SP2 01 Charakteristické funkce

Rozměr: px
Začít zobrazení ze stránky:

Download "SP2 01 Charakteristické funkce"

Transkript

1 SP 0 Chararisicé func Chararisicé func pro NP Chararisicé func pro NV Náhld Náhodnou proměnnou, nbo vor, L, n lz popsa funčními chararisiami: F, p, f číslnými chararisiami: E, D, A, A 4 Co s dá z čho spočía: F p E f E D A A 4 Pro náhodnou proměnnou, nbo vor, L, n lz spočía různé číslné chararisiy-např: - sřdní hodnoa, rozpyl - of. šimosi, špičaosi - r ý momn, r ý cnrální momn Jsou yo číslné chararisiy dosačující? J aždá náhodná proměnná jdnoznačně popsána vhodnými číslnými chararisiami? Odpověď na o dává chararisicá func náhodné proměnné náhodného voru. F p f c E Dfinic: Nchť a Y jsou náhodné vličiny dfinované na pravděpodobnosním prosoru,σ, P Označm: Z + iy Pa Z + iy s nazývá omplxní náhodná proměnná vličina. dy Z : Ω C. Ω. Poud xisují E, EY, pa omplxní číslo omplxní náhodné proměnné Z. E Z E + iey nazývