7 Kvalita regulačního pochodu diskrétních regulačních obvodů

Rozměr: px
Začít zobrazení ze stránky:

Download "7 Kvalita regulačního pochodu diskrétních regulačních obvodů"

Transkript

1 Autoatié říní 7 Kalita rgulačního pohodu dirétníh rgulačníh obodů Obah této apitoly j nání pojy týajííi ality rgula dirétníh rgulačníh obodů (obr. 7. ), trá á příou ouilot nárh rgulátorů dané rguloané outaě. Obr. 7. irétní rgulační obod oažní a udržní určité ality rgula j po ajištění tability tí njdůlžitější úol nárhu rgulačního obodu. Cíl rgula (7. ), (7. ) j ožno ajitit určitou alitou a přdpoladu, ž rgulační obod j tabilní. ˆ E (7. ) y ( ) ( ) Y W ˆ (7. ) Kalita rgula pouuj třh oblath: oblat oplxní proěnné roložní pólů, čaoá oblat čaoé haratritiy (přhodoé, ipulní atd.), itočtoá oblat itočtoé haratritiy (aplitudofáoé, logaritié atd.). Kalita rgula njčatěji pouuj čaoé oblati, tdy dl průběhu přhodoé haratritiy áiloti na ča a taé oblati oplxní proěnné, dy ná ajíá roložní pólů haratritiého nohočlnu. Kalitu rgula dál yjadřuj xitn či nxitn tralé rgulační odhyly. 7. Čaoá oblat Kalitu rgulačního pohodu čaoé oblati pouuj na áladě průběhu rguloané ličiny y () t áiloti na ča yolaného ooou ěnou (polohy) žádané ličiny ( ) (obr. 7. 5) nbo poruhoé ličiny ( t). Obně ůž poažoat tupní ooé ěny a jdnotoé, tdy taru dirétního Haiidoa jdnotoého ou η ( ). ři oučané půobní žádané ličiny ( ) a poruhoé ličiny () t průběhy ýtupníh ličin liší onační a jou rolišny pooí indxů a platí y() t y () t y () t, rp. y( ) y ( ) y ( ) (7. ) d y () t, rp. y ( ) j oda na žádanou ličinu ( ) při () t a () t, rp. y ( ) j oda na poruhoou ličinu ( t) při ( ). y F VŠB U Otraa

2 Autoatié říní ři yrloání čaoýh průběhů bud přdpoládat ždy pojité průběhy, při analytiýh ýpočth rgulačníh odhyl a dalšíh alitatiníh paratrů bud yhát obr. 7., tj. bud přdpoládat dirtioaný přno rguloané outay taru () () Z L ( ) t (7. 4) Obr. 7. Jdnoroěroý dirétní linární rgulační obod růběh rguloané ličiny ůž rodělit: Kitaý (obr. 7. ): přit, b přitu. Nitaý (apriodiý) (obr. 7. 4): přit, b přitu. Obr. 7. ypy průběhů rguloané ličiny itaé F VŠB U Otraa

3 Autoatié říní Obr ypy průběhů rguloané ličiny nitaé (apriodié) Nyní ůž aěřit na yhodnoní aotného průběhu rguloané ličiny obr a jjí popi. Na toto průběhu ná ajíají hlaně paratry, jiiž jou rlatiní přit κ a aotná doba rgula t r. Obr růběh rguloané ličiny Znační ličin dl obr. 7. 5: t o doba ody (prní doažní žádané ličiny), t doba doažní axiální hodnoty rguloané ličiny y, t r doba rgula, y axiální hodnota rguloané ličiny, () t žádaná ličina, y ( ) utálná hodnota rguloané ličiny, ( ) tralá rgulační odhyla ( ( ) ( ) y ( ) ), Δ páo rgula ( Δ,,5, něla by přročit 5 % ( ) latiní přit κ průběhu rguloané ličiny určí dl tahu y ). F VŠB U Otraa

4 Autoatié říní oba rgula r páa a už jj noputí. 7.. uační ritéria ( t ) y ( ) y ( ) y κ [%] (7. 5) t j ča, dy rguloaná ličina ( t) y dotan do rgulačního ro oplxní hodnoní ality rgulačního pohodu jou hodná uační ritéria. uační ritéria hodnoní ality rgula njčatěji dfinují linární nbo adratiou áilotí na rgulační odhyl. ato ritéria jou onačoány jao ritéria linární nbo adratié rgulační plohy. oouní ality rgulačního pohodu yhodnouj na áladě rgulační plohy (dál obraíh yšrafoaná). Čí j tato rgulační ploha nší, tí j alita rgula yšší. opány budou čtyři uační ritéria.. Linární rgulační ploha E Jdná o áladní ritériu. ro toto ritériu j nutné, aby jdnalo o nitaý průběh. Jina dojd áěru, ž rgulační ploha j iniální, jtliž plohy pod ladnýi a ápornýi půllnai odčtou, čuž doháí při itaé průběhu na i tability. i ( i ) ( t) E E dt (7. 6) Obr Linární rgulační ploha E Kritériu j li nadno analytiy řšitlné dl tahů E ( ) ( ) (7. 7) E (7. 8) E. Abolutní rgulační ploha AE Ndotaty ritéria E odtraňuj ritériu AE ýpočt intgrálu abolutní hodnoty rgulační odhyly. oto ritériu j tdy hodné i pro itaé proy. Hodnotu rgulační plohy nj hopni určit analytiy. ůod j, ž bodh trýh () t ění é naéno, nxituj dria. F VŠB U Otraa

5 Autoatié říní i ( i ) () t AE AE dt (7. 9) Obr Abolutní rgulační ploha AE. Kadratiá rgulační ploha E Kritériu E j hodné ja pro itaé ta i nitaé rgulační pohody. gulační plohu j ožno určit analytiy, al ýldný průběh rguloané ličiny j itaý. i ( i ) ( t) E E dt (7. ) Obr Kadratiá rgulační ploha E 4. AE řdšlá ritéria nbrala úahu dobu rgula. U ritéria AE doháí díy ahrnutí čau ja inialiai rgulační plohy, ta inialiai doby rgula t r. gulační plohu nj hopni určit analytiy, al pou iulačně. i ( i ) t () t AE i AE dt (7. ) 7.. ralé rgulační odhyly Jdní paratrů yjadřujííh alitu rgula j xitn či nxitn tralýh rgulačníh odhyl. ralá rgulační odhyla ůž nabýat hodnot tab. 7.. F VŠB U Otraa

6 Autoatié říní ab. 7. Hodnoty tralýh rgulačníh odhyl ( ) Žádouí ( ) ont Zláštní poornot při nataoání rgulátoru ( ) Nutná ěna typu rgulátoru Oda rgulačního obodu na ooou ěnu žádané ličiny ( ) a poruhoé ličiny () t půobíí na ýtupu rguloané outay nuloýi tralýi rgulačníi odhylai j obran na obr nto průběh odpoídá tau, dy otřný rgulační obod obahuj alpoň jdn uační čln. očt uačníh člnů otřné rgulační obodu onačuj jao tupň atatiu q. uační čln ůž být obažn ja outaě ta rgulátoru. tupň atatiu ůž taé dfinoat jao njyšší oninu ( ) ůž ytnout jnoatl přnou otřného rgulačního obodu o, tdy M platí ro y n o q ( ) N, trou (7. ) b... b n (7. ) an... a i i j n a a i i j b b j j q q (7. 4) Obr Ody rgulačního obodu na ooé ěny: a) žádané ličiny, b) poruhoé ličiny půobíí na ýtupu rguloané outay nuloýi tralýi rgulačníi odhylai Oda rgulačního obodu tralýi rgulačníi odhylai j na obr. 7.. nto průběh odpoídá tau, dy otřný rgulační obod nobahuj ani jdn uační čln a tdy tupň atatiu j q. F VŠB U Otraa

7 Autoatié říní Obr. 7. Ody rgulačního obodu na ooé ěny: a) žádané ličiny, b) poruhoé ličiny půobíí na ýtupu rguloané outay nnuloýi tralýi rgulačníi odhylai ralé rgulační odhyly ůž nadno určit. Vyhát bud tahu E 44 W 4 V 4 E ( ) E d j odhyloý přno říní, j odhyloý přno poruhy, obra žádané ličiny a V obra poruhoé ličiny. Nyní ůž určit aotné rgulační odhyly. (7. 5) W j ralá rgulační odhyla ( ) E ( ) E (7. 6) ralá rgulační odhyla půobná žádanou ličinou ( ) [ ( ) E ] [ ( ) W ] (7. 7) ralá rgulační odhyla půobná poruhoou ličinou ( ) [ ( ) E ] [ ( ) V ] (7. 8) V případě ýpočtu tralé rgulační odhyly poruhoé ličiny j třba rolišit, da poruha tupuj přd outaou V nbo poruha půobí a outaou V (obr. 7. ). Obr. 7. gulační obod poruha tupujíí přd a a outaou o (7. 9) (7. ) ; ro tanoní tralýh rgulačníh odhyl použíají t. ttoaí ignály. (7. ) F VŠB U Otraa

8 Autoatié říní. o polohy (i ) i i ( ) ( ) ( ) i Jdná o ignál taru dirétního Haiidoa ou η ( ) dfinoán tah η( ) ˆ W ( ) η ( ) ˆ V i (7. ). toaí ignál j (7. ). o ryhloti (i ) toaí ignál j dfinoán tah Obr. 7. toaí ignál o polohy η( ) ˆ W ( ) η( ) ˆ V ( ) ( ) (7. 4). o ryhlní (i ) toaí ignál j dfinoán tah Obr. 7. toaí ignál o ryhloti F VŠB U Otraa

9 Autoatié říní ( ) η( ) ˆ W ( ) η( ) ˆ V ( ) ( ) ( ) ( ) (7. 5) d d Obr toaí ignál o ryhlní Obně ůž napat obra žádané ličiny taru i i W i (7. 6),, ( ) ro přno otřného rgulačního obodu platí tah o q q a pro odhyloý přno říní (7. 9) platí q ( ) q q ( ) (7. 7) (7. 8) Vtahy (7. 6) a (7. 8) doadí do (7. 7) a dotan Z tahu (7. 9) tdy yplýá o qi i i q q ( ) (7. 9) F VŠB U Otraa

10 Autoatié říní i < q : i > q : i q : i q : i q : ( ) ( ) ( ) ( ) ( ) d q tupň atatiu (typ rgulačního obodu), ílní přnou otřného rgulačního obodu (7. ) o. odobné tahy budou platit i pro rgulační odhylu půobnou poruhou na ýtupu rguloané outay () t, poud bud platit tah (7. ). Obr Záilot tralýh rgulačníh odhyl půobnýh žádanou ličinou na tupni atatiu q a tupni žádané ličiny i 7. Oblat oplxní proěnné V případě pouoání ality rgula oblati oplxní proěnné lduj y. roítění pólů přnou říní y b... b b n (7. ) an... a a Záladní přdpolad taoéto případě j, ž rgulační obod j tabilní. dy případě dirétníh rgulačníh obodů bud liot šh ořnů haratritiého nohočlnu nší nž, rp. tabilní oblat u dirétníh rgulačníh obodů j unitř jdnotoé ružni oblati oplxní proěnné. F VŠB U Otraa

11 Autoatié říní Obr ronání roložní pólů pojitýh a dirétníh rgulačníh obodů Na obr j náorněno ronání roložní pólů pojitýh rgulačníh obodů oblati oplxní proěnné a dirétníh rgulačníh obodů oblati oplxní proěnné. l obr ůž říi, ž: óly, tré příputné oblati lží njblíž hranii příputné oblati, jou doinantní. ožaduj-li nitaý (apriodiý) průběh rgulačního pohodu, uí póly být rálné intralu ;) dl obr (i tab. 6. ). Obr Oblat yná pro apriodiý průběh V případě roiny ýldný rlatiní přit κ určují dě příy ontantní itaoti tjný rlatiní tluní, tré írají úhl ψ (obr. 7. 6), ýra δ (obr. 7. 6) yjadřuj íru tability (tupň tability), rp. ryhlot ody rgulačního obodu, trý oliňuj dobu rgula danou tah ( 4) δ t (7. ) r Z obr j řjé, ž dl požadau na alitu rgula j ožné roině a roině yit určitou příputnou oblat oliněnou dobou rgula t r a axiální přit κ. říputná oblat j yna F VŠB U Otraa

12 Autoatié říní ψ arinξ roina δ ( 4) t r (7. ) - α ω ω ρ ; tgψ α α tgψ roina ω (7. 4) tgψ ρ( ω) π π ω ϕ ω ω Vtahy (7. 4) yplýají tranfora oplxní roiny do oplxní roiny dané tah. 7. Řšné přílady řílad 7. Určt tralou rgulační odhylu žádané ličiny a poruhoé ličiny (poruha tupuj přd outaou, poruha tupuj a outaou) pro rgulační obod dirétní rgulátor typu přno a outaou danou přno (). gulační odhyly určt pro šhny typy ttoaíh ignálů. Obr irétní rgulační obod (poruha tupujíí přd a a outaou) Řšní: rod dirtiai outay (tab.. ). Z L t Z L t Nyní určí odhyloý přno říní. ( ) ( ) ( ) ( ) F VŠB U Otraa

13 Autoatié říní ralá rgulační odhyla pro žádanou ličinu pro tři ttoaí ignály:. o polohy ( ) ( ) ( ) ( ) [ ( ) W ] ( ). o ryhloti [ ] ( ) W. o ryhlní ( ) ( ) [ ( ) W ] ( ) ( ) ( ) ( ) ( ) ro q ýldy odpoídají tahů (7. ). ralá rgulační odhyla pro poruhoou ličinu: a) oruha tupuj a outaou ralé rgulační odhyly jou podobné jao ( ) naén, protož, tj. ( ) pro ( ) η( ) ( ) pro ( ) η( ) ( ) pro ( ) ( ) η( ) b) oruha tupuj přd outaou Nyní určí odhyloý přno poruhy. ( ) ( ) ( ). o polohy ( ) [ ( ) V ] ( ) ( ) ( ). o ryhloti ( ) ( ) ( ) ( ) [ ( ) V ] ( ) ( ) ( ) [( ) ] ( ), al opačný F VŠB U Otraa

14 Autoatié říní F VŠB U Otraa. o ryhlní [ ] [ ] V Vidí, ž již pro o polohy. Z toho yplýá, ž j hodné použít íto rgulátoru typu rgulátor typu. řílad 7. Určt tralou rgulační odhylu žádané ličiny a poruhoé ličiny (poruha tupuj přd outaou) pro rgulační obod dirétní rgulátor typu přno a outaou danou přno (). gulační odhyly určt pro šhny typy ttoaíh ignálů. Řšní: rod dirtiai outay (tab.. ). / / ; -a t t t L Z L Z L Z Upraí přno rgulátoru. Nyní určí odhyloý přno říní. [ ]

15 Autoatié říní F VŠB U Otraa ralá rgulační odhyla pro žádanou ličinu pro tři ttoaí ignály:. o polohy [ ] [ ] W. o ryhloti [ ] [ ] W. o ryhlní [ ] [ ] W ralá rgulační odhyla pro poruhoou ličinu (poruha tupuj přd outaou): Nyní určí odhyloý přno poruhy. [ ] [ ]. o polohy [ ] [ ] V. o ryhloti [ ] [ ] V

16 Autoatié říní F VŠB U Otraa. o ryhlní [ ] [ ] V J idět, ž u proporionální outay j rgulační odhyla půobná poruhoou taru ou polohy tupujíí přd outaou nuloá, na rodíl od příladu 7., d byla intgrační rguloaná outaa. řílad 7. Určt tralou rgulační odhylu žádané ličiny a poruhoé ličiny (poruha tupuj přd outaou) pro rgulační obod dirétní rgulátor typu přno a outaou danou přno (). gulační odhyly určt pro šhny typy ttoaíh ignálů. Řšní: rod dirtiai outay (tab.. ). L Z L Z t t Upraí přno rgulátoru. Nyní určí odhyloý přno říní. [ ] ralá rgulační odhyla pro žádanou ličinu pro tři ttoaí ignály:. o polohy [ ] [ ] W

17 Autoatié říní F VŠB U Otraa. o ryhloti [ ] [ ] W. o ryhlní [ ] [ ] W ralá rgulační odhyla pro poruhoou ličinu (poruha tupuj přd outaou): Nyní určí odhyloý přno poruhy. [ ] [ ]. o polohy [ ] [ ] V. o ryhloti [ ] [ ] V. o ryhlní [ ] [ ] V

8 Syntéza jednorozměrových diskrétních regulačních obvodů

8 Syntéza jednorozměrových diskrétních regulačních obvodů Automatié říní 8 yntéa jnoroměrovýh irétníh rgulačníh obvoů yntéou rgulačního obvou roumím návrh trutury rgulátoru a jho paramtrů ta, aby byla oažna požaovaná valita rgulačního pohou. 8. Malá, třní a vlá

Více

Vzorové příklady - 5.cvičení

Vzorové příklady - 5.cvičení Vzoroé příklady - 5.cičení Vzoroý příklad 5.. Voda teplá je ypouštěna z elké nádrže outaou potrubí ýtokem do olna B. Určete délku potrubí =? průměru ( = 0,6 mm, oceloé, ařoané po použití), při níž bude

Více

METODA NÁSOBNÉHO DOMINANTNÍHO PÓLU PRO REGULÁTORY SE DVĚMA STUPNI VOLNOSTI A PROPORCIONÁLNÍ SOUSTAVY S DOPRAVNÍM ZPOŽDĚNÍM

METODA NÁSOBNÉHO DOMINANTNÍHO PÓLU PRO REGULÁTORY SE DVĚMA STUPNI VOLNOSTI A PROPORCIONÁLNÍ SOUSTAVY S DOPRAVNÍM ZPOŽDĚNÍM ntrnational onfrnc Fbruary 0 -, 00 BERNES AN NFORMAS VŠNÁ BOA, Slova Rpublic MEOA NÁSOBNÉHO OMNANNÍHO ÓLU RO REULÁOR SE VĚMA SUN VOLNOS A ROORONÁLNÍ SOUSAV S ORAVNÍM ZOŽĚNÍM Miluš Vítčová - Antonín Vítč,

Více

Beton C25/30: charakteristická pevnost betonu v tlaku f ck. návrhová pevnost betonu v tlaku. střední pevnost betonu v tahu modul pružnosti

Beton C25/30: charakteristická pevnost betonu v tlaku f ck. návrhová pevnost betonu v tlaku. střední pevnost betonu v tahu modul pružnosti Příklad P9 Výpočt šířky thln - dka D Zadání příkladu U topní dky D z přílohy C pouďt mzní tav omzní šířky thln přímým výpočtm, dl N 99-- čl 7 Zatížní, kytí, výztuž na ohyb apod uvažujt dl přdhozíh příkladů

Více

HODNOCENÍ ÚČINKU AUTOMATICKÉ REGULACE NA RE- DUKCI VLIVU NÁHODNÝCH PORUCH NA REGULOVANOU VELIČINU

HODNOCENÍ ÚČINKU AUTOMATICKÉ REGULACE NA RE- DUKCI VLIVU NÁHODNÝCH PORUCH NA REGULOVANOU VELIČINU procs 006 HODNOCENÍ ÚČINU AUOMAICÉ EULACE NA EDUCI VLI VU NÁHODNÝCH POUCH NA EULOVANOU VELIČINU Jiří ŮMA HODNOCENÍ ÚČINU AUOMAICÉ EULACE NA E DUCI VLIVU NÁHODNÝCH POUCH NA EULOVANOU VELIČINU Jiří ŮMA Vsoá

Více

2. Frekvenční a přechodové charakteristiky

2. Frekvenční a přechodové charakteristiky rkvnční a přchodové charaktristiky. rkvnční a přchodové charaktristiky.. Obcný matmatický popis Přchodové a frkvnční charaktristiky jsou důlžitým prostřdkm pro analýzu a syntézu rgulačních obvodů a tdy

Více

Příklady k přednášce 6 - Ustálený stav, sledování a zadržení poruchy

Příklady k přednášce 6 - Ustálený stav, sledování a zadržení poruchy Přílady přdnášc 6 - Utálný tav, ldování a zadržní poruchy Mchal Šb Automatcé řízní 08 3-3-8 Automatcé řízní - Kybrnta a robota Frvnční odzva, charatrta, přno Má-l tablní LTI ytém y () = Gu ()() na vtupu

Více

5. ÚVOD DO TEORIE MATEMATICKÉ PRUŽNOSTI

5. ÚVOD DO TEORIE MATEMATICKÉ PRUŽNOSTI 5. ÚVOD DO TOR MATMATCKÉ PRUŽNOST 5..Základní předpoklad a pojm. Látka která táří přílušné těleo je dokonale lineárně pružné mei napětím a přetořením je lineární áilot.. Látka hmotného tělea je homogenní

Více

Á Í Ž ř Č ř Č Č ř Ž ú Ž ý ř Č Á Í Š ž ž ř Ž ř ý ý Ž ř Ž ž ž ý Ž ř ř ý ř ř ž ř ř ý ř Ž ž Ž ý ž ž Ž ž ř Ž Ž Ž ř ů ý ř ž ř ř ý ř Ž ž ř ž ř ý ž ř Ž ř ý ý ř ř ž Ť ř ž ú ř ý Ž ý ý ý ž ů ý ž ý ř ž ú ř ů ž ú ů

Více

1 Úvod do číslicové regulace

1 Úvod do číslicové regulace Automatické říení II Úvod do čílicové regulace V náledujícím textu budou uvedeny ákladní vlatnoti, popiy a přehledy týkající e problematiky čílicové regulace. Některé kapitol budou také obahovat řešené

Více

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ týden doc Ing Renata WAGNEROVÁ, PhD Otrava 013 doc Ing Renata WAGNEROVÁ, PhD Vyoká škola báňká Technická univerzita

Více

Příklad 70 Vypočet konstanty šíření (fázová konstanta, měrný útlum)

Příklad 70 Vypočet konstanty šíření (fázová konstanta, měrný útlum) Přílad 7 Vypočt onstanty šířní (fáová onstanta, ěný útlu) adání : Rovinná haonicá ltoagnticá vlna o itočtu : a) f 5 b) f 7 M c) f 9 G s šíří v postřdí s těito paaty:.[ S ], ε 8, µ. Vaianta a) Vaianta b)

Více

e²ení testu 1 P íklad 1 v 1 u 1 u 2 v 2 Mechanika a kontinuum NAFY listopadu 2016

e²ení testu 1 P íklad 1 v 1 u 1 u 2 v 2 Mechanika a kontinuum NAFY listopadu 2016 e²ení testu Mechania a ontinuu NAFY00 8. listopadu 06 P ílad Zadání: Eletron o ineticé energii E se srazí s valen ní eletrone argonu a ionizuje jej. P i ionizaci se ást energie nalétávajícího eletronu

Více

VLHKÝ VZDUCH. - Stavová rovnice suchého vzduchu p v.v = m v.r v.t (5.4). Plynová konstanta suchého vzduchu r v 287 J.kg -1.K -1.

VLHKÝ VZDUCH. - Stavová rovnice suchého vzduchu p v.v = m v.r v.t (5.4). Plynová konstanta suchého vzduchu r v 287 J.kg -1.K -1. TEZE ka. 5 Vlhký zduch, ychrometrický diagram (i x). Charakteritika lhkých materiálů, lhkot olná, ázaná a ronoážná. Dehydratace otrainářtí. Změny ušicím zduchu komoroé ušárně. Kontrolní otázky a tyy říkladů

Více

KINETICKÁ TEORIE PLYNŮ

KINETICKÁ TEORIE PLYNŮ KIETICKÁ TEOIE PLYŮ. Cíl a řdoklady - snaží s ysětlit akroskoické choání lynů na základě choání jdnotliých olkul (jjich rychlostí, očtu nárazů na stěnu nádoby, srážk s ostatníi olkulai). Tato tori br úahu

Více

Vzorové příklady - 7. cvičení

Vzorové příklady - 7. cvičení Voroé příklady - 7 cičení Voroý příklad 7 Nádobou na obráku protéká oda Nádoba je rodělena na tři ektory přepážkami otory Prní otor je čtercoý, o ploše S = cm, další da jou kruhoé, S = 5 cm, S = cm Otory

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2013/2014 Radim Farana. Obsah. Detekce chyb

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2013/2014 Radim Farana. Obsah. Detekce chyb Podlady předmětu pro aademicý ro /4 Radim Farana Obsa Detece cyb, Hamminoa dálenost Kontrolní a samooprané ódy Lineární ódy Hamminoy ódy Opaoací ódy Cylicé ódy Detece cyb Množinu šec slo rodělíme na sloa

Více

ůž ó Á é š é ů é é Ž Ě Ě ů ů Ž š ů Ů ó

ůž ó Á é š é ů é é Ž Ě Ě ů ů Ž š ů Ů ó ůž ó é é š é ů Ě Ě Ě Ě Ž ů ž š ů ů Ž ů ňň Áé ň é ň éňá Á ůž ó Á é š é ů é é Ž Ě Ě ů ů Ž š ů Ů ó Ě ž š Ě Ě Ž Ž ž ň ů ž ů š ů ž ů š é é é ů ž ů ž ů é ž š é ň š é ž š é ů é š ž š Ž š é ů ó ů ž ž ů ů ň ĚŽ

Více

VYBRANÉ METODY SEŘIZOVÁNÍ REGULÁTORŮ

VYBRANÉ METODY SEŘIZOVÁNÍ REGULÁTORŮ Vyoá šola báňá chnicá univrita Otrava Faulta trojní VYBRANÉ MEOY SEŘZOVÁNÍ REULÁORŮ Miluš Vítčová, Antonín Vítč Otrava 0 Rcnnti: prof. RNr. ng. Miloš Ša, h.. prof. ng. van aufr, rsc. prof. ng. Vlaimír

Více

é é í č é í ě í é é ř í í í ší č ý í í č ý š ě í říň ě é é í ě ů ý ž ů á í í ě č ž ří ř á í úč á č é ř í ž ě čá í á ž í ž ř é ý ý š ě č ř íň Č éř ř é í ýš ý í é ž í ů ý í ý ý ý ší é é í í ž á á í í é č

Více

č í úř é č úň ž č ň ř č é ř í š ň é č č čí ó ř á é é ů á č é ň é ň á í š ě č áš č ý ř ó š á á á č íó á ň á Ř Á í ří ů á ý á č í í řú ů ě í ě š ř ú á á

č í úř é č úň ž č ň ř č é ř í š ň é č č čí ó ř á é é ů á č é ň é ň á í š ě č áš č ý ř ó š á á á č íó á ň á Ř Á í ří ů á ý á č í í řú ů ě í ě š ř ú á á í úř úň ž ň ř ř í š ň í ó ř á ů á ň ň á í š ě áš ý ř ó š á á á íó á ň á Ř Á í ří ů á ý á í í řú ů ě í ě š ř ú á á ž ň í í í á á ň ř á í ú á Č ó Čá Ó í Č É řžňá ř ž ň ý á ň ó á ž ó ř ú ň á á ť ú á ěí ú

Více

PROGRAMOVÁ PODPORA SYNTÉZY REGULAČNÍCH OBVODU POMOCÍ PROGRAMU MATLAB - SIMULINK. ing. Roman MIZERA. Katedra ATŘ-352, VŠB-TU Ostrava

