Doplňky k přednášce 23 Diskrétní systémy Diskrétní frekvenční charakteristiky

Rozměr: px
Začít zobrazení ze stránky:

Download "Doplňky k přednášce 23 Diskrétní systémy Diskrétní frekvenční charakteristiky"

Transkript

1 Doplňky k přednášce 3 Dikrétní ytémy Dikrétní frekvenční charakteritiky Michael Šebek Automatické řízení

2 Automatické řízení - Kybernetika a robotika e jω Matematika: Komplexní exponenciála = coω+ jinω Eulerův vztah Komplexní exponenciála σ+ jω σ e = e coω+ jinω ( ) Mimochodem, plyne z něj nejhezčí vztah j matematiky e π = 1 Sinu a koinu jou periodické funkce periodou π, proto i funkce j e σ+ ω je periodická komplexní periodou πi a peciálně j e ω (komplex. funkce reálné proměnné) je periodická periodou π h j h e = e ω je periodická periodou π h = ω = ωn Uvnitř periody jou funkce ymetrické, neboť inu a koinu jou ym. Graf e jω v komplexní rovině ω e = 1 jω e = ω rad/ Graf e α+jω v komplexní rovině amplituda hodnot je vyznačená jaem, fáze hodnot barvou σ+ jω σ e = e σ+ jω e = ω rad/ Michael Šebek ARI-Dop-3-011

3 Automatické řízení - Kybernetika a robotika Frekvenční přeno a Bodeho graf frekvenční přeno Gz ( ) = Ge ( jωh ) je periodická funkce ω periodou π = ω = h ω a uvnitř periody je ymetrická j h graf Ge ( ω ) proto čato krelíme N jen pro 0 ω ω = ω = π N h tedy na horní polovině kružnice ωn = ωπ = h ω N = ωπ = h Michael Šebek ARI-Dop

4 Příklad Sytémy 1 pojitý přeno vzorkovaný periodami h = 0., 1, + ( 1) >> G=1/(1+)/ G = 1 / (+1) >> Gz1=cd(tf(G),0.) Tranfer function: z z^ z Sampling time: 0. >> Gz=cd(tf(G),1) Tranfer function: z z^ z Sampling time: 1 >> Gz3=cd(tf(G),) Tranfer function: z z^ z Sampling time: h1 = 0. ω = 30 ω h = 1 ω = 6 ω n h3 = ω = 3 ω n n ω = ω = π T N Michael Šebek - ČVUT

5 Dikrétní Bodeho graf Sytémy nelze krelit pomocí jednoduchých aymptot neplatí vztah mezi fází a derivací amplitudy v log-log ouřadnicích ϕ [ deg] vzorkování způobuje přídavné fázové zpoždění ϕ = G( jω) Gz( jω) ωt [ rad] 9ωh [ deg] tato aproximace je dobrá do ωt π tj. do protože přechodové frekvence bývají menší ωc < ω 4 odhadneme PM po vzorkování a tvarování tak, že od pojitého PM protě ωh ϕ = [ ] 9 odečteme faktor rad ωh[ deg] π = ω = ω 4 ωt Michael Šebek - ČVUT

6 Dikrétní Nyquitův graf Sytémy Gz ( ) = Ge ( jωh ) je periodická funkce ω periodou ω = ω = π Dikrétní Nyquitův graf proto ho čato krelíme jen pro j h Ge ( ω ) 0 (na horní polovině kružnice) Control Sytem Tbx ho (default) krelí na celé kružnici ωn ω ωn Příklad G ( ) = 11+ ω ωn = ω = π h G=1/(1+);nyquit(tf(G),cd(tf(G),0.), cd(tf(g),1),cd(tf(g),)) N h G,nyquit(G) G = 1 / 1 + ω = ω = 0 ω = π h ω = 0 15,7 Gz=cd(tf(G),0.), nyquit(gz) Tranfer function: z Sampling time: 0. Michael Šebek - ČVUT

7 Příklad pojitý přeno 1 + ( 1) Sytémy vzorkovaný periodami h = 0., 1, >> G=1/(1+)/ G = 1 / (+1) >> Gz1=cd(tf(G),0.) Tranfer function: z z^ z Sampling time: 0. >> Gz=cd(tf(G),1) Tranfer function: z z^ z Sampling time: 1 >> Gz3=cd(tf(G),) Tranfer function: z z^ z Sampling time: h1 = 0. ω = 30 ω h 1 ω = 6 ω h = 3 n ω = 3 ω = n n ωn = ω = π h ω = ω = 0 Michael Šebek - ČVUT

8 Sytémy Dikrétní Nyquitovo kritérium tability Michael Šebek - ČVUT

9 Na rozdíl od pojitého případu Sytémy na rozdíl od pojitého případu netabilita je vně jednotkové kružnice, ale tuto oblat není jednoduché obkroužit konturou tabilní netabilní proto naopak obkroužíme oblat tability a omezíme e na případy, kdy funkce H( z) má z tejný počet nul a pólů označíme ho n To je plněno koro vždy, např. když Lz ( ) je triktně ryzí Tedy pro Hz ( ) = 1 + Lz ( ) označíme (jako ve pojitém případě) Z počet netabilních CL pólů = počet netabilních nul funkce H( z) P počet netabilních OL pólů = počet netabilních nul funkce H( z) N počet obkroužení kritického bodu -1 Nyquitovým grafem Lz ( ) ve tejném měru, ve kterém obkružujeme jednotkovou kružnici (obvykle proti měru hod. ručiček), opačná obkr. počítáme záporně Pak z principu argumentu plyne: N = počet tabilních nul H( z ) počet tabilních pólů H( z) N = ( n Z) ( n P) = P Z Z = P N Michael Šebek - ČVUT 009 9

10 Dikrétní Nyquitovo kritérium tability Sytémy Dikrétní Spojitý pro rovnání CL ytém má Z = P N netabilních pólů, kde Z = N + P N počet bodu -1 Nyquitovým grafem L() ale tady je N P počet netabilních OL pólů. Nyquitovo kritérium tability CL ytém je tabilní P= N P= N N počet obkroužení Nyquitova grafu L() ale tady P počet netabilních OL pólů je N, takže je Zvláštní případ: tabilní OL ytém Nyquitovo kritérium tability pro tabilní OL ytém Je-li OL ytém tabilní, pak je i CL ytém tabilní Nyquitův graf L() neobkrouží kritický bod -1 to vlatně tejně Michael Šebek - ČVUT

11 Odvození obojího - pro rovnání Sytémy n počet nul fce H( z ) (= OL pólů) = počet pólů H( z) (= CL pólů) Z počet netabilních CL pólů = počet netabilních nul funkce P počet netabilních OL pólů = počet netabilních nul funkce N počet obkroužení kritického bodu -1 Nyquitovým grafem ve tejném měru, ve kterém obkružujeme uvažovanou oblat Spojitý Dikrétní obkružujeme oblat netability po měru hodinových ručiček z Principu argumentu plyne N Z P Z toho plyne Z = P+ N CL tabilní když Z = 0, tj. když P= N tedy obkroužení opačným měrem tedy proti měru hodin. ručiček obkružujeme oblat tability proti měru hodinových ručiček z Principu argumentu plyne N = n Z n P = P Z = ( ) ( ) z toho plyne Z = P N CL tabilní když Z = 0, tj. když P= N tedy obkroužení tejným měrem tedy proti měru hodinových ručiček Michael Šebek - ČVUT

12 Příklad Sytémy Přeno otevřené myčky je netabilní, tedy P =1 Nyquitův graf je Lz ( ) = z >> a=z-,b= a = - + z b = >> nyquit(b/a) >> a+b an = z tedy je N =1 a uzavřená myčka je tabilní Opravdu charakteritický polynom uzavřené myčky je cz ( ) = z + = z, tedy tabilní ( ) Michael Šebek - ČVUT

13 Příklad Sytémy Vyhodnoťte CL tabilitu dikrétního ytému e outavou G ( ) = 1 ( + 1) vzorkovanou frekvencí 0.5 Hz (tj. periodou vzorkování h = ) tvarovacím členem nultého řádu (ZOH) a dikrétním proporcionálním regulátorem ( L( z) = KG( z) ) >> G=1/(1+)/ G = 1 / (+1) >> Gz3=cd(tf(G),) Tranfer function: 1.135z z^ z Sampling time: >> zpk(gz3) Zero/pole/gain: (z+0.53) (z-1) (z ) Sampling time: K=1;Lz=K*Gz3; nyquit(lz) N = 0, P= 0 Z = 0 >> pformat rootc >> Gzp=df(Gz3); >> K=1;Lz=K*Gzp; >> cl_char=lz.num+lz.den cl_char = (z i)(z i) >> itable(cl_har_pol) an = 1 Michael Šebek - ČVUT

14 Příklad: Dikrétní PM a GM Pro outavu G ( ) = 1 ( + 1) vzorkovanou frekvencí 5 Hz, ZOH a dikrétní P regulátor K = 1 najděte dikrétní PM a GM Sytémy >> Gz=cd(tf(1/(1+)^/),1/5,'zoh'); >> zpk(gz) Zero/pole/gain: (z+3.381)(z+0.4) (z-1)(z )^ Sampling time: 0. >> Lz=Gz;nyquit(Lz) GM 1.7 5dB, PM 17.5º pojité hodnoty koro tejné: GM 6dB PM 1º Korekce: PM di = PM ϕ poj = PM poj 9ωh = = = 17.5 Michael Šebek - ČVUT

12 - Frekvenční metody

12 - Frekvenční metody 12 - Frekvenční metody Michael Šebek Automatické řízení 218 28-3-18 Proč frekvenční metody? Řídicích systémy se posuzují z časových odezev na určité vstupní signály Naopak v komunikačních systémech častěji

Více

23 - Diskrétní systémy

23 - Diskrétní systémy 23 - Diskrétní systémy Michael Šebek Automatické řízení 215 3-5-15 Vzorkování dané metodou měření Automatické řízení - Kybernetika a robotika Systémy používající radar měření polohy cíle jednou za otáčku

