvek, např. hranol nex lomu závsí na frekvenc nebo mřížku. Fourerova spektroskope využívá možnost najít P z analýzy světla procházejícího nterferometrem v závslost na ráhovém rozílu respektve zpožění. Uvažujme např. Mchelsonův nterferometr. ntenzta světla měřená etektorem na výstupu nterferometru je totožná se vztahem.3., cos Re.4. Člen je konstantní a z hleska spektrální závslost neobsahuje žánou zajímavou nformac. Vezmeme-l v úvahu pouze proměnnou část pouze klané frekvence a skutečnost, že smysl mají 6

7 Re cos Pak Fourerova transformace ává výsleek úměrný spektrálnímu složení světla.4.3 Re cos.4.4 Praktcké omezení přesnost je přeevším v konečném, respektve v konečném posunutí max zrcala nterferometru. Současné metoy rychle F.T. ovolují získat vlastní spektrální funkc praktcky okamžtě. Konstanta úměrnost není ůležtá. Poznámka: např. pro monochromatcké světlo Re cos.4.5 Pro Gaussovské spektrální složení e Re e cos Grafcké znázornění těchto výsleků opovíá obr..3.. a Prostorová koherence Zpravla používáme plošné zroje světla. Vzájemná souvslost světla vyzařovaná z různých míst takového zroje souvsí s prostorovou koherencí vyzařovaných vln. Analogcky k časové koherentní élce l c, kterou nazveme poélnou a která uává vzálenost na které jsou vlny ještě korelovány, zaveeme prostorovou, příčnou koherentní élku l t, která uává vzálenost mez boy zroje, které ještě vyzařují korelované vlny. Jako vhoný nterferometr vybereme Yongův pokus. P h S y S h h S D Obr..5. Youngův pokus boový zroj mmo optckou osu. 7

8 Pak pro boový monochromatcký zroj světla vz. obr..5.. cos k s cos kh.5. S P θ θ S S Δθ L θ S Obr..5.. Youngův pokus va boové zroje vzálené o élku. Pro va nekoherentní stejně ntenzvní zroje obr..5. můžeme sečítat ntenzty světla cos kh cos kh cos kh /. cos kh.5. Ke /.5.3 Dobrá vtelnost nastane pro pomínku kh / m.5.4 Pole obr..5.. platí pro vzálenost zrojů L.5.5 Pro pomínku vou blízkých zrojů m, ky ještě bue obrá vtelnost proužků, platí h nebo h L.5.6 Něky se tato pomínka přpomíná konstatováním, že součn příčných vzáleností musí být mnohem menší než poélných. Pro větší počet boových nekoherentních zrojů ostaneme snano výslenou ntenztu cos k s cos kh.5.6 Zajímavější je přejít ke spojtému lneárnímu zroj, vz obr / / cos kh Ke je úhlová šířka zroje, respektve skutečná šířka je s L přepokláejme homogenní zroj, pak kh sn c cos kh Dostáváme velm poobný vztah jako v přípaě časové koherence a proto kh sn kh cos kh. Pro jenouchost

9 V.5.9 t S P θ θ S Δθ S Obr Youngův pokus plošný zroj světla. Ke je prostorová korelační funkce a t stupeň prostorové koherence kh sn c cos kh cos kh.5. t t Funkce je obálkou osclující funkce a určuje charakter nterference, vz obr t V zásaě je možné upravt vztahy pro nekonečně velký zroj, ale není to praktcké. =.ra =55nm kh /.8 =.ra =55nm kh / Obr Obálka stupně prostorové koherence a vtelnost V pro plošný zroj. 9

10 V Analogcky lze postupovat pro obecnější plošné typy zrojů. Např. pro zroj ve tvaru sku je možné ovot J kh.5. t kh ke J je Besselova funkce. řáu vz obr =.ra =55nm kh /.8 =.ra =55nm kh / Obr Obálka stupně prostorové koherence a vtelnost zroje ve tvaru sku. P P h h Obr Dvě varanty Mchelsonova hvězářského nterferometru.

11 Jena ze známých aplkací je tzv. Mchelsonův hvězářský nterferometr, vz obr Měří se vtelnost nterferenčního jevu jako funkce vzálenost štěrbn h, otu se určí úhlový průměr skového zroje. V prax se vžy jená o současné působení časové a prostorové koherence.

Úloha č. 1 pomůcky Šíření tepla v ustáleném stavu základní vztahy

Úloha č. 1 pomůcky Šíření tepla v ustáleném stavu základní vztahy Úloha č. pomůcky Šíření tepla v ustáleném stavu záklaní vztahy Veení Fourriérův zákon veení tepla, D: Hustota tepelného toku je úměrná změně teploty ve směru šíření tepla, konstantou úměrnosti je součinitel

Více

1. POLOVODIČOVÉ TEPLOMĚRY

1. POLOVODIČOVÉ TEPLOMĚRY Úkol měření 1. POLOVODČOVÉ EPLOMĚY 1. entfkujte neznámý perlčkový termstor. Navrhněte zapojení pro jeho lnearzac.. rčete teplotní závslost napětí na oě protékané konstantním prouem a charakterstku teplotního

Více

Vypracoval Datum Hodnocení. V celé úloze jsme používali He-Ne laser s vlnovou délkou λ = 632, 8 nm. Paprsek jsme nasměrovali

Vypracoval Datum Hodnocení. V celé úloze jsme používali He-Ne laser s vlnovou délkou λ = 632, 8 nm. Paprsek jsme nasměrovali Název a číslo úlohy - Difrakce světelného záření Datum měření 3.. 011 Měření proveli Tomáš Zikmun, Jakub Kákona Vypracoval Tomáš Zikmun Datum. 3. 011 Honocení 1 Difrakční obrazce V celé úloze jsme používali

Více

optika0 Světlo jako vlna

optika0 Světlo jako vlna optika0 Světlo jako vlna Spor o postatě světla se přenesl z oblasti filozofických úvah o reality koncem 17. století. Vlnovou teorii světla uveřejnil v knize Pojenání o světle (190) holanský fyziky Christiaan

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost a plastcta II 3. ročník bakalářského stua oc. Ing. Martn Krejsa, Ph.D. Katera stavební mechanky Moely položí Záklaové konstrukce Záklaové konstrukce zajšťují: přenesení tíhy vrchní stavby o položí

Více

Interference na tenké vrstvě

Interference na tenké vrstvě Úloha č. 8 Interference na tenké vrstvě Úkoly měření: 1. Pomocí metody nterference na tenké klínové vrstvě stanovte tloušťku vybraného vlákna nebo vašeho vlasu. 2. Pomocí metody, vz bod 1, stanovte ndex

Více

4.5.5 Magnetické působení rovnoběžných vodičů s proudem

4.5.5 Magnetické působení rovnoběžných vodičů s proudem 4.5.5 Magnetické působení rovnoběžných voičů s prouem Přepoklay: 4502, 4503, 4504 Př. 1: Dvěma velmi louhými svislými voiči prochází elektrický prou. Rozhoni pomocí rozboru magnetických inukčních čar polí

Více

UNIVERZITA KARLOVA V PRAZE Přírodovědecká fakulta

UNIVERZITA KARLOVA V PRAZE Přírodovědecká fakulta Chromatografie Zroj: http://www.scifun.org/homeexpts/homeexpts.html [34] Diaktický záměr: Vysvětlení pojmu chromatografie. Popis: Žáci si vyzkouší velmi jenouché ělení látek pomocí papírové chromatografie.

Více

Energie elektrického pole

Energie elektrického pole Energe elektrckého pole Jž v úvodní kaptole jsme poznal, že nehybný (centrální elektrcký náboj vytváří v celém nekonečném prostoru slové elektrcké pole, které je konzervatvní, to znamená, že jakýkolv jný

Více

Mechatronické systémy s elektronicky komutovanými motory

Mechatronické systémy s elektronicky komutovanými motory Mechatroncké systémy s elektroncky komutovaným motory 1. EC motor Uvedený motor je zvláštním typem synchronního motoru nazývaný též bezkartáčovým stejnosměrným motorem (anglcky Brushless Drect Current

Více

4. FRAUNHOFERŮV OHYB NA ŠTĚRBINĚ

4. FRAUNHOFERŮV OHYB NA ŠTĚRBINĚ 4. FRAUNHOFERŮV OHYB NA ŠTĚRBINĚ Měřicí potřeby 1 helium-neonový laser měrná obélníková štěrbina 3 stínítko s měřítkem 4 stínítko s fotočlánkem 5 zapisovač Obecná část Při opau rovinné monochromatické

Více

Téma 7, modely podloží

Téma 7, modely podloží Pružnost a plastcta II.,.ročník bakalářského stua, přenášky Janas, Téma 7, moely položí Úvo Wnklerův moel položí Pasternakův moel položí Pružný poloprostor Nosník na pružném Wnklerově položí, řešení ODM

Více

Odraz a lom rovinné monochromatické vlny na rovinném rozhraní dvou izotropních prostředí

Odraz a lom rovinné monochromatické vlny na rovinném rozhraní dvou izotropních prostředí Odraz a lom rovnné monochromatcké vlny na rovnném rozhraní dvou zotropních prostředí Doplňující předpoklady: prostředí č.1, ze kterého vlna dopadá na rozhraní neabsorbuje (má r r reálný ndex lomu), obě

Více

Předpokládáme ideální chování, neuvažujeme autoprotolýzu vody ve smyslu nutnosti číselného řešení simultánních rovnováh. CH3COO

Předpokládáme ideální chování, neuvažujeme autoprotolýzu vody ve smyslu nutnosti číselného řešení simultánních rovnováh. CH3COO Pufr ze slabé kyseliny a její soli se silnou zásaou např CHCOOH + CHCOONa Násleujíí rozbor bue vyházet z počátečního stavu, ky konentrae obou látek jsou srovnatelné (největší pufrační kapaita je pro ekvimolární

Více

Normalizace fyzikálních veličin pro číslicové zpracování

Normalizace fyzikálních veličin pro číslicové zpracování Noralzace fyzkálních velčn pro číslcové zpracování Vypracoval: Petr Kaaník Aktualzace: 15. října 2003 Kažý realzovaný říící systé usel projít vě hlavní stá. Nejprve je to vlastní návrh. Na záklaě ostupných

Více

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně 9. Měření knetky dohasínání fluorescence ve frekvenční doméně Gavolův experment (194) zdroj vzorek synchronní otáčení fázový posun detektor Měření dob žvota lumnscence Frekvenční doména - exctace harmoncky

Více

F (x, h(x)) T (g)(x) = g(x)

F (x, h(x)) T (g)(x) = g(x) 11 Implicitní funkce Definice 111 (implicitní funkce) Nechť F : R 2 R je funkce a [x 0, y 0 ] R 2 je takový bo, že F (x 0, y 0 ) = 0 Řekneme, že funkce y = f(x) je v okolí bou [x 0, y 0 ] zaána implicitně

Více

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím

Více

Optika CD přehrávače. Zdeněk Bochníček, Přírodovědecká fakulta MU v Brně

Optika CD přehrávače. Zdeněk Bochníček, Přírodovědecká fakulta MU v Brně Optika CD přehrávače Zeněk Bochníček, Příroověecká fakulta MU v Brně V roce 1977, právě 100 let po vynálezu fonografu T. A. Eisona, byl firmami Sony a Philips uveen na trh nový revoluční systém reproukce

Více

Úloha II.E... čočkování

Úloha II.E... čočkování Úloha II.E... čočkování 8 boů; průměr 5,46; řešilo 65 stuentů V obálce jste spolu se zaáním ostali i vě čočky. Vaším úkolem je změřit jejich parametry ruh a ohniskovou vzálenost. Poznámka Poku nejste stávající

Více

je dána vzdáleností od pólu pohybu πb

je dána vzdáleností od pólu pohybu πb 7_kpta Tyč tvaru le obrázku se pohybuje v rohu svislé stěny tak, že bo A se o rohu (poloha A 0 ) vzaluje s konstantním zrychlením a A 1. m s. Počáteční rychlost bou A byla nulová. Bo B klesá svisle olů.