PROGRAMOVÁ PODPORA SYNTÉZY REGULAČNÍCH OBVODU POMOCÍ PROGRAMU MATLAB - SIMULINK. ing. Roman MIZERA. Katedra ATŘ-352, VŠB-TU Ostrava PRORAMOVÁ PODPORA YNTÉZY REULAČNÍCH OBVODU POMOCÍ PRORAMU MATLAB - IMULINK ing. Roman MIZERA Katdra ATŘ-35, VŠB-TU Otrava Abtrat: Tnto přípěv zabývá programovou podporou yntézy rgulačních obvodů pomocí

Více

ť Á ČÍ Á ť ť Í Á Í Í ú ť Ů Ů ú ť Ě Ů Ž ť ť Ů Ů Ů Á ť Í Ó Á Ý ň Č Ě Ó Ž ň ť ú ň ť Ě Í Í Í Á Ý ť Í Á Ž Ů ť Ů Ž Ě ť ť ú ť ť ť Ž Ě Ě ť Ů Ů Ě Ů Ě Ž ť Ě Ě Ě Ó Í Ď Ó ť Ě Ě Í Ý Ě Ů Ó Ů ť ť ť É Ž Š Š Š Ž Č Š Š

Více

REGULACE. Přenosové cesty. přenosové cesty akční členy regulátory regulační pochod. standardní signály. Blokové schéma regulačního obvodu

REGULACE. Přenosové cesty. přenosové cesty akční členy regulátory regulační pochod. standardní signály. Blokové schéma regulačního obvodu Měřicí a řídicí chnika magisrské sudium FTOP - přdnášky ZS 29/ REGULACE (pokračoání ) přnosoé csy akční člny rguláory rgulační pochod Přnosoé csy sandardní signály Blokoé schéma rgulačního obodu z u rguloaná

Více

ý Í č ší í ě í ů ý í ě á íó í í á ě í ě í š í ť é ř š ě Í é é Í á í ří í íř í íž í í í í ů ží í ý í ů í ší ěá Í á é á í í ě ě í ó ý ý í í í ť í á ší í

ý Í č ší í ě í ů ý í ě á íó í í á ě í ě í š í ť é ř š ě Í é é Í á í ří í íř í íž í í í í ů ží í ý í ů í ší ěá Í á é á í í ě ě í ó ý ý í í í ť í á ší í ý Í č š ě ů ý ě á ó á ě ě š ť é ř š ě Í é é Í á ř ř ž ů ž ý ů š ěá Í á é á ě ě ó ý ý ť á š ě ž é é č Á ž á Í ř Ě ó é ř á ú Í ě ý é ě š č ý Í ě ř ů ě ú ň Í ť é ě ě š Ě ó á ř č ě ó ů ř ř á Íř ží ř ě č ě

Více

11 - Regulátory. Michael Šebek Automatické řízení

11 - Regulátory. Michael Šebek Automatické řízení - Regulátory Michael Šebe Automaticé řízení 7 6-3-7 Nejjednodušší regulátory Automaticé řízení - Kybernetia a robotia v jitém mylu nejjednodušší regulátor je On-Off (Bang-bang) má jen dvě možné výtupní

Více

REGULACE EL. POHONŮ Stabilita a tlumení. Obr. 1. Schéma uzavřené regulační smyčky. Obr. 2. Ukazatele kvality regulace

REGULACE EL. POHONŮ Stabilita a tlumení. Obr. 1. Schéma uzavřené regulační smyčky. Obr. 2. Ukazatele kvality regulace EP-egulace EP EGULACE EL. POHONŮ Stabilita a tlumení Obr.. Schéma uzavřené regulační myčky Obr.. Ukazatele kvality regulace V regulačních pohonech pouzujeme kvalitu regulace nejčatěji dle přechodové charakteritiky,

Více

ž ř áú č é ř č ř á ý é ř ýš ů á ý ě ž ť é á ě ý ě ý é ž řó é ý é ď ý č š é č š ž á é é á ýó č á ú ť č é ó óř č ý ý ě ž ů á ě š ě ž ý ř ě ň š ýš ž ý ž

ž ř áú č é ř č ř á ý é ř ýš ů á ý ě ž ť é á ě ý ě ý é ž řó é ý é ď ý č š é č š ž á é é á ýó č á ú ť č é ó óř č ý ý ě ž ů á ě š ě ž ý ř ě ň š ýš ž ý ž Á á ě á á ž ř áú č é ř č ř á ý é ř ýš ů á ý ě ž ť é á ě ý ě ý é ž řó é ý é ď ý č š é č š ž á é é á ýó č á ú ť č é ó óř č ý ý ě ž ů á ě š ě ž ý ř ě ň š ýš ž ý ž é ž é É ú á á ě é č ř á é ě ý ý ř ý á ý č

Více

Podpovrchové vody. Podzemní voda

Podpovrchové vody. Podzemní voda Podpocoé ody Podzemní oda Rozdělení podzemníc od podle ýkytu ody featické ody olnou ladinu, pod účinkem atmoféickéo tlaku ody atéké - jou pod účinkem ydotatickéo tlaku, napjatá ladina ody puklinoé - podzemní

Více

Studentská kopie ZATÍŽE Í TROJKLOUBOVÁ HALA

Studentská kopie ZATÍŽE Í TROJKLOUBOVÁ HALA ZATÍŽE Í TROJKLOUBOVÁ HALA Určete atížení a axiální ožné vnitřní síly na nejatíženější rá halového jednolodního objetu (vi obráe). Celová déla budovy je 48, a příčná vdálenost ráů s F 4,8. S odvolání na

Více

Úloha č. 10. Měření rychlosti proudu vzduchu. Měření závislosti síly odporu prostředí na tvaru tělesa

Úloha č. 10. Měření rychlosti proudu vzduchu. Měření závislosti síly odporu prostředí na tvaru tělesa yzikálí praktiku I Úloha č10 Měřeí oporu prouícího zuchu (erze 0/01) Úloha č 10 Měřeí rychloti prouu zuchu Měřeí záiloti íly oporu protřeí a taru tělea 1) Poůcky: Aeroyaický tuel, ikroaoetr, Pratloa trubice,

Více

ě ž ý ř á í í č é í í ší ř í í ě í ř á ý ě á ě é í é é č ěž é á í á č é é á č ň á í í ř á í ů í á áž ě ě č é ý ý ž úč ů ý á é í ž č á é č á á í ě ž š

ě ž ý ř á í í č é í í ší ř í í ě í ř á ý ě á ě é í é é č ěž é á í á č é é á č ň á í í ř á í ů í á áž ě ě č é ý ý ž úč ů ý á é í ž č á é č á á í ě ž š í ř á í í í í í ě é ě í ý ř č é ž š ž íč ý ř í ó ž á ň í í í ží ě ý í ý á ž é ř č ý á Ú í á í šší č ý ě í é č ýš í í á í čí á č é č ř ě ší ů í š ý ů č ší í Č ří ě í ř í ť ěš č ž ě ě č é č ó í č á č ř í

Více

Vysokofrekvenční obvody s aktivními prvky

Vysokofrekvenční obvody s aktivními prvky Vokofrekvenční obvod aktivními prvk Základními aktivními prvk ve vokofrekvenční technice jou bipolární a unipolární tranzitor. Dalšími aktivními prvk jou hbridní nebo monolitické integrované obvod. Tranzitor

Více

1 Seznamová barevnost úplných bipartitních

1 Seznamová barevnost úplných bipartitních Barvení grafů pravděpodobnotní důazy Zdeně Dvořá 7. proince 208 Seznamová barevnot úplných bipartitních grafů Hypergraf je (labě) -obarvitelný, jetliže exituje jeho obarvení barvami neobahující monochromaticou

Více

Příklady k přednášce 6 - Ustálený stav, sledování a zadržení poruchy

Příklady k přednášce 6 - Ustálený stav, sledování a zadržení poruchy Přílady přdnášc 6 - Utálný tav, ldování a zadržní poruchy Mchal Šb Automatcé řízní 05 9-3-5 Frvnční odzva - odvozní Automatcé řízní - Kybrnta a robota Na vtup tablního ytému přnom y () = Gu ()(), trý j

Více

1.1. Primitivní funkce a neurčitý integrál

1.1. Primitivní funkce a neurčitý integrál Mateatia II. NEURČITÝ INTEGRÁL.. Priitiví fuce a eurčitý itegrál Defiice... Říáe, že fuce F( ) je v itervalu ( ab, ) priitiví fucí fuci f ( ), platí-li pro všecha ( ab, ) vztah F = f. Defiice... Možia

Více

Iˆa. Volba kladných směrů. systémy:generátorický, spotřebičový, smíšený. smíšený. spotřebičový zdrojový. Zdrojový. Systém: Systém: Smíšený

Iˆa. Volba kladných směrů. systémy:generátorický, spotřebičový, smíšený. smíšený. spotřebičový zdrojový. Zdrojový. Systém: Systém: Smíšený 1 Záladní výpočt ustálného chodu BPF Volba ladných sěrů. systéy:gnrátoricý, spotřbičový, síšný síšný Iˆ= Iˆ a b spotřbičový zdrojový Iˆ + Iˆ = ˆ a b Iˆa Iˆb Iˆa Iˆb Iˆa Iˆb Systé: Zdrojový Spotřbičový

Více

Y Q charakteristice se pipojují kivky výkonu

Y Q charakteristice se pipojují kivky výkonu 4. Mení charakteritiky erpadla 4.1. Úod Charakteritika erpadla je záilot kutené mrné energie Y (rep. kutené dopraní ýšky H ) na prtoku Q. K této základní P h Q, úinnoti η Q a mrné energie pro potrubí Y

Více

Ý Ř ÁŘ Í Ť Č ú š ž é ú ř é é Ň ÁŘ Á Í É Í ú ř ř ř š š é š é ř é ů Ň Ý ť ÁŘ Á Ř ř é ř š ž ů é ř ú ú é ř é ú ů ř ů ř ó ž é ř é ř é ů ř é ž é ó ůž ž ř ř ú ž ř é ž ř é é é ř ž ž é é é š ž é š é ž é š é É š

Více

Vlny v plazmatu. Lineární vlny - malá porucha určitého v čase i prostoru pomalu proměnného stavu

Vlny v plazmatu. Lineární vlny - malá porucha určitého v čase i prostoru pomalu proměnného stavu Vlny v plazmatu linární nlinární Linární vlny - malá porucha určitého v čas i prostoru pomalu proměnného stavu Linární rozvoj vličin a = a + a ( r, t) b= b + b ( r, t) a, b mohou obcně být funkcmi r, t

Více

Č ř ř Ž Í š ř ř Ž ř š ř ž ů ř š ř Ž Í ř ř š Ž ř š ř ř š Č ž ř ř ú Ž Ž ů ř ž Č ř ž ř š ř ž ř ř Ú ř ř Ž ů ž ř ž Á Ž Ž Í ú Ž š Č Ž š Ž Ž ř š š ř š ř Ž ř ř Á Ž ú ů ú Ž Ú Ž ú š ř Í Ž ř Ž ř Ž š š ů Č Ž ř ř Ž

Více

ú ó ú ó ú ú ó š Í Ť ň ŠÍ Ů ň ú Ů ó š ú ú ň š ú š ť ť ú š š ú ť úť Ď š š ú ú ť ú É ú ó ú ť š É ú ó ú ú ó ú ť ť ó ú ó ť ú ň ú ó ú ú ó ó ó Ý ň ú ú ó ó óé ó ú ó ú ó ó Ó ň ó ó ó ú ú ó ó ó ó ó ó ó ó ú ó ó ú

Více

í í ú ř Í ř í á í é é é Í á ý ň ř í š í č í í á í í é í í í á á ó ě Í í ě í í í í í řá ů čč ř č á í í í ě á ě ě í á í š ť Í ě Í ř ě í ě č Í ř é č š ě

í í ú ř Í ř í á í é é é Í á ý ň ř í š í č í í á í í é í í í á á ó ě Í í ě í í í í í řá ů čč ř č á í í í ě á ě ě í á í š ť Í ě Í ř ě í ě č Í ř é č š ě ú ř Í ř á é é é Í á ý ň ř š č á é á á ó Í řá ů čč ř č á á á š ť Í Í ř č Í ř é č š á č ý č é ó á č ř ů á č č š á ů á Í á á é č ú ó ť ý Í ř č é Í č š á ř á é á ř á ř ů ř ř á áž á Í ý é é č ý čů á é é é č

Více

REGULACE Část 2: Číslicová regulace

REGULACE Část 2: Číslicová regulace Počíačoé řídicí sysémy 2007/08 Úsa počíačoé a řídicí chniky VŠCH Praha REGULACE Čás 2: Číslicoá rgulac doupolohoá rgulac (opakoání a rozšířní) číslicoé rguláory (opakoání a rozšířní) windup fk rguláoru

Více

e en loh 1. kola 41. ro n ku fyzik ln olympi dy. Kategorie D Auto i loh: J. J r (1,2,3,4,6,7), I. Volf (5) 1.a) Zrychlen vlaku p i brzd n ozna me a 1.

e en loh 1. kola 41. ro n ku fyzik ln olympi dy. Kategorie D Auto i loh: J. J r (1,2,3,4,6,7), I. Volf (5) 1.a) Zrychlen vlaku p i brzd n ozna me a 1. e en loh 1. kola 41. ro n ku fyzik ln olympi dy. Kategorie D Auto i loh J. J r (1,2,,4,6,7), I. Volf (5) 1.a) Zrychlen vlaku p i brzd n ozna me a 1. Z rovnic v 0 = a 1 t 1 ; 1 = 1 2 a 1t 2 1 (1) plyne

Více

Regulátor NQR pro nelineární oscilátor s analýzou stability

Regulátor NQR pro nelineární oscilátor s analýzou stability Rulátor NQR ro liárí osilátor s aalýzou stability Pavl Stibaur Mihal Valáš Abstrat: V řísěvu j stručě shruta a řdvší aliováa todoloi ávrhu liárího zětovazbího stavového rulátoru NQR a bhar liárího osilátoru

Více

Automatizační technika. Obsah. Syntéza regulačního obvodu. Seřizování regulátorů

Automatizační technika. Obsah. Syntéza regulačního obvodu. Seřizování regulátorů 30.0.07 Akadmcký rok 07/08 řpravl: Radm Farana Automatzační tchnka Syntéza rgulačního obvodu Obah Syntéza rgulačního obvodu Exprmntální mtody Analytcké mtody Analytcko-xprmntální mtody 3 Sřzování rgulátorů

Více

Úloha IV.5... vrhač nožů

Úloha IV.5... vrhač nožů Fyziální orespondenční seminář MFF UK Úloha IV5 rhač nožů 4 body; průměr 1,41; řešilo 37 studentů Vrhací nůž opustí ruu e chíli, dy je jeho těžiště e ýšce h a má pouze horizontální složu rychlosti 0 Jaou

Více

ŽB DESKA Dimenzování na ohyb ZADÁNÍ, STATICKÉ SCHÉMA ZATÍŽENÍ. Prvky betonových konstrukcí ŽB deska

ŽB DESKA Dimenzování na ohyb ZADÁNÍ, STATICKÉ SCHÉMA ZATÍŽENÍ. Prvky betonových konstrukcí ŽB deska ŽB DESKA Dienzování na ohyb Potup při navrhování kontrukce (obecně): 1. zatížení, vnitřní íly (E). návrh kontrukce (např. deky) - R. poouzení (E R) 4. kontrukční záady 5. výkre výztuže Návrh deky - určíe:

Více

á ý é í č ří Ť á íč é í ž č ř Í é Ť č í ž á ý ý á é č í ý ř ří í ž ř é ř á á í ý ý ů í Í ř ů Ž á á á ž ří š ě Í ž č é ří ř í ř í Ť ý š ý ř í ý ů ří ř

á ý é í č ří Ť á íč é í ž č ř Í é Ť č í ž á ý ý á é č í ý ř ří í ž ř é ř á á í ý ý ů í Í ř ů Ž á á á ž ří š ě Í ž č é ří ř í ř í Ť ý š ý ř í ý ů ří ř á ý č ř Ť á č ž č ř Í Ť č ž á ý ý á č ý ř ř ž ř ř á á ý ý ů Í ř ů Ž á á á ž ř š ě Í ž č ř ř ř Ť ý š ý ř ý ů ř ř á š á Í ř ý ý ř ř č ř ř Í š ý Í Ť č ř á Í ó č ř ý ž ý Í ř č ž á ř ž ý ž ří ř š Í É Í ř Í

Více

Á Í É č ý á í á ě ý á á ě ů ž ý Ž ý Ž áří á í í é í Í ř í ě ří ů ž ří é žá ý á á í á ěě ý ě ě ář á í ř á í ší á ě á Í ří š ě ší š á á š á Ž ů á ě í í

Á Í É č ý á í á ě ý á á ě ů ž ý Ž ý Ž áří á í í é í Í ř í ě ří ů ž ří é žá ý á á í á ěě ý ě ě ář á í ř á í ší á ě á Í ří š ě ší š á á š á Ž ů á ě í í Á É č ý í ý ů ž ý Ž ý Ž ří í í é í ř í ří ů ž ří é ž ý í ý ř í ř í ší ří š ší š š Ž ů í í ů ž ý í ří ř é ř ž í é č í í í é ý í í č ý í Ž í čí č ůí ř í é í ž í í í í ý ý í ů ů ž ří ú í í č é ří é č ž č

Více

Doplňky k přednášce 23 Diskrétní systémy Diskrétní frekvenční charakteristiky

Doplňky k přednášce 23 Diskrétní systémy Diskrétní frekvenční charakteristiky Doplňky k přednášce 3 Dikrétní ytémy Dikrétní frekvenční charakteritiky Michael Šebek Automatické řízení 011-1-11 Automatické řízení - Kybernetika a robotika e jω Matematika: Komplexní exponenciála = coω+

Více

Ó ž ž ž ž ů Ž ňá É ž ú ů ú ůž ž ú ů ň žů ž ú ů ů Ž ž ů ú ž ů ů ž Ž ž Ó ú ž ž ů ž ž ť ú Ú ň ů ž ž ů ž ů ž ů Ž ů ů ž ů ů ň ů ú ň ž ů ú ň ů ž ů ůž ú ť Ž ť ů Ž ťé ť ů ž ů ž ů ů ů Ě Á Š ů ú ú ž žů ů ú ú ž ú

Více

ó Č ŠŤ Č š ž š ý š ů š ž š š š Ž š š š š ý š š ů š š š š š Ú Í Š Ě Ú š ý š š ú ň Š ň Š ý ň š Ů Í ň Š Í ý š Š š ň Š š ů Š ž ý ý Ž ý ý ýš ý ž Č š ú Á Í Á É Ý ý š ý š š š ú ú š ý ž ž ň ú ý Š ÉŽ Š Ě Í š Ř

Více

Řešený příklad: Požární návrh nechráněného nosníku průřezu IPE vystaveného normové teplotní křivce

Řešený příklad: Požární návrh nechráněného nosníku průřezu IPE vystaveného normové teplotní křivce Douent: SX06a-CZ-EU Strana 1 z 8 Řešený přílad: Požární návrh nechráněného nosníu průřezu IPE vystaveného norové teplotní řivce V řešené příladu je navržen prostý ocelový nosní. Pro přestup tepla do onstruce

Více

Téma 1: Pravděpodobnost

Téma 1: Pravděpodobnost ravděpodobot Téma : ravděpodobot ředáša - ravděpodobot áhodého evu Náhodý pou a áhodý ev Náhodý pou - aždá čot, eíž výlede eí edozačě urče podmíam, za terých probíhá apř hod otou, měřeí dély, běh a 00

Více

SP2 01 Charakteristické funkce

SP2 01 Charakteristické funkce SP 0 Chararisicé func Chararisicé func pro NP Chararisicé func pro NV Náhld Náhodnou proměnnou, nbo vor, L, n lz popsa funčními chararisiami: F, p, f číslnými chararisiami: E, D, A, A 4 Co s dá z čho spočía:

Více

ď í ď ě ý á ě ž é ř ě é ů ř ř é á í ě Ž ž ó á č í ů í á ž ě á í Ž é ě Ž í ý úč ů á á á á ů ří ů ě í ž ě é á ř á í š í í á í č í ů í ž í á í í ě í á í ě í ě čá ě ě í žá Ž ď í á ě é ří ď í é ďě ší ř ů á

Více

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje rojek realizoaný na SŠ Noé Měo nad Meují finanční podporou Operační prorau Vzděláání pro konkurencecopno Králoéradeckéo kraje Modul 03 - Tecnické předěy In. Jan Jeelík . Mecanická práce oybuje-li e oný

Více

DIO etapa 1.1P+L (Přehledná situace)

DIO etapa 1.1P+L (Přehledná situace) DIO etapa 1.1P+L řehledná situace 1 Detail 4 Detail 3 Detail Detail Detail 10 Detail 9 Detail 8 Detail 1 Detail 6 Detail Detail 5 DIO etapa 1.1P (Detail 1 cca 1600 m PRH IS RH MIMO VOZIDEL STVBY E13 (MIMO

Více

Kinematika hmotného bodu

Kinematika hmotného bodu Kinemaika hmoného bodu 1. MECHANICKÝ POHYB Základní pojmy kinemaiky Relaino klidu a pohybu. POLOHA HMOTNÉHO BODU 3. TRAJEKTORIE A DRÁHA HMOTNÉHO BODU 4. RYCHLOST HMOTNÉHO BODU 5. ZRYCHLENÍ HMOTNÉHO BODU

Více

11 - Regulátory. Michael Šebek Automatické řízení 2015 24-3-15

11 - Regulátory. Michael Šebek Automatické řízení 2015 24-3-15 - Regulátory Michael Šebe Automaticé řízení 5 4-3-5 Nejjednodušší regulátory Automaticé řízení - Kybernetia a robotia v jitém mylu nejjednodušší regulátor je On-Off (Bang-bang) má jen dvě možné výtupní

Více

ď ř Í í ú í í Ž í Í óí č í í ý

ď ř Í í ú í í Ž í Í óí č í í ý í ř í ř ř ý č č ř č č ý í í ý ň ř í ř č č í í ř ý ý ř ý ř č ý ý í í í í ř íí ú ý ů í ý ů í í ý ř č ří í č č í č č ř ů í ř čí í ú í í ř í č ý ř í ř ý č í ů ř íč í í č ý ř č ů í í ří í í ú í ď í í í í ý

Více

Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné.

Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné. INTEGRÁLNÍ POČET FUNKCÍ JEDNÉ PROMĚNNÉ NEURČITÝ INTEGRÁL NEURČITÝ INTEGRÁL Průvodc studim V kapitol Difrnciální počt funkcí jdné proměnné jst s sznámili s drivováním funkcí Jstliž znát drivac lmntárních

Více

Frekvenční metody syntézy

Frekvenční metody syntézy Frevenční metody yntézy Autor: etr Havel, havelp@fel.cvut.cz 23..25 Frevenční metody návrhu e naží upravit frevenční charateritiu otevřené myčy L ta, aby výledná frevenční charateritia uzavřené myčy T

Více

Í Í ÍÚ Í ŘÍ Í Í Ě Í Í Ř É Ú Í Í ě ž ě š á á á Í ě č ě é á é á ě á ů č Í é ě é ž ě á š ě ě é ě é á á á č á ů á č ůí ě ě é á Í ž á ů á á ě á č á ž Úč á

Í Í ÍÚ Í ŘÍ Í Í Ě Í Í Ř É Ú Í Í ě ž ě š á á á Í ě č ě é á é á ě á ů č Í é ě é ž ě á š ě ě é ě é á á á č á ů á č ůí ě ě é á Í ž á ů á á ě á č á ž Úč á ě Ť Í ď ž Ě Í Í ÚŘ š é á ě á á Č Í Í Í É Ú Í Í Í Í Ě Í Í ŘÍ Í Í Ř É Ú Í Í á á š á žá á ě ů ě ů é š ě ě é áž č ě š é č š é č č č é č á ů á ů č ě žá á ů ě ů é š ě ě é áž ě ž ě š Š á ó Í á á á ě é š ů á á

Více

á š á á ě ř é ÍŽ ě Ž Ď ě á Ď á á á é Ž š Ď ě Í é š ň á á ě č ě Ů š Í Ý á ě ě á Í Í Í ě š š ěň é Ž á é ě ě é ňí š Í é á ě ě é š č č č á é ě é ě ě Ď á ě

á š á á ě ř é ÍŽ ě Ž Ď ě á Ď á á á é Ž š Ď ě Í é š ň á á ě č ě Ů š Í Ý á ě ě á Í Í Í ě š š ěň é Ž á é ě ě é ňí š Í é á ě ě é š č č č á é ě é ě ě Ď á ě áě á á Š Á É Ě čá á č é ě ň ě á Í š č é Ž ě é á á Ů ň Í š ě ň ěž ě é ě á Ů á č é á š ě é é ě á ň š š á Í é š ě ň é ě é ě ě é á Ž ň á á č š Í Č č ě ĎÍ ě ěž á é Í á č é é é ě á š ě é š Ž č ě Ž č ě Ž é Ů

Více

Příklady k přednášce 20 - Číslicové řízení

Příklady k přednášce 20 - Číslicové řízení Příklady k přednášce 0 - Čílicové řízení Micael Šebek Automatické řízení 07-4- Vzorkování: vzta mezi a z pro komplexní póly Spojitý ignál má Laplaceův obraz póly v, Dikrétní ignál má z-obraz αt yt ( )

Více

Jehlan s obdélníkovou podstavou o rozměrech a dm a b dm má boční hranu délky s dm. Vypočítejte povrch a objem tohoto jehlanu.

Jehlan s obdélníkovou podstavou o rozměrech a dm a b dm má boční hranu délky s dm. Vypočítejte povrch a objem tohoto jehlanu. Jehlan obdélníkoou podtaou o rozměrech a dm a b dm má boční hranu délky dm. ypočítejte porch a objem tohoto jehlanu. a = b = = 5 dm 6,5 dm 1,8 dm a = 1,55348557 dm pomocí Pythagoroy ěty z praoúhlého E

Více

L HOSPITALOVO PRAVIDLO

L HOSPITALOVO PRAVIDLO Difrnciální počt funkcí jdné rálné proměnné - 7 - L HOSPITALOVO PRAVIDLO LIMITY TYPU 0/0 PŘÍKLAD Pomocí L Hospitalova pravidla určt sin 0 Ověřní přdpokladů L Hospitalovy věty Přímočarým použitím věty o

Více

í Ř Á Í Éč É š ó é ě á ý í á í í ě ý í ě ý í ó ř é í í í á ě čí í é á é ří č é á í é í ěř é č é í š ě š ú ě ší í ř ř í í í í á Ž á í í í á í í ý ř ů ů

í Ř Á Í Éč É š ó é ě á ý í á í í ě ý í ě ý í ó ř é í í í á ě čí í é á é ří č é á í é í ěř é č é í š ě š ú ě ší í ř ř í í í í á Ž á í í í á í í ý ř ů ů í Ř Á Í Éč É š ó é ě á ý í á í í ě ý í ě ý í ó ř é í í í á ě čí í é á é ří č é á í é í ěř é č é í š ě š ú ě ší í ř ř í í í í á Ž á í í í á í í ý ř ů ů ů ů ý ý í ř Ž č š í ší á ý é ě é é ě í í á í í í ě

Více

s požadovaným výstupem w(t), a podle této informace generuje akční zásah u(t) do

s požadovaným výstupem w(t), a podle této informace generuje akční zásah u(t) do Vážení zákazníci, dovolujeme i Vá upozornit, že na tuto ukázku knihy e vztahují autorká práva, tzv. copyright. To znamená, že ukázka má loužit výhradnì pro oobní potøebu potenciálního kupujícího (aby ètenáø

Více

. 7 ÍPRAVA TEPLÉ UŽITKOVÉ VODY (TV) 1 TV

. 7 ÍPRAVA TEPLÉ UŽITKOVÉ VODY (TV) 1 TV ŘÍRAA RAA TELÉ ODY (T) ŘEDNÁŠKA Č.. 7 ŘÍRAA RAA TELÉ UŽITKOÉ ODY (T) 1 T určená k mytí, koupání, praní, umývání, k úklidu OHŘÍÁNÍ: - ze studené nejčastěji pitné vody s teplotou 8-12 C - v ohřívači na teplotu

Více

Ú ú ú ú Ž Ž ŽÁ ú ň Í ú ú ť Ž Ž ú Ó ú ú ú Í Í Í ú ú ú ú ť ú Ž ň Á Í ň ť Ú Ž Ř Š Í ú Ú ť Ž ú ú ú ú ú ť Ž ú Á Í Í ť Ž ň Á ň Ó ú Š Ž Ž ň ú ť Ž ú ú ú ň Ž Ž Í ú Ž Ž ú Ž ú ň ť ň ú ň ú ú ň ú Ž Ž Ž Ž Ť ú Ž ú ň

Více

ó Ú š ý š Č ě ď ě É É ř ě ě ř Ú ě š ř ě ě ě ř ř ě ů Í ů ů ř Ž ř ě ří ů ů Č ůž ě ě š ř ě úř ě ý ř ř ř ý Í ýš ě ýš ř š ý ů ý ě ě ř Š ť ť Č Ť ý ýš ě ě ý Í ě ě ů ř ú ř ě Č ř ů ý ř Í ě ý ý ý ě Č ť ě Č ř š ř

Více

Í í É ť ď í é í ř ě ž ří á í í í í ů ě ě é ě É ž ě í á š ý ň á ý ř ů á Í é ž ě ě í á ů á í í ří á ž é ř ě ř á á ř Í č ů í Í ž ří ě ý ě Í ě ří ř ší á í

Í í É ť ď í é í ř ě ž ří á í í í í ů ě ě é ě É ž ě í á š ý ň á ý ř ů á Í é ž ě ě í á ů á í í ří á ž é ř ě ř á á ř Í č ů í Í ž ří ě ý ě Í ě ří ř ší á í Í í É ť ď í é í ř ě ž ří á í í í í ů ě ě é ě É ž ě í á š ýň á ý ř ů á Í é ž ě ě í á ů á í í ří á ž é ř ě ř á á ř Í č ů í Í ž ří ě ý ě Í ě ří ř ší á í Í ď Í ý ší ř Í é ě ř ó Í š ř Í í ň á ú í ř ě ý ě ší

Více

íž áží ě í á Ř á á Ž č é é ě í š ě čí á řá í ý ý řá í ě í ř ě č ž á í Ž í ě é ř á ě š í é ě Žá í š ě í č ě ř ů í Ž ý í ů ř á á ý ý á í ý á í ř í ě í é

íž áží ě í á Ř á á Ž č é é ě í š ě čí á řá í ý ý řá í ě í ř ě č ž á í Ž í ě é ř á ě š í é ě Žá í š ě í č ě ř ů í Ž ý í ů ř á á ý ý á í ý á í ř í ě í é á ř í ě ž Í ú Íýář č ř ů ě ší ž í á é á ž ž á ú ůž č ú č š ě ě ž á ř í š ě í ž ř č ú í í ú ě č ú š ž č ž ř ě ží ž é š í á Č ý á í ří á ý é í ě é á ě é é á í é ý č é é ó ý ř ř ů é éě í ý í ří é é é í ů

Více

( ) Příklady na otočení. Předpoklady: Př. 1: Je dána kružnice k ( S ;5cm)

( ) Příklady na otočení. Předpoklady: Př. 1: Je dána kružnice k ( S ;5cm) 3.5.9 Přílady na otočení Předpolady: 3508 Př. 1: Je dána ružnice ( ;5cm), na teré leží body, '. Vně ružnice leží bod L, uvnitř ružnice bod M. Naresli obrazy bodů L, M v zobrazení řeš bez úhloměru. R (

Více

Aproximativní analytické řešení jednorozměrného proudění newtonské kapaliny

Aproximativní analytické řešení jednorozměrného proudění newtonské kapaliny U8 Ústav rocesní a zracovatelské techniky F ČVUT v Praze Aroximativní analytické řešení jednorozměrného roudění newtonské kaaliny Některé říady jednorozměrného roudění newtonské kaaliny lze řešit řibližně

Více

ď Í óč á ě ú óí í ť ú í ý ý Ě Í ý ě í ě í ě í ě Í Í Í ó í Í í í É ó í í á ě í í ě í ó ří č ý Ýú í í í Í ě ú Ě ě Í í Í á ý ý í É í í Í Í óí Ó ě á í Í á

ď Í óč á ě ú óí í ť ú í ý ý Ě Í ý ě í ě í ě í ě Í Í Í ó í Í í í É ó í í á ě í í ě í ó ří č ý Ýú í í í Í ě ú Ě ě Í í Í á ý ý í É í í Í Í óí Ó ě á í Í á ď Í óč á ě ú óí ť ú ý ý Ě Í ý ě ě ě ě Í Í Í ó Í É ó á ě ě ó ř č ý Ýú Í ě ú Ě ě Í Í á ý ý É Í Í óí Ó ě á Í á é ě ó É Í á Ě ř é ů ř á ú č ř ě ý á ó ď ý Ú ř ř ú ř ó Ť ó ó Íě ě ú ý ě ý é Í ě Í ů ů é á ě á

Více

Í Ú Í ÁŇ Ý Ř ě Ú ň ý ú ú ů é é ě Ž Č é ě ů ý ě é é ý ň é ě ě ě ů é é é ě Ž Č ý ý ě ů Ó Ž é Č é ň é Ú é Ž Í ý Ž é ě é ý ů ě ě ů é ě ť é Ž Č Í Ž ě Ž é ů

Í Ú Í ÁŇ Ý Ř ě Ú ň ý ú ú ů é é ě Ž Č é ě ů ý ě é é ý ň é ě ě ě ů é é é ě Ž Č ý ý ě ů Ó Ž é Č é ň é Ú é Ž Í ý Ž é ě é ý ů ě ě ů é ě ť é Ž Č Í Ž ě Ž é ů Í ÁŇ Ý ÚŘ ú ů é é Š Š Č Ř ď Ř Á ÁŠ ň ý ú Ú Í ů é é ú ů ě ě ů Ú ě é ý ý ě ů Č ň ý ě ú Č Ú Č Í Ú Í ÁŇ Ý Ř ě Ú ň ý ú ú ů é é ě Ž Č é ě ů ý ě é é ý ň é ě ě ě ů é é é ě Ž Č ý ý ě ů Ó Ž é Č é ň é Ú é Ž Í ý Ž

Více

ú ľž ě ý ú ľž č é š Ř ń Ž č ý ú ž č é š ú Ž ľ č ý ú ž č é š ř č é ě č ľ ě ě Š š řč Č Č ą Č č úč Č Č Č Ę ř é ě é Ž č Úč éž č ý ř ř ě č ř ý é č ú Ž č ý č é ú ż č é š ě é ř š č č é č č é ě č č é é Ž Ž ö č

Více

ří ěř čí Úč í ú í Ť í á č ě í ě č íř č č Úč í ú í Ť í á ř áš Ří á č íř č č č í č č č š Š š á ý ěčí č č á á ý ěčí č č Š ý áš š č ř ů č íč č č č š č íč

ří ěř čí Úč í ú í Ť í á č ě í ě č íř č č Úč í ú í Ť í á ř áš Ří á č íř č č č í č č č š Š š á ý ěčí č č á á ý ěčí č č Š ý áš š č ř ů č íč č č č š č íč ě ý úř č í úř íř č č Č á Ú ě á úř č ě č íř č č Á Í Í É Ú Í Í ŘÍ Í Í Ú Í Á Í Ř ÁŠ ě č íř č č Žá á í í í ě í á í í í í í í Š Ú č á čí ú í íř á á í ú í č ý í úř ě é úř č í úř ří š ý í á č ú í á á í í řá í

Více

PŘÍKLAD 7: / m (včetně vlastní tíhy) a osamělým břemenem. = 146, 500kN uprostřed rozpětí. Průvlak je z betonu třídy C 30/37 vyztuženého ocelí třídy