Více

23 - Diskrétní systémy

23 - Diskrétní systémy 23 - Disrétní systémy Michael Šebe Automaticé řízení 218 29-4-18 Disrétní čas: z podstaty, z měření či z pohonu Otáčející se radar - měření polohy cíle jednou za otáču radaru motivace v počátcích historie

Více

7 - Ustálený stav kmitavý a nekmitavý, sledování a zadržení poruchy

7 - Ustálený stav kmitavý a nekmitavý, sledování a zadržení poruchy 7 - Utálený tav kmitavý a nekmitavý, ledování a zadržení poruchy Michael Šebek Automatické řízení 018 31-3-18 Automatické řízení - ybernetika a robotika zeílení ytému na frekvenci ω je G( jω) - viz amplitudový

Více

Příklady k přednášce 25 Dopravní zpoždění

Příklady k přednášce 25 Dopravní zpoždění Příklady k přednášce 25 Dopravní zpoždění Michael Šebek Automatické řízení 28 5-5-8 L { } Dopravní zpoždění v Laplaceově tranformaci v ( + τ ) { } t f(): t f() t = t

Více

Příklady k přednášce 20 - Číslicové řízení

Příklady k přednášce 20 - Číslicové řízení Příklady k přednášce 0 - Čílicové řízení Micael Šebek Automatické řízení 07-4- Vzorkování: vzta mezi a z pro komplexní póly Spojitý ignál má Laplaceův obraz póly v, Dikrétní ignál má z-obraz αt yt ( )

Více

Příklady k přednášce 25 Dopravní zpoždění

Příklady k přednášce 25 Dopravní zpoždění Příklady k přednášce 25 Dopravní zpoždění Michael Šebek Automatické řízení 23 2-4-3 L { } Dopravní zpoždění v Laplaceově tranformaci v ( + τ ) { f t } { } t f(): t f() t = t

Více

25 Dopravní zpoždění. Michael Šebek Automatické řízení 2013 21-4-13

25 Dopravní zpoždění. Michael Šebek Automatické řízení 2013 21-4-13 5 Dopravní zpoždění Michael Šebek Automatické řízení 3-4-3 Dopravní zpoždění (Time delay, tranport delay, dead time, delay-differential ytem) V reálných ytémech e čato vykytuje dopravní zpoždění yt ( )

Více

21 Diskrétní modely spojitých systémů

21 Diskrétní modely spojitých systémů 21 Dikrétní modely pojitýc ytémů Micael Šebek Automatické řízení 2015 29-4-15 Metoda emulace Automatické řízení - Kybernetika a robotika pojitý regulátor nazývá e také aproximace, dikrétní ekvivalent,

Více

8 - Geometrické místo kořenů aneb Root Locus

8 - Geometrické místo kořenů aneb Root Locus 8 - Geometrické míto kořenů aneb Root Locu Michael Šebek Automatické řízení 206 0-3-6 Metoda Root Locu Walter R. Evan, AIEE Tranaction, 948 Metoda root locu neboli geometrické míto kořenů vykreluje polohu

Více

Příklady k přednášce 16 - Pozorovatel a výstupní ZV

Příklady k přednášce 16 - Pozorovatel a výstupní ZV Příklady k přednášce 6 - Pozorovatel a výtupní ZV Michael Šebek Automatické řízení 08 6-4-8 Příklad: Pozorovatel pro kyvadlo naivně pro kyvadlo frekvencí ω 0 a rovnicemi x 0 x 0 navrhneme pozorovatel dvojitým

Více

Příklady k přednášce 13 - Návrh frekvenčními metodami

Příklady k přednášce 13 - Návrh frekvenčními metodami Příklady k přednášce 13 - Návrh frekvenčními metodami Michael Šebek Automatické řízení 2015 30-3-15 Nastavení šířky pásma uzavřené smyčky Na přechodové frekvenci v otevřené smyčce je (z definice) Hodnota

Více

Příklady k přednášce 5 - Identifikace

Příklady k přednášce 5 - Identifikace Příklady k přednášce 5 - Identifikace Michael Šebek Automatické řízení 07 5-3-7 Jiná metoda pro. řád bez nul kmitavý Hledáme ωn Gs () k s + ζωn s + ωn Aplikujeme u( ) us () s. Změříme y( ), A, A, Td y(

Více

14 - Moderní frekvenční metody

14 - Moderní frekvenční metody 4 - Moderní frekvenční metody Michael Šebek Automatické řízení 28 4-4-8 Loop shaping: Chování pro nízké frekvence Tvar OL frekvenční charakteristiky L(s)=KD(s)G(s) určuje chování, ustálenou odchylku a

Více

Příklady k přednášce 6 - Spojování a struktury

Příklady k přednášce 6 - Spojování a struktury Příklad k přednášce 6 - Spojování a truktur Michael Šebek Automatické řízení 07 7-3-8 Automatické řízení - Kbernetika a robotika Zpětnovazební pojení tavových modelů Odvození obecného případu (značení

Více

13 - Návrh frekvenčními metodami

13 - Návrh frekvenčními metodami 3 - Návrh frekvenčními metodami Michael Šebek Automatické říení 208 28-3-8 Návrh pomocí Bodeho grafu Automatické říení - Kybernetika a robotika Návrh probíhá v OL s konečným cílem lepšit stabilitu a chování

Více

Vzorový test k přijímacím zkouškám do navazujícího magisterského studijního oboru Automatické řízení a informatika (2012)

Vzorový test k přijímacím zkouškám do navazujícího magisterského studijního oboru Automatické řízení a informatika (2012) Vzorový tet k přijímacím zkouškám do navazujícího magiterkého tudijního oboru Automatické řízení a informatika (22). Sekvenční logický obvod je: a) obvod, v němž je výtupní tav určen na základě vtupních

Více

3 - Póly, nuly a odezvy

3 - Póly, nuly a odezvy 3 - Póly, uly a odezvy Michael Šebek Automatické řízeí 8 9-6-8 Automatické řízeí - Kyberetika a robotika Póly přeou a póly ytému Póly přeou jou kořey jmeovatele pro g () = b () a () jou to komplexí číla

Více

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)

Více

X31EO2 - Elektrické obvody 2. Kmitočtové charakteristiky

X31EO2 - Elektrické obvody 2. Kmitočtové charakteristiky X3EO - Elektrické obvody Kmitočtové charakteristiky Doc. Ing. Petr Pollák, CSc. Letní semestr 5/6!!! Volné šíření není povoleno!!! Fázory a spektra Fázor harmonického průběhu Û m = U m e jϕ ut) = U m sinωt

Více

Příklady k přednášce 19 - Polynomiální metody

Příklady k přednášce 19 - Polynomiální metody Příklady k přednášce 19 - Polynomiální metody Michael Šebek Automatické řízení 016 15-4-17 Dělení polynomů: e zbytkem a bez Polynomy netvoří těleo (jako reálná číla, racionální funkce, ) ale okruh (jako

Více

Příklady k přednášce 14 - Moderní frekvenční metody

Příklady k přednášce 14 - Moderní frekvenční metody Příklady k přednášce 4 - Moderní frekvenční metody Michael Šebek Automatické řízení 28 4-4-8 Přenosy ve ZV systému Opakování: Přenosy v uzavřené smyčce ys () = Tsrs ()() + Ssds () () Tsns ()() us () =

Více

Frekvenční charakteristiky

Frekvenční charakteristiky Frekvenční charakteristiky EO2 Přednáška Pavel Máša ÚVODEM Frekvenční charakteristiky popisují závislost poměru amplitudy výstupního ku vstupnímu napětí a jejich fázový posun v závislosti na frekvenci

Více

20 - Číslicové a diskrétní řízení

20 - Číslicové a diskrétní řízení 20 - Číslicové a disrétní řízení Michael Šebe Automaticé řízení 2018 18-4-18 Automaticé řízení - Kybernetia a robotia Analogové a číslicové řízení Proč číslicově? Snadno se přeprogramuje (srovnej s výměnou

Více

26 Nelineární systémy a řízení

26 Nelineární systémy a řízení 6 Nelineární systémy a řízení Michael Šebek Automatické řízení 016 18-5-16 Lineární vs. nelineární Reálné systémy jsou většinou (ne vždy) nelineární, při relativně malých signálech (výchylkách) je často

Více

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Stabilita regulačního obvodu

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Stabilita regulačního obvodu Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) 8) Kvalita

Více

Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015

Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015 Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 8. přednáška 11MSP pondělí 20. dubna 2015 verze: 2015-04-14 12:31

Více

Příklady k přednášce 3 - Póly, nuly a odezvy

Příklady k přednášce 3 - Póly, nuly a odezvy Příklady k předášce 3 - Póly, uly a odezvy Michael Šebek Automatické řízeí 08 9-6-8 Nuly přeou Automatické řízeí - Kyberetika a robotika Pro přeo G ( ) = ( + ) ( + ) pólem = a ulou z = porovejme odezvy

Více

Nastavení parametrů PID a PSD regulátorů

Nastavení parametrů PID a PSD regulátorů Fakulta elektrotechniky a informatiky Univerzita Pardubice Nastavení parametrů PID a PSD regulátorů Semestrální práce z předmětu Teorie řídicích systémů Jméno: Jiří Paar Datum: 9. 1. 2010 Zadání Je dána

Více

Příklady k přednášce 3 - Póly, nuly a odezvy

Příklady k přednášce 3 - Póly, nuly a odezvy Příklady k předášce 3 - Póly, uly a odezvy Michael Šebek Automatické řízeí 06 9--6 Schurův doplěk - odvozeí Automatické řízeí - Kyberetika a robotika Obecě ( + l) ( + l) ( + l) ( + m) ( + m) ( + m) I 0

Více

ÚPGM FIT VUT Brno,

ÚPGM FIT VUT Brno, Systémy s diskrétním časem Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz 1 LTI systémy v tomto kursu budeme pracovat pouze se systémy lineárními a časově invariantními. Úvod k nim jsme viděli již

Více

Západočeská univerzita. Lineární systémy 2

Západočeská univerzita. Lineární systémy 2 Západočeská univerzita FAKULTA APLIKOVANÝCH VĚD Lineární systémy Semestrální práce vypracoval: Jan Popelka, Jiří Pročka 1. květen 008 skupina: pondělí 7-8 hodina 1) a) Jelikož byly měřící přípravky nefunkční,