Více

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ.

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ. CHYBY MĚŘENÍ Úvod Představte s, že máte změřt délku válečku. Použjete posuvné měřítko a získáte určtou hodnotu. Pamětlv přísloví provedete ještě jedno měření. Ale ouha! Výsledek je jný. Co dělat? Měřt

Více

STACIONÁRNÍ MAGNETICKÉ POLE

STACIONÁRNÍ MAGNETICKÉ POLE Příklay: 1. Přímý voič o élce 0,40 m, kterým prochází prou 21 A, leží v homogenním magnetickém poli kolmo k inukčním čarám. Velikost vektoru magnetické inukce je 1,2 T. Vypočtěte práci, kterou musíme vykonat

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Ampérův zákon

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Ampérův zákon ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Ampérův zákon Peter Dourmashkin MIT 26, překla: Jan Pacák (27) Obsah 5 AMPÉRŮV ZÁKON 3 51 ÚKOLY 3 52 ALGORITMUS PRO ŘEŠENÍ PROBLÉMŮ 3 ÚLOHA 1: VÁLCOVÝ PLÁŠŤ

Více

Vedení vvn a vyšší parametry vedení

Vedení vvn a vyšší parametry vedení Veení vvn a vyšší parametry veení Při řešení těchto veení je třeba vzhleem k jejich élce uvažovat nejenom opor veení R a inukčnost veení L, ale také kapacitu veení C. Svo veení G se obvykle zanebává. Tyto

Více

KOMPLEXNÍ ČÍSLA. Algebraický tvar komplexního čísla

KOMPLEXNÍ ČÍSLA. Algebraický tvar komplexního čísla KOMPLEXNÍ ČÍSLA Příklad Řešte na množně reálných čísel rovnc: x + = 0. x = Rovnce nemá v R řešení. Taková jednoduchá rovnce a nemá na množně reálných čísel žádné řešení! Co s tím? Zavedeme tzv. magnární

Více

Teorie elektrických ochran

Teorie elektrických ochran Teore elektrckých ochran Elektrcká ochrana zařízení kontrolující chod část energetckého systému (G, T, V) = chráněného objektu, zajstt normální provoz Chráněný objekt fyzkální zařízení pro přenos el. energe,

Více

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové.

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové. Příprava na cvčení č.1 Čísla a artmetka Číselné soustavy Obraz čísla A v soustavě o základu z: m A ( Z ) a z (1) n kde: a je symbol (číslce) z je základ m je počet řádových míst, na kterých má základ kladný

Více

5 Poměr rychlostí autobusu a chodce je stejný jako poměr drah uražených za 1 hodinu: v 1 = s 1

5 Poměr rychlostí autobusu a chodce je stejný jako poměr drah uražených za 1 hodinu: v 1 = s 1 Řešení úloh 1 kola 7 ročníku fyzikální olympiáy Kategorie C Autoři úloh: J Thomas (1,, 3), J Jírů (4, ), J Šlégr (6) a T Táborský (7) 1a) Označme stranu čtverce na mapě Autobus za 1 hoinu urazí ráhu s

Více

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN V dokumentu 7a_korelacn_a_regresn_analyza jsme řešl rozdíl mez korelační a regresní analýzou. Budeme se teď věnovat pouze lneárnímu vztahu dvou velčn, protože je nejjednodušší

Více

Přijímací zkouška na navazující magisterské studium 2015

Přijímací zkouška na navazující magisterské studium 2015 Přijímací zkouška na navazující magisterské stuium 05 Stuijní program: Stuijní obor: Řešení příklaů pečlivě oůvoněte. Příkla (5 boů) Spočtěte ke M {(y, x) R ; x 0, x + y a}. Příkla (5 boů) Nalezněte supremum

Více

FYZIKÁLNÍ MODEL KYVADLA NA VOZÍKU

FYZIKÁLNÍ MODEL KYVADLA NA VOZÍKU FYZIKÁLNÍ MODEL KYVADLA NA VOZÍKU F. Dušek, D. Honc Katera řízení procesů, Fakulta elektrotechniky a informatiky, Univerzita Parubice Abstrakt Článek se zabývá sestavením nelineárního ynamického moelu

Více

MODELOVÁNÍ A SIMULACE

MODELOVÁNÍ A SIMULACE MODELOVÁNÍ A SIMULACE základní pojmy a postupy vytváření matematckých modelů na základě blancí prncp numerckého řešení dferencálních rovnc základy práce se smulačním jazykem PSI Základní pojmy matematcký

Více

Průřezové charakteristiky základních profilů.