PŘÍKLAD 7: / m (včetně vlastní tíhy) a osamělým břemenem. = 146, 500kN uprostřed rozpětí. Průvlak je z betonu třídy C 30/37 vyztuženého ocelí třídy yoká škola báňká Tehniá univerzita Otrava Fakulta tavební Texty přenášek z přemětu Prvky betonovýh kontrukí navrhování pole Eurooe PŘÍKLAD 7: Navrhněte mykovou výztuž v krajníh čáteh průvlaku zatíženého

Více

á ě ž ž á íš č Š á š ě ě ř ě í Ú ř č á ť žá á í Í ě ý í á ř ž í í í í á í ň á ý ě á ě ú ě ž á Í á Í í á ě š š á á ěř é á š á ý á ž č ž í é ě á é á ě á

á ě ž ž á íš č Š á š ě ě ř ě í Ú ř č á ť žá á í Í ě ý í á ř ž í í í í á í ň á ý ě á ě ú ě ž á Í á Í í á ě š š á á ěř é á š á ý á ž č ž í é ě á é á ě á ě ř é ě ří ž ý ř ý í ž ě ě ž ť č ě ě ž ř á ý á š ě í ů á ě í é á ž š é ě é ů í é řá é í í ě ří č ě é ř é ý ě í ě Í ž á čá í ě ý í á í ě á á í ž š ř á í č ý ž ř ý š ě ó áž ě ý íš á á ší í ě ý ř ě Ž ř ý

Více

Zhotovení strojní součásti pomocí moderních technologií

Zhotovení strojní součásti pomocí moderních technologií Útav Strojírené technologie Zadání: Speciální technologie č. zadání: Cvičení Zhotovení trojní oučáti poocí oderních technologií Poznáy: Pro zadanou trojní oučát (hotový výrobe) dle pořadového číla viz

Více

Í ÁŇ Ý ÚŘ Í Ů É Č Ú ň ú Ú ů Ž Í ň ů Ž Ž ů Ž ó ů ů ú Ž Ž ť ť ť Ž ů ů Ž ů ů Ž

Í ÁŇ Ý ÚŘ Í Ů É Č Ú ň ú Ú ů Ž Í ň ů Ž Ž ů Ž ó ů ů ú Ž Ž ť ť ť Ž ů ů Ž ů ů Ž Í ÁŇ Ý ú ů Á Č Ř ň ú ť ů ú ů Í ů ó Ž ů Ž ů ů Č Ú ú ň Ú Č Ú Č Í ÁŇ Ý ÚŘ Í Ů É Č Ú ň ú Ú ů Ž Í ň ů Ž Ž ů Ž ó ů ů ú Ž Ž ť ť ť Ž ů ů Ž ů ů Ž ů ů ť ů ů ů Ž ú Ž ů Ž Í ů ů Ž ú ů Ž ů Ž ů Ž ů ů ú ů Ž ů Ž ú ů ú

Více

Vlny v plazmatu. Lineární vlny - malá porucha určitého stacionárního konstantního nebo v čase a/nebo v prostoru pomalu proměnného stavu

Vlny v plazmatu. Lineární vlny - malá porucha určitého stacionárního konstantního nebo v čase a/nebo v prostoru pomalu proměnného stavu Vlny v plazmatu linární nlinární Linární vlny - malá porucha určitého stacionárního konstantního nbo v čas a/nbo v prostoru pomalu proměnného stavu Linární rozvoj vličin a a+ a(,) rt b b+ b(,) rt a, b

Více

Ů ř ě ů Ž Ž á á á á á ý ú ů ů š ě ů á á á Ž Š ář ř ě ů Ž Š ř ě Ů ř ě Ž š Ž ě ýš á á č č ý ář ě ů ř ě ě Ž čá ář ě á ě ě ě ř š á á ř ý á á á Ž ř ú á á ř

Ů ř ě ů Ž Ž á á á á á ý ú ů ů š ě ů á á á Ž Š ář ř ě ů Ž Š ř ě Ů ř ě Ž š Ž ě ýš á á č č ý ář ě ů ř ě ě Ž čá ář ě á ě ě ě ř š á á ř ý á á á Ž ř ú á á ř á ě á á áš č á á č á ě á č ě ě š ř ů á Ó ř ě ě š ř ů ě á áš á áš Á Ú á á áš á ů á ň ý č ž á ř Ž á ě ř ř ě Ž á ň á á ů ý ý ř ř á ř á á úř á á á č ě ě š ř ů á á Ů ř ě ů Ž Ž á á á á á ý ú ů ů š ě ů á á á

Více

ŘÍ ó Ý Ň É Ť Í ň ó Ř Í Í Ň ď ď ď Ě Í Á Ý ó Á ó ď ó Í ó Ř Č ó Ř Ř Á Š Ď ď ď Č Ý Ý Í ň Ý ň Ý Ý ň Í Ý Ó Í Ý ň Ň ď ň ó ó ó ď ň Á Á Á Ě Ě ň ň ň Á Á ó ď Í Ě ď Ď ň Ý ď ó ň Š Í Á ÁŠ Ě Š Í Á ď ď ď ď Ý ň ň Í Ž

Více

Stabilita prutu, desky a válce vzpěr (osová síla)

Stabilita prutu, desky a válce vzpěr (osová síla) Stabilita rutu, deky a válce vzěr (oová íla) Průběh ro ideálně římý rut (teoretický tav) F δ F KRIT Průběh ro reálně římý rut (reálný tav) 1 - menší očáteční zakřivení - větší očáteční zakřivení F Obr.1

Více

ří í š Š í š ří ň Š ř é š ů é ů ž í Š íž ů í í ú í ú ř í ň íš é é Íť š Ž ů š Ž ú ý ž ří í š ů ů š í é š ů ž é ř ř ř í Ú ý ří é é í í ů ý í ř é ó Ž í í é é í í ř ší íž ř š é ů é ť ý ú ř ř š í í í ů Ž š

Více

Mechanika II.A Třetí domácí úkol

Mechanika II.A Třetí domácí úkol Mechanika II.A Třetí domácí úkol (Zadání je částečně ze sbírky: Lederer P., Stejskal S., Březina J., Prokýšek R.: Sbírka příkladů z kinematiky. Skripta, vydavatelství ČVUT, 2003.) Vážené studentky a vážení

Více

/ P ře d m lu v a...11. / Úvod... 14. / Vysoký krevn í tla k, definice, rozdělení, p rim árn í a sekundární h y p e r te n z e...

/ P ře d m lu v a...11. / Úvod... 14. / Vysoký krevn í tla k, definice, rozdělení, p rim árn í a sekundární h y p e r te n z e... Obsah / P ře d m lu v a...11 / Úvod... 14 1. O k re v n ím tla k u se stále m lu v í a m lu v í... M á sm ysl se z a jím a t o k re v n í tla k, když n e m á m ž á d n é p o tíže? Je a le fa k t, že d

Více

š É á ě á š Í Í ě Í š áě í š í Ž í í Ží é ě á Í í á í ě á š í í ě ě Ž é Ž čá á á ě ě á á í á Ť á ě ňí ě ž á í Í á í Ž ě á á ň ě é á á í áč éí Úň í í Ž

š É á ě á š Í Í ě Í š áě í š í Ž í í Ží é ě á Í í á í ě á š í í ě ě Ž é Ž čá á á ě ě á á í á Ť á ě ňí ě ž á í Í á í Ž ě á á ň ě é á á í áč éí Úň í í Ž áš Ó á Á Ý Í Í Ó š á ň í čí á é é áň č ň č á ě á é í č á Í č é Ž í á é č é Ó ě é í Ž ě č é é á Ž ňí ě Ď íž š í ě á á í á Ť á ě á ŽÍí Ž í Ó ě Ž í ě Ž á í é ě ší á ě Ď ě é é š Ó Ó á Ž ě í á í í Í í í ň Ž

Více

8 - Geometrické místo kořenů aneb Root Locus

8 - Geometrické místo kořenů aneb Root Locus 8 - Geometrické míto kořenů aneb Root Locu Michael Šebek Automatické řízení 206 0-3-6 Metoda Root Locu Walter R. Evan, AIEE Tranaction, 948 Metoda root locu neboli geometrické míto kořenů vykreluje polohu

Více

hledané funkce y jedné proměnné.

hledané funkce y jedné proměnné. DIFERCIÁLNÍ ROVNICE Úvod Df : Občjnou difrniální rovnií dál jn DR rozumím rovnii, v ktré s vsktují driva hldané funk jdné proměnné n n Můž mít pliitní tvar f,,,,, n nbo impliitní tvar F,,,,, Řádm difrniální

Více

Ý áš á í é ť š í

Ý áš á í é ť š í ří ď ě ě é ř ý ří ý é úř á ú ě ě ř ář í ší ž í ř í í Í ř ý áš ě ů é í ď Í ř ý řá óš í áš í ý í ř š í á á ř ří ž ě ž ď š ě í í í á žá ý á Í ÍŽ Š Á Ó ř č í Í é ž é ž á í á á Ž ř ě ž ú á á č ě ě í ěž á í

Více

áš á é é é á ú é á é é ď á á á ý á ý á š ž ý ď é ž é Í ž á á é é Š É áš á é é é á ú é á é á á é ž é ž á á é é áš á é é é á ú é á ó é ý á á ý á ý á ý á š ž Ý é ž é ž ň á á é é Š ť áš á é é é á ú é á é é

Více