Více

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností Automatizace je proces při němž je řídicí funkce člověka nahrazována činností různých přístrojů a zařízení. (Mechanizace, Automatizace, Komplexní automatizace) Kybernetika je Věda, která zkoumá obecné

Více

CW01 - Teorie měření a regulace

CW01 - Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 SPEC. 2.p 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace

Více

Podpora výuky předmětu "Teorie automatického řízení I" Petr Žajdlík

Podpora výuky předmětu Teorie automatického řízení I Petr Žajdlík Podpora výuky předmětu "Teorie automatického řízení I" Petr Žajdlík Bakalářká práce 6 ABSTRAKT Abtrakt čeky Tato bakalářká práce e zabývá vzorovým vypracováním zápočtových protokolů polu návrhem zadání

Více

Frekvenční metody syntézy

Frekvenční metody syntézy Frevenční metody yntézy Autor: etr Havel, havelp@fel.cvut.cz 23..25 Frevenční metody návrhu e naží upravit frevenční charateritiu otevřené myčy L ta, aby výledná frevenční charateritia uzavřené myčy T

Více

D C A C. Otázka 1. Kolik z následujících matic je singulární? A. 0 B. 1 C. 2 D. 3

D C A C. Otázka 1. Kolik z následujících matic je singulární? A. 0 B. 1 C. 2 D. 3 atum narození Otázka. Kolik z následujících matic je singulární? 4 A. B... 3 6 4 4 4 3 Otázka. Pro která reálná čísla a jsou vektory u = (,, 3), v = (3, a, ) a w = (,, ) lineárně závislé? A. a = 5 B. a

Více

Příklady k přednášce 8 - Geometrické místo kořenů aneb Root Locus

Příklady k přednášce 8 - Geometrické místo kořenů aneb Root Locus Příklady k přednášce 8 - Geometrické místo kořenů aneb Root Locus Michael Šebek Automatické řízení 018 1-3-18 Automatické řízení - Kybernetika a robotika Pro bod na RL platí (pro nějaké K>0) KL( s) = (k

Více

Impedanční děliče - příklady

Impedanční děliče - příklady Impedanční děliče - příklady Postup řešení: Vyznačení impedancí, tvořících dělič Z Z : podélná impedance, mezi svorkami a Z : příčná impedance, mezi svorkami a ' ' Z ' Obecné vyjádření impedancí nebo admitancí

Více

Nauka o Kmitání Přednáška č. 4

Nauka o Kmitání Přednáška č. 4 Nauka o Kmitání Přednáška č. 4 Odezva lineárního systému na obecnou periodickou budící funkci Ing. Antonín Skarolek, Ph.D. Katedra mechaniky, pružnosti a pevnosti Technická Univerzita v Liberci 213 Ustálená

Více

Západočeská univerzita v Plzni Fakulta aplikovaných věd KKY/LS2. Plzeň, 2008 Pavel Jedlička

Západočeská univerzita v Plzni Fakulta aplikovaných věd KKY/LS2. Plzeň, 2008 Pavel Jedlička Západočeská univerzita v Plzni Fakulta aplikovaných věd KKY/LS2 Semestrální práce Plzeň, 2008 Jan Krčmář Pavel Jedlička 1 Měřený model Je zadán systém (1), který budeme diskretizovat použitím funkce c2d

Více

Statická analýza fyziologických systémů

Statická analýza fyziologických systémů Statická analýza fyziologických systémů Studijní materiály http://physiome.cz/atlas/sim/regulacesys/ Khoo: Physiological Control Systems Chapter 3 Static Analysis of Physiological Systems Statická analýzy

Více

Příklady k přednášce 2 - Spojité modely

Příklady k přednášce 2 - Spojité modely Příklady k přednášce - Spojité modely Michael Šebek Atomatické řízení 8 Evropký ociální fond Praha & EU: Invetjeme do vaší bdocnoti 9-6-8 Atomatické řízení - Kybernetika a robotika Řešení tavové rovnice

Více

Automatizace Úloha č.1. Identifikace regulované soustavy Strejcovou metodou

Automatizace Úloha č.1. Identifikace regulované soustavy Strejcovou metodou Automatizace Úloha č. Identifikace regulované outavy Strejcovou metodou Petr Luzar 008/009 Zadání. Zapojte regulační obvod reálnou tepelnou outavou a eznamte e monitorovacím a řídicím programovým ytémem

Více

Funkce komplexní proměnné a integrální transformace

Funkce komplexní proměnné a integrální transformace Funkce komplexní proměnné a integrální transformace Fourierovy řady I. Marek Lampart Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na

Více

7. Funkce jedné reálné proměnné, základní pojmy

7. Funkce jedné reálné proměnné, základní pojmy , základní pojmy POJEM FUNKCE JEDNÉ PROMĚNNÉ Reálná funkce f jedné reálné proměnné je funkce (zobrazení) f: X Y, kde X, Y R. Jde o zvláštní případ obecného pojmu funkce definovaného v přednášce. Poznámka:

Více

FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb

FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D.