Průřezové charakteristiky základních profilů. Stření průmyslová škola a Vyšší oborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřenictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Průřezové

Více

4 Parametry jízdy kolejových vozidel

4 Parametry jízdy kolejových vozidel 4 Parametry jízdy kolejových vozdel Př zkoumání jízdy železnčních vozdel zjšťujeme většnou tř základní charakterstcké parametry jejch pohybu. Těmto charakterstkam jsou: a) průběh rychlost vozdel - tachogram,

Více

Světlo jako elektromagnetické záření

Světlo jako elektromagnetické záření Světlo jako elektromagnetické záření Základní pojmy: Homogenní prostředí prostředí, jehož dané vlastnosti jsou ve všech místech v prostředí stejné. Izotropní prostředí prostředí, jehož dané vlastnosti

Více

Postup při měření rychlosti přenosu dat v mobilních sítích dle standardu LTE (Metodický postup)

Postup při měření rychlosti přenosu dat v mobilních sítích dle standardu LTE (Metodický postup) Praha 15. srpna 2013 Postup při měření rchlosti přenosu at v mobilních sítích le stanaru LTE (Metoický postup Zveřejněno v souvislosti s vhlášením výběrového řízení za účelem uělení práv k vužívání ráiových

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Uiverzita Tomáše Bati ve Zlíě LABORATORNÍ CVIČENÍ Z FYZIKY II Název úlohy: Iterferece a teké vrstvě Jméo: Petr Luzar Skupia: IT II/ Datum měřeí: 3.říja 007 Obor: Iformačí techologie Hooceí: Přílohy: 0

Více

Pulsní měnič pracující v prvním kvadrantu, step-down

Pulsní měnič pracující v prvním kvadrantu, step-down FAKLA ELEKROECHNIKY A KOMNIKAČNÍCH ECHNOLOGIÍ VYSOKÉ ČENÍ ECHNICKÉ V BRNĚ Pulsní měnič pracující v prvním kvarantu, step-own BVEL Autoři textu: oc. Dr. Ing. Miroslav Patočka Ing. Petr Procházka, Ph.D červen

Více

DUM č. 16 v sadě. 11. Fy-2 Učební materiály do fyziky pro 3. ročník gymnázia

DUM č. 16 v sadě. 11. Fy-2 Učební materiály do fyziky pro 3. ročník gymnázia projekt GML Brno Docens DUM č. 16 v sadě 11. Fy-2 Učební materály do fyzky pro 3. ročník gymnáza Autor: Vojtěch Beneš Datum: 3.3.214 Ročník: 2A, 2C Anotace DUMu: Nestaconární magnetcké pole Materály jsou

Více

Matematika I A ukázkový test 1 pro 2018/2019

Matematika I A ukázkový test 1 pro 2018/2019 Matematka I A ukázkový test 1 pro 2018/2019 1. Je dána soustava rovnc s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napšte Frobenovu větu (předpoklady + tvrzení). b) Vyšetřete

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost a plastcta II 3. ročník bakalářského stua oc. Ing. Martn Kresa Ph.D. Katera stavební mechank Řešení nosných stěn metoou sítí 3 Řešení stěn metoou sítí metoa sítí (metoa konečných ferencí) těnová

Více

Lambertův-Beerův zákon

Lambertův-Beerův zákon Lambertův-Beerův zákon Intenzta záření po průchodu kavtou se vzorkem: Integrovaný absorpční koecent: I nal = I ntal e ε c L A = ε ( ~ ν ) d~ ν Bezjednotková včna síla osclátoru: v cm -1 = 4.3 10 9 A Síla

Více

Varianta A. Příklad 1 (25 bodů) Funkce f je dána předpisem

Varianta A. Příklad 1 (25 bodů) Funkce f je dána předpisem Příkla 1 (5 boů) Funkce f je ána přepise Přijíací zkouška na navazující agisterské stuiu 14 Stuijní progra Fyzika obor Učitelství fyziky ateatiky pro stření školy Stuijní progra Učitelství pro záklaní

Více

Numerická matematika 1. t = D u. x 2 (1) tato rovnice určuje chování funkce u(t, x), která závisí na dvou proměnných. První

Numerická matematika 1. t = D u. x 2 (1) tato rovnice určuje chování funkce u(t, x), která závisí na dvou proměnných. První Numercká matematka 1 Parabolcké rovnce Budeme se zabývat rovncí t = D u x (1) tato rovnce určuje chování funkce u(t, x), která závsí na dvou proměnných. První proměnná t mívá význam času, druhá x bývá

Více

Válečkové řetězy. Tiskové chyby vyhrazeny. Obrázky mají informativní charakter.

Válečkové řetězy. Tiskové chyby vyhrazeny. Obrázky mají informativní charakter. Válečkové řetězy Technické úaje IN 8187 Hlavními rvky válečkového řevoového řetězu jsou: Boční tvarované estičky vzálené o sebe o šířku () Čey válečků s růměrem () Válečky o růměru () Vzálenost čeů určuje

Více

Difrakce NedÏlnÌ odpoledne na ostrovï La Grande Jatte

Difrakce NedÏlnÌ odpoledne na ostrovï La Grande Jatte 37 Difrakce Georges Seurat namaloval NeÏlnÌ opolene na ostrovï La Grane Jatte nikoli obvykl mi tahy ötïtcem, ale pouze velk m poëtem mal ch barevn ch teëek, coû je malì sk styl naz van pointilismus. StojÌte-li

Více

Spojité regulátory - 1 -

Spojité regulátory - 1 - Spojté regulátory - 1 - SPOJIÉ EGULÁOY Nespojté regulátory mají většnou jednoduchou konstrukc a jsou levné, ale jsou nevhodné tím, že neudržují regulovanou velčnu přesně na žádané hodnotě, neboť regulovaná

Více

POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ

POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ ELEKTRICKÝ POTENCIÁL Elektrcká potencální energe Newtonův zákon pro gravtační sílu mm F = G r 1 2 2 Coulombův zákon pro elektrostatckou sílu QQ F = k r 1 2

Více

27 Systémy s více vstupy a výstupy

27 Systémy s více vstupy a výstupy 7 Systémy s více vstupy a výstupy Mchael Šebek Automatcké řízení 017 4-5-17 Stavový model MIMO systému Automatcké řízení - Kybernetka a robotka Má obecně m vstupů p výstupů x () t = Ax() t + Bu() t y()

Více

MĚŘENÍ JEDNODUCHÝCH SPEKTER DIFRAKČNÍM SPEKTROMETREM

MĚŘENÍ JEDNODUCHÝCH SPEKTER DIFRAKČNÍM SPEKTROMETREM Úloha č. 9 MĚŘENÍ JENOUCHÝCH SPEKTER IFRAKČNÍM SPEKTROMETREM ÚKOL MĚŘENÍ:. Kalibrujte spektrometr pomocí He spektra a určete mřížkovou konstantu použité ifrakční mřížky.. Stanovte vlnovou élku spektrálních

Více

POHYB SPLAVENIN. 8 Přednáška

POHYB SPLAVENIN. 8 Přednáška POHYB SPLAVENIN 8 Přenáška Obsah: 1. Úvo 2. Vlastnosti splavenin 2.1. Hustota splavenin a relativní hustota 2.2. Zrnitost 2.3. Efektivní zrno 3. Tangenciální napětí a třecí rychlost 4. Počátek eroze 5.

Více

4.4 Exploratorní analýza struktury objektů (EDA)

4.4 Exploratorní analýza struktury objektů (EDA) 4.4 Exploratorní analýza struktury objektů (EDA) Průzkumová analýza vícerozměrných dat je stejně jako u jednorozměrných dat založena na vyšetření grafckých dagnostk. K tomuto účelu se využívá různých technk

Více

ENÁ ŽELEZOBETONOVÁ DESKA S VELKÝM UŽITNÝM ZATÍŽENÍM

ENÁ ŽELEZOBETONOVÁ DESKA S VELKÝM UŽITNÝM ZATÍŽENÍM P Ř Í K L A D Č. 6 LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ DESKA S VELKÝM UŽITNÝM ZATÍŽENÍM Projekt : FRVŠ 011 - Analýza meto výpočtu železobetonovýh lokálně poepřenýh esek Řešitelský kolektiv : Ing. Martin Tipka

Více

PRAVDĚPODOBNOSTNÍ PŘÍSTUP K HODNOCENÍ DRÁTKOBETONOVÝCH SMĚSÍ. Petr Janas 1 a Martin Krejsa 2

PRAVDĚPODOBNOSTNÍ PŘÍSTUP K HODNOCENÍ DRÁTKOBETONOVÝCH SMĚSÍ. Petr Janas 1 a Martin Krejsa 2 PAVDĚPODOBNOSTNÍ PŘÍSTUP K HODNOCENÍ DÁTKOBETONOVÝCH SMĚSÍ Petr Janas 1 a Martin Krejsa 2 Abstract The paper reviews briefly one of the propose probabilistic assessment concepts. The potential of the propose

Více

PODKLADY PRO PRAKTICKÝ SEMINÁŘ PRO UČITELE VOŠ. Logaritmické veličiny používané pro popis přenosových řetězců. Ing. Bc. Ivan Pravda, Ph.D.

PODKLADY PRO PRAKTICKÝ SEMINÁŘ PRO UČITELE VOŠ. Logaritmické veličiny používané pro popis přenosových řetězců. Ing. Bc. Ivan Pravda, Ph.D. PODKLADY PRO PRAKTICKÝ SEMIÁŘ PRO ČITELE VOŠ Logartmcké velčny používané pro pops přenosových řetězců Ing. Bc. Ivan Pravda, Ph.D. ATOR Ivan Pravda ÁZEV DÍLA Logartmcké velčny používané pro pops přenosových

Více

Obsah. Převody ozubenými řemeny s metrickou roztečí AT 5, AT 10 Ozubené řemeny... 117 Řemenice... 121 Ozubené tyče...124 Příruby pro řemenice...

Obsah. Převody ozubenými řemeny s metrickou roztečí AT 5, AT 10 Ozubené řemeny... 117 Řemenice... 121 Ozubené tyče...124 Příruby pro řemenice... Obsah Převoy válečkovými řetězy Válečkové řetězy... 4 Válečkové řetězy nerezové... 10 Řetězová kola SPECIÁ... 11 Řetězová kola... 18 Řetězová kola litinová...55 Řetězová kola napínací a pro opravní pásy...59

Více

í I - 13 - Průchod a rozptyl záření gama ve vrstvách materiálu Prof. Ing. J. Šeda, DrSc. KDAIZ - PJPI

í I - 13 - Průchod a rozptyl záření gama ve vrstvách materiálu Prof. Ing. J. Šeda, DrSc. KDAIZ - PJPI - 13 - í Průchod a rozptyl záření gama ve vrstvách materálu Prof. ng. J. Šeda, DrSc. KDAZ - PJP Na našem pracovšt byl vypracován program umožňující modelovat průchod záření gama metodou Monte Carlo, homogenním

Více

Černá díra. Pavel Provinský. 4. března 2013

Černá díra. Pavel Provinský. 4. března 2013 Černá íra Pavel Provinský 4. března 203 Nezakřivené sférické souřanice Využijme získané poznatky na jenom velmi zajímavém příklaě, totiž výpočtu černé íry. Bueme uvažovat tzv. Schwarzschilovu černou íru,

Více

23.1 NÁBOJE A SÍLY: BLIŽŠÍ POHLED

23.1 NÁBOJE A SÍLY: BLIŽŠÍ POHLED 23 ElektrickÈ pole Voa se oh Ìv v mikrovlnnè troubï tak snano, ûe ji m ûeme zah t aû na teplotu o 8 C vööì, neû je norm lnì teplota varu, aniû b zaëala v Ìt. Jestliûe pak naspeme o ö lku vo k vov pr öek

Více

Určení tlouštky folie metodou konvergentního elektronového svazku (TEM)-studijní text.