Více

s požadovaným výstupem w(t), a podle této informace generuje akční zásah u(t) do

s požadovaným výstupem w(t), a podle této informace generuje akční zásah u(t) do Vážení zákazníci, dovolujeme i Vá upozornit, že na tuto ukázku knihy e vztahují autorká práva, tzv. copyright. To znamená, že ukázka má loužit výhradnì pro oobní potøebu potenciálního kupujícího (aby ètenáø

Více

B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ

B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ I. MECHANICKÉ KMITÁNÍ 8.1 Kmitavý pohyb a) mechanické kmitání (kmitavý pohyb) pohyb, při kterém kmitající těleso zůstává stále v okolí určitého bodu tzv. rovnovážné polohy

Více

Komplexní analýza. Laplaceova transformace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze

Komplexní analýza. Laplaceova transformace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Komplexní analýza Laplaceova transformace Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Laplaceova transformace 1 / 18 Definice Definice Laplaceovou

Více

MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015)

MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015) MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015 doplněné o další úlohy 13. 4. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi ( e-mail: Frantisek.Mraz@fs.cvut.cz.

Více

Příklady k přednášce 19 - Polynomiální metody

Příklady k přednášce 19 - Polynomiální metody Příklady k přednášce 19 - Polynomiální metody Michael Šebek Automatické řízení 013 7-4-14 Opakování: Dělení polynomů: e zbytkem a bez Polynomy tvoří okruh, ale ne těleo (Okruh tvoří také celá číla, těleo

Více

Flexibilita jednoduché naprogramování a přeprogramování řídícího systému

Flexibilita jednoduché naprogramování a přeprogramování řídícího systému Téma 40 Jiří Cigler Zadání Číslicové řízení. Digitalizace a tvarování. Diskrétní systémy a jejich vlastnosti. Řízení diskrétních systémů. Diskrétní popis spojité soustavy. Návrh emulací. Nelineární řízení.

Více

SIGNÁLY A LINEÁRNÍ SYSTÉMY

SIGNÁLY A LINEÁRNÍ SYSTÉMY SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cziba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické

Více

Předmět A3B31TES/Př. 7

Předmět A3B31TES/Př. 7 Předmět A3B31TES/Př. 7 PS 1 1 Katedra teorie obvodů, místnost č. 523, blok B2 Přednáška 7: Bodeho a Nyquistovy frekvenční charakteristiky PS Předmět A3B31TES/Př. 7 březen 2015 1 / 65 Obsah 1 Historie 2

Více

SIGNÁLY A LINEÁRNÍ SYSTÉMY

SIGNÁLY A LINEÁRNÍ SYSTÉMY SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické či jiné

Více

Omezenost funkce. Definice. (shora, zdola) omezená na množině M D(f ) tuto vlastnost. nazývá se (shora, zdola) omezená tuto vlastnost má množina

Omezenost funkce. Definice. (shora, zdola) omezená na množině M D(f ) tuto vlastnost. nazývá se (shora, zdola) omezená tuto vlastnost má množina Přednáška č. 5 Vlastnosti funkcí Jiří Fišer 22. října 2007 Jiří Fišer (KMA, PřF UP Olomouc) KMA MMAN1 Přednáška č. 4 22. října 2007 1 / 1 Omezenost funkce Definice Funkce f se nazývá (shora, zdola) omezená

Více

Příklady k přednášce 12 - Frekvenční metody

Příklady k přednášce 12 - Frekvenční metody Příklady k předášce 1 - Frekvečí metody Michael Šebek Automatické řízeí 018 8-3-18 Frekvečí charakteristika OL a mez stability CL Pro esoudělý OL přeos Ls () platí: 1) Je-li s C pól CL, pak 1 + Ls () =

Více

KTE/TEVS - Rychlá Fourierova transformace. Pavel Karban. Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni

KTE/TEVS - Rychlá Fourierova transformace. Pavel Karban. Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni KTE/TEVS - Rychlá Fourierova transformace Pavel Karban Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni 10.11.011 Outline 1 Motivace FT Fourierova transformace

Více

teorie elektronických obvodů Jiří Petržela obvodové funkce

teorie elektronických obvodů Jiří Petržela obvodové funkce Jiří Petržela obvod jako dvojbran dvojbranem rozumíme elektronický obvod mající dvě brány (vstupní a výstupní) dvojbranem může být zesilovač, pasivní i aktivní filtr, tranzistor v některém zapojení, přenosový

Více

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné . Definiční obor a hladiny funkce více proměnných Nalezněte a graficky znázorněte definiční obor D funkce f = f(x, y), kde a) f(x, y) = x y, b) f(x, y) = log(xy + ), c) f(x, y) = xy, d) f(x, y) = log(x

Více

REGULACE EL. POHONŮ Stabilita a tlumení. Obr. 1. Schéma uzavřené regulační smyčky. Obr. 2. Ukazatele kvality regulace