Určení tlouštky folie metodou konvergentního elektronového svazku (TEM)-studijní text. Určení tlouštky fole metodou konverentního elektronového svazku (TEM)-studjní text. Pracovní úkol: 1) Nastavte a vyfotorafujte snímek dfrakce elektronů v konverentním svazku, který je vhodný pro určení

Více

3 Neparametrické odhady

3 Neparametrické odhady 3 Neparametrcké ohay Přepokláané výstupy z výuky: 1. Stuent zná výhoy a nevýhoy neparametrckých ohaů funkce přežtí. Stuent e schopen sestrot Kaplanův-Meerův oha funkce přežtí 3. Stuent e schopen sestrot

Více

Tepelná kapacita = T. Ē = 1 2 hν + hν. 1 = 1 e x. ln dx. Einsteinův výpočet (1907): Soustava N nezávislých oscilátorů se stejnou vlastní frekvencí má

Tepelná kapacita = T. Ē = 1 2 hν + hν. 1 = 1 e x. ln dx. Einsteinův výpočet (1907): Soustava N nezávislých oscilátorů se stejnou vlastní frekvencí má Tepelná kapacta C x = C V = ( ) dq ( ) du Dulong-Pettovo pravdlo: U = 3kT N C V = 3kN x V = T ( ) ds x Tepelná kapacta mřížky Osclátor s kvantovanou energí E n = ( n + 2) hν má střední hodnotu energe (po

Více

Metoda konečných prvků 3 - nelineární úlohy

Metoda konečných prvků 3 - nelineární úlohy Nelineárn rní analýza materiálů a konstrukcí (V-132YNAK) Metoa konečných prvků 3 - nelineární úlohy Petr Kabele petr.kabele@sv.cvut.cz people.sv.cvut.cz/~pkabele 1 MKP metoy řešení nelineárních úloh Diskretizovaný

Více

9 PŘEDNÁŠKA 9: Heisenbergovy relace neurčitosti, důsledky. Tunelový jev. Shrnutí probrané látky, příprava na zkoušku.

9 PŘEDNÁŠKA 9: Heisenbergovy relace neurčitosti, důsledky. Tunelový jev. Shrnutí probrané látky, příprava na zkoušku. 9 PŘEDNÁŠKA 9: Hesenbergovy relace neurčtost, důsledky. Tunelový jev. Shrnutí probrané látky, příprava na zkoušku. Hesenbergovy relace neurčtost(tnqu.5., SKM) Jednoduchý pohled na věc: Vždy exstuje určtá

Více

KEE / MS Modelování elektrických sítí. Přednáška 2 Modelování elektrických vedení

KEE / MS Modelování elektrických sítí. Přednáška 2 Modelování elektrických vedení KEE / MS Moelování elektrických sítí Přenáška Moelování elektrických veení Moelování elektrických veení Různý přístup pro veení: Venkovní Kabelová Různý přístup pro veení: Krátká (vzhleem k vlnové élce)

Více

REGRESNÍ ANALÝZA. 13. cvičení

REGRESNÍ ANALÝZA. 13. cvičení REGRESNÍ ANALÝZA 13. cvčení Závslost náhodných velčn Závslost mez kvanttatvním proměnným X a Y: Funkční závslost hodnotam nezávsle proměnných je jednoznačně dána hodnota závslé proměnné. Y=f(X) Stochastcká

Více

Poznámky k Fourierově transformaci

Poznámky k Fourierově transformaci Poznámky k Fourierově transformaci V těchto poznámkách jsou uvedeny základní vlastnosti jednorozměrné Fourierovy transformace a její aplikace na jednoduché modelové případy. Pro určitost jsou sdružené

Více

STATICKY NEURČITÉ RÁMOVÉ KONSTRUKCE S PODDAJNOU PODPOROU SILOVÁ METODA

STATICKY NEURČITÉ RÁMOVÉ KONSTRUKCE S PODDAJNOU PODPOROU SILOVÁ METODA Zaání STATICKY NEURČITÉ RÁOVÉ KONSTRUKCE S PODDAJNOU PODPOROU SILOVÁ ETODA Příkla č. Vykreslete průěhy vnitřníh sil na konstruki zorazené na Or.. Voorovná část konstruke (příčle) je složena z průřezu a

Více

Martin Sloup, A04372. Ohyb světla optickou mřížkou

Martin Sloup, A04372. Ohyb světla optickou mřížkou Mart Sloup, A0437 Ohyb světla optckou mřížkou Mart Sloup, A0437 Obecá část Optcká mřížka a průcho světla je skleěá estčka, a íž je vyryta řaa jemých, rovoběžých, stejě o sebe vzáleých vrypů. Vrypy tvoří

Více

1. Určení vlnové délka světla pomocí difrakční mřížky

1. Určení vlnové délka světla pomocí difrakční mřížky FAKULTA STAVEBÍ KATEDRA FYZIKY 10FY1G Fzka G 1. Určení vlnové délka světla pomocí dfrakční mřížk Petr Pokorný Pavel Klmon Flp Šmejkal LS 016/17 skpna 1 datm měření: 19.. 017 Zadání Pomocí dfrakční mřížk

Více

PROTLAČENÍ. Protlačení 7.12.2011. Je jev, ke kterému dochází při působení koncentrovaného zatížení na malé ploše A load

PROTLAČENÍ. Protlačení 7.12.2011. Je jev, ke kterému dochází při působení koncentrovaného zatížení na malé ploše A load 7..0 Protlačení Je jev, ke kterému ochází při působení koncentrovaného zatížení na malé ploše A loa PROTLAČENÍ A loa A loa A loa Zatěžovací plochu A loa obyčejně přestavuje kontaktní plocha mezi sloupem

Více

3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina

3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina 3 VBRANÉ MODEL NÁHODNÝCH VELIČIN 3. Náhodná velčna Tato kaptola uvádí stručný pops vybraných pravděpodobnostních modelů spojtých náhodných velčn s důrazem na jejch uplatnění př rozboru spolehlvost stavebních

Více

MODELOVÁNÍ TLAKOVÝCH ZTRÁT KAPILÁRNÍCH ROHOŽÍ

MODELOVÁNÍ TLAKOVÝCH ZTRÁT KAPILÁRNÍCH ROHOŽÍ Simulace buov a techniky prostřeí 21 6. konference IBPSA-CZ Praha, 8. a 9. 11. 21 MODELOVÁNÍ TLAKOVÝCH ZTRÁT KAPILÁRNÍCH ROHOŽÍ Vlaimír Zmrhal, Tomáš Matuška, Jan Schwarzer Ústav techniky prostřeí, Fakulta

Více

PRAVDĚPODOBNOSTNÍ POSUDEK OCELOVÉHO RÁMU METODOU IMPORTANCE SAMPLING

PRAVDĚPODOBNOSTNÍ POSUDEK OCELOVÉHO RÁMU METODOU IMPORTANCE SAMPLING I. ročník celostátní konference POLEHLIVOT KONTRUKCÍ Téma: Rozvoj koncepcí posuku spolehlivosti stavebních konstrukcí 15.3.2000 Dům techniky Ostrava IBN 80-02-01344-1 73 PRAVDĚPODOBNOTNÍ POUDEK OCELOVÉHO

Více

11 Tachogram jízdy kolejových vozidel

11 Tachogram jízdy kolejových vozidel Tachogram jízdy kolejových vozdel Tachogram představuje znázornění závslost rychlost vozdel na nezávslém parametru. Tímto nezávslým parametrem může být ujetá dráha, pak V = f() dráhový tachogram, nebo

Více

VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ

VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ Abstrakt Martn Cupal 1 Prncp tvorby tržní ceny nemovtost je sce založen na tržní nabídce a poptávce, avšak tento trh je značně nedokonalý. Nejvíce ovlvňuje

Více

a b c Q 1 Q 2 P E 1 E 2 Otázky pro studijní obor Biofyzika (celkem max. 15 bodů, minimum pro splnění 8 bodů)

a b c Q 1 Q 2 P E 1 E 2 Otázky pro studijní obor Biofyzika (celkem max. 15 bodů, minimum pro splnění 8 bodů) Otázky pro stuijní obor Biofyzika (elkem max. 15 boů, minimum pro splnění 8 boů) Otázka č. 1 (3 boy) Dva boové náboje 1,5.10-7 C opačnýh znamének jsou vzáleny 10 m. Vypočtěte velikost intenzity elektrikého

Více

26.1 UŽITÍ KONDENZÁTORŮ 26.2 KAPACITA

26.1 UŽITÍ KONDENZÁTORŮ 26.2 KAPACITA 26 Kapacita SreËnÌ p Ìhoa BÏhem komorovè fibrilace, ËastÈho typu sreënìho z chvatu, p estanou sreënì komory pumpovat krev, protoûe stahy a uvolnïnì jejich svalov ch vl ken p estanou b t koorinov ny. Pacienta

Více

Elastické deformace těles

Elastické deformace těles Eastické eformace těes 15 Na oceový rát ék L 15 m a průměru 1 mm zavěsíme závaží o hmotnosti m 110 kg přičemž Youngův mou pružnosti ocei v tahu E 16 GPa a mez pružnosti ocei σ P 0 Pa Určete reativní prooužení

Více

Frekvenční analýza optických zobrazovacích systémů

Frekvenční analýza optických zobrazovacích systémů OPT/OZI L05 Frekvenční analýza optických zobrazovacích systémů obecný model vstupní pupila výstupní pupila v z u y z o x z i difrakčně limitovaný zobrazovací systém: rozbíhavá sférická vlna od bodového

Více

Statistická šetření a zpracování dat.

Statistická šetření a zpracování dat. Statstcká šetření a zpracování dat. Vyjadřovací prostředky ve statstce STATISTICKÉ TABULKY Typckým vyjadřovacím prostředkem statstky je číslo formalzovaným nástrojem číselného vyjádření je statstcká tabulka.

Více

Charakteristiky optického záření

Charakteristiky optického záření Fyzika III - Optika Charakteristiky optického záření / 1 Charakteristiky optického záření 1. Spektrální charakteristika vychází se z rovinné harmonické vlny jako elementu elektromagnetického pole : primární

Více

3. SIMULTÁNNÍ REAKCE

3. SIMULTÁNNÍ REAKCE 3. IMULTÁNNÍ REKCE 3. Protsměrné (vratné) reae... 3.. Reae, obě ílčí reae prvého řáu... 3.. Reae D E, D, D E...4 3..3 Kneta & termoynama (vratné reae & hemá rovnováha)...4 Příla 3- Protsměrné reae...6

Více

2 Diferenciální rovnice

2 Diferenciální rovnice 2 Diferenciální rovnice 2 Moely růstu V této apitole bueme zabývat jenouchými eterministicými moely růstu, napříla růstu populací, objemu nějaé omoity apo Funce y(t bue označovat veliost populace v čase

Více

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 SIMULACE numercké řešení dferencálních rovnc smulační program dentfkace modelu Numercké řešení obyčejných dferencálních rovnc krokové metody pro řešení lneárních dferencálních rovnc 1.řádu s počátečním

Více

Kinematika a dynamika tuhého tělesa

Kinematika a dynamika tuhého tělesa K přenášce UFY080 Fyzka I (mechanka) prozatímní učební text, verze 0 5 Knematka a ynamka tuhého tělesa Leoš Dvořák, MFF UK Praha, 06 5. Tuhá soustava hmotných boů Knematka a ynamka tuhého tělesa Postupme

Více

Keplerova úloha. Abstrakt: Článek řeší problém pohybu planety (Země) kolem Slunce.

Keplerova úloha. Abstrakt: Článek řeší problém pohybu planety (Země) kolem Slunce. Kepleova úloha Keple-2c.TEX jan.obzalek@mff.cuni.cz Abstakt: Článek řeší poblém pohybu planety (Země) kolem Slunce. Úplná úloha: co zanebáme Chceme vyšetřit pohyb planety, např. Země, v naší sluneční soustavě.

Více

Kuličkové šrouby a matice - ekonomické

Kuličkové šrouby a matice - ekonomické Kuličkové šrouby a matice - ekonomické Tiskové chyby, rozměrové a konstrukční změny vyhrazeny. Obsah Obsah 3 Deformační zatížení 4 Kritická rychlost 5 Kuličková matice FSU 6 Kuličková matice FSE 7 Kuličková

Více

Jméno a příjmení. Ročník. Měřeno dne Příprava Opravy Učitel Hodnocení. Vlnové vlastnosti světla difrakce, laser

Jméno a příjmení. Ročník. Měřeno dne Příprava Opravy Učitel Hodnocení. Vlnové vlastnosti světla difrakce, laser FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Petr Švaňa Ročník 1 Předmět IFY Kroužek 38 ID 155793 Spolupracoval Měřeno dne Odevzdáno dne Lukáš Teuer 8.4.2013 22.4.2013 Příprava Opravy

Více

1.3. Transport iontů v elektrickém poli

1.3. Transport iontů v elektrickém poli .3. Transport ontů v elektrckém pol Ionty se v roztoku vystaveném působení elektrckého pole pohybují katonty směrem ke katodě, anonty k anodě. Tento pohyb ontů se označuje jako mgrace. VODIVOST Vodvost

Více

MOŽNOSTI MODELOVÁNÍ A ŘEŠENÍ STŘETU PŘI OBJASŇOVÁNÍ FINGOVANÝCH DOPRAVNÍCH NEHOD

MOŽNOSTI MODELOVÁNÍ A ŘEŠENÍ STŘETU PŘI OBJASŇOVÁNÍ FINGOVANÝCH DOPRAVNÍCH NEHOD XV. konference absolventů studa technckého znalectví s meznárodní účastí MOŽNOSTI MODELOVÁNÍ A ŘEŠENÍ STŘETU PŘI OBJASŇOVÁNÍ FINGOVANÝCH DOPRAVNÍCH NEHOD Zdeněk Mrázek 1 1. Ř ešení stř etu u fngovaných

Více

SIMULACE A ŘÍZENÍ PNEUMATICKÉHO SERVOPOHONU POMOCÍ PROGRAMU MATLAB SIMULINK. Petr NOSKIEVIČ Petr JÁNIŠ

SIMULACE A ŘÍZENÍ PNEUMATICKÉHO SERVOPOHONU POMOCÍ PROGRAMU MATLAB SIMULINK. Petr NOSKIEVIČ Petr JÁNIŠ bstrakt SIMULCE ŘÍZENÍ PNEUMTICKÉHO SERVOPOHONU POMOCÍ PROGRMU MTL SIMULINK Petr NOSKIEVIČ Petr JÁNIŠ Katedra automatzační technky a řízení Fakulta stroní VŠ-TU Ostrava Příspěvek popsue sestavení matematckého

Více

Ústřední komise Chemické olympiády. 51. ročník 2014/2015. KRAJSKÉ KOLO kategorie A a E ŘEŠENÍ SOUTĚŽNÍCH ÚLOH

Ústřední komise Chemické olympiády. 51. ročník 2014/2015. KRAJSKÉ KOLO kategorie A a E ŘEŠENÍ SOUTĚŽNÍCH ÚLOH Ústření komise Chemické olympiáy 51. ročník 2014/2015 KRAJSKÉ KL kategorie A a E ŘEŠENÍ SUĚŽNÍC ÚL EREICKÁ ČÁS (60 BDŮ) ANRGANICKÁ CEMIE 16 BDŮ Úloha 1 Stříbronosný galenit 6,75 bou 1. Z ůvou zachování

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI

ZÁPADOČESKÁ UNIVERZITA V PLZNI ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ Semestrální práce z předmětu MM Stanovení deformace soustav ocelových prutů Václav Plánčka 6..006 OBSAH ZADÁNÍ... 3 TEORETICKÁ ČÁST... 4 PRAKTICKÁ ČÁST...

Více

Lokace odbavovacího centra nákladní pokladny pro víkendový provoz

Lokace odbavovacího centra nákladní pokladny pro víkendový provoz Markéta Brázdová 1 Lokace odbavovacího centra nákladní pokladny pro víkendový provoz Klíčová slova: odbavování záslek, centrum grafu, vážená excentrcta vrcholů sítě, časová náročnost odbavení záslky, vážená

Více

KOMPLEXNÍ ČÍSLA. Algebraický tvar komplexního čísla

KOMPLEXNÍ ČÍSLA. Algebraický tvar komplexního čísla KOMPLEXNÍ ČÍSLA Příklad 1 Řešte na množně reálných čísel rovnc: x + = 0. x = Rovnce nemá v R řešení. Taková jednoduchá rovnce a nemá na množně reálných čísel žádné řešení! Co s tím? Zavedeme tzv. magnární

Více

2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU

2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU VŠB T Ostrava Faklta elektrotechnky a nformatky Katedra obecné elektrotechnky. ELEKTCKÉ OBVODY STEJNOSMĚNÉHO POD.. Topologe elektrckých obvodů.. Aktvní prvky elektrckého obvod.3. Pasvní prvky elektrckého

Více

Úlohy domácí části I. kola kategorie C

Úlohy domácí části I. kola kategorie C 67. ročník Matematické olympiáy Úlohy omácí části I. kola kategorie C 1. Najěte nejmenší čtyřmístné číslo abc takové, že rozíl ( ab ) 2 ( c ) 2 je trojmístné číslo zapsané třemi stejnými číslicemi. Řešení.

Více

MĚRENÍ V ELEKTROTECHNICE

MĚRENÍ V ELEKTROTECHNICE EAICKÉ OKHY ĚENÍ V ELEKOECHNICE. řesnost měření. Chyby analogových a číslcových měřcích přístrojů. Chyby nepřímých a opakovaných měření. rmární etalon napětí. Zdroje referenčních napětí. rmární etalon

Více