REGULACE EL. POHONŮ Stabilita a tlumení. Obr. 1. Schéma uzavřené regulační smyčky. Obr. 2. Ukazatele kvality regulace EP-egulace EP EGULACE EL. POHONŮ Stabilita a tlumení Obr.. Schéma uzavřené regulační myčky Obr.. Ukazatele kvality regulace V regulačních pohonech pouzujeme kvalitu regulace nejčatěji dle přechodové charakteritiky,

Více

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 203 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 8. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 14 Derivace funkce U lineárních funkcí ve tvaru

Více

1 Úvod do číslicové regulace

1 Úvod do číslicové regulace Automatické říení II Úvod do čílicové regulace V náledujícím textu budou uvedeny ákladní vlatnoti, popiy a přehledy týkající e problematiky čílicové regulace. Některé kapitol budou také obahovat řešené

Více

Komplexní analýza. Reziduová věta a její aplikace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze

Komplexní analýza. Reziduová věta a její aplikace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Komplexní analýza Reziduová věta a její aplikace Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Reziduová věta a její aplikace / Motivace Mějme

Více

MATEMATIKA II - vybrané úlohy ze zkoušek v letech

MATEMATIKA II - vybrané úlohy ze zkoušek v letech MATEMATIKA II - vybrané úlohy ze zkoušek v letech 2009 2012 doplněné o další úlohy 3. část KŘIVKOVÉ INTEGRÁLY, GREENOVA VĚTA, POTENIÁLNÍ POLE, PLOŠNÉ INTEGRÁLY, GAUSSOVA OSTROGRADSKÉHO VĚTA 7. 4. 2013

Více

Lineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita

Lineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita Lineární a adpativní zpracování dat 3. Lineární filtrace I: Z-transformace, stabilita Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály, systémy, jejich vlastnosti a popis v časové

Více

4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost

4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost 4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost Michael Šebek Automatické řízení 25 25-2-5 Stabilita obecně Automatické řízení - Kybernetika a robotika Stabilita obecně

Více

Opakování z předmětu TES

Opakování z předmětu TES Opakování z předmětu TES A3B35ARI 6..6 Vážení studenti, v následujících měsících budete každý týden z předmětu Automatické řízení dostávat domácí úkol z látky probrané v daném týdnu na přednáškách. Jsme

Více

KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině

KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině KMITÁNÍ PRUŽINY Pomůcky: LabQuest, sonda siloměr, těleso kmitající na pružině Postup: Těleso zavěsíme na pružinu a tu zavěsíme na pevně upevněný siloměr (viz obr. ). Sondu připojíme k LabQuestu a nastavíme

Více

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/ Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Téma: Elektřina a magnetismus Autor: Název: Datum vytvoření: 25. 3. 2014

Více

Mezi elementární komplexní funkce se obvykle počítají tyto funkce: f(z) = az + b,

Mezi elementární komplexní funkce se obvykle počítají tyto funkce: f(z) = az + b, Elementární funkce Mezi elementární komplení funkce se obvykle počítají tyto funkce:. Lineární funkce Lineární funkce je funkce tvaru f(z) az + b, kde a a b jsou konečná komplení čísla. Její derivace je

Více

Komplexní analýza. Holomorfní funkce. Martin Bohata. Katedra matematiky FEL ČVUT v Praze

Komplexní analýza. Holomorfní funkce. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Komplexní analýza Holomorfní funkce Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Holomorfní funkce 1 / 8 Derivace Definice Necht f je komplexní

Více

5. cvičení z Matematické analýzy 2

5. cvičení z Matematické analýzy 2 5. cvičení z Matematické analýz 2 30. října - 3. litopadu 207 5. linearizace funkce a Pro funkci f, = e nalezněte její linearizaci v bodě a 0 = 6, 0. Použijte ji k přibližnému určení hodnot funkce f v

Více

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x. 1 LIMITA FUNKCE 1. 1 Definice funkce Pravidlo f, které každému z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné. Píšeme y f ( ) Někdy používáme i jiná písmena argument (nezávisle

Více

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek

Více

PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU

PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU 6.1 Křivkový integrál 1. druhu Definice 1. Množina R n se nazývá prostá regulární křivka v R n právě tehdy, když existuje vzájemně jednoznačné zobrazení

Více

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/ Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Téma: Elektřina a magnetismus Autor: Název: Datum vytvoření: 3. 4. 2014

Více

Příklady k přednášce 2 - Spojité modely

Příklady k přednášce 2 - Spojité modely Příklady k přednášce - Spojité modely Michael Šebek Atomatické řízení 5 Evropký ociální fond Praha & EU: Invetjeme do vaší bdocnoti -5-5 Atomatické řízení - Kybernetika a robotika Řešení tavové rovnice

Více

20 - Číslicové a diskrétní řízení

20 - Číslicové a diskrétní řízení 20 - Číslicové a disrétní řízení Michael Šebe Automaticé řízení 2013 22-4-14 Analogové a číslicové řízení Proč číslicově? Snadno se přeprogramuje (srovnej s výměnou rezistorů/apacitorů v analogové řídicím

Více

ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0

ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0 Kmity základní popis kmitání je periodický pohyb, při kterém těleso pravidelně prochází rovnovážnou polohou mechanický oscilátor zařízení vykonávající kmity Základní veličiny Perioda T [s], frekvence f=1/t

Více

10 - Přímá vazba, Feedforward

10 - Přímá vazba, Feedforward 0 - Přímá vazba, Feedforward Michael Šebek Automatické řízeí 03 4--3 Motivace (FF podle Atroma) Automatické řízeí - Kberetika a robotika Už máme avržeu zpětovazebí čát Chceme zajitit přeo referece rový

Více

Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti

Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti Lineární a adaptivní zpracování dat 3. SYSTÉMY a jejich popis ve frekvenční oblasti Daniel Schwarz Osnova Opakování: systémy a jejich popis v časové oblasti Fourierovy řady Frekvenční charakteristika systémů

Více

Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9

Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9 Obsah 1 Kmitavý pohyb 1 Kinematika kmitavého pohybu 3 Skládání kmitů 6 4 Dynamika kmitavého pohybu 7 5 Přeměny energie v mechanickém oscilátoru 9 6 Nucené kmity. Rezonance 10 1 Kmitavý pohyb Typy pohybů

Více

Elektromechanický oscilátor

Elektromechanický oscilátor - 1 - Elektromechanický oscilátor Ing. Ladislav Kopecký, 2002 V tomto článku si ukážeme jeden ze způsobů, jak využít silové účinky cívky s feromagnetickým jádrem v rezonanci. I člověk, který neoplývá technickou

Více

11 - Regulátory. Michael Šebek Automatické řízení 2015 24-3-15

11 - Regulátory. Michael Šebek Automatické řízení 2015 24-3-15 - Regulátory Michael Šebe Automaticé řízení 5 4-3-5 Nejjednodušší regulátory Automaticé řízení - Kybernetia a robotia v jitém mylu nejjednodušší regulátor je On-Off (Bang-bang) má jen dvě možné výtupní

Více

Příloha č. 1. amplitudová charakteristika filtru fázová charakteristika filtru / frekvence / Hz. 1. Určení proudové hustoty

Příloha č. 1. amplitudová charakteristika filtru fázová charakteristika filtru / frekvence / Hz. 1. Určení proudové hustoty Příloha č. 1 Při hodnocení expozice nízkofrekvenčnímu elektromagnetickému poli (0 Hz 10 MHz) je určující veličinou modifikovaná proudová hustota J mod indukovaná v tělesné tkáni. Jak je uvedeno v nařízení

Více

Vysokofrekvenční obvody s aktivními prvky

Vysokofrekvenční obvody s aktivními prvky Vokofrekvenční obvod aktivními prvk Základními aktivními prvk ve vokofrekvenční technice jou bipolární a unipolární tranzitor. Dalšími aktivními prvk jou hbridní nebo monolitické integrované obvod. Tranzitor

Více

Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy

Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy funkcí, průběh funkce) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 5. přednáška z AMA1 Michal Fusek (fusekmi@feec.vutbr.cz)

Více

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy

Více

Přednáška Omezení rozlišení objektivu difrakcí

Přednáška Omezení rozlišení objektivu difrakcí Před A3M38VBM, J. Ficher, kat. měření, ČVUT FL Praha Přednáška Omezení rozlišení objektivu difrakcí v. 2011 Materiál je určen pouze jako pomocný materiál pro tudenty zapané v předmětu: Videometrie a bezdotykové

Více

Inverzní Laplaceova transformace

Inverzní Laplaceova transformace Inverzní Laplaceova transformace Modelování systémů a procesů (MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 6. přednáška MSP čtvrtek 30. března

Více

Laplaceova transformace

Laplaceova transformace Laplaceova transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MSP pondělí 23. března

Více

Lineární stabilita a teorie II. řádu

Lineární stabilita a teorie II. řádu Lineární stabilita a teorie II. řádu Sestavení podmínek rovnováhy na deformované konstrukci Konstrukce s a bez počáteční imperfekce Výpočet s malými vs. s velkými deformacemi ANKC-C 1 Zatěžovacídráhy [Šejnoha,

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179

Více

(test version, not revised) 9. prosince 2009

(test version, not revised) 9. prosince 2009 Mechanické kmitání (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 9. prosince 2009 Obsah Kmitavý pohyb Kinematika kmitavého pohybu Skládání kmitů Dynamika kmitavého pohybu Přeměny energie

Více

1 Analytická geometrie

1 Analytická geometrie 1 Analytická geometrie 11 Přímky Necht A E 3 a v R 3 je nenulový Pak p = A + v = {X E 3 X = A + tv, t R}, je přímka procházející bodem A se směrovým vektorem v Rovnici X = A + tv, t R, říkáme bodová rovnice

Více

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ týden doc Ing Renata WAGNEROVÁ, PhD Otrava 013 doc Ing Renata WAGNEROVÁ, PhD Vyoká škola báňká Technická univerzita

Více

Přednáška 11, 12. prosince Část 5: derivace funkce

Přednáška 11, 12. prosince Část 5: derivace funkce Přednáška 11, 12. prosince 2014 Závěrem pasáže o spojitých funkcích zmíníme jejich podtřídu, lipschitzovské funkce, nazvané podle německého matematika Rudolfa Lipschitze (1832 1903). Fukce f : M R je lipschitzovská,

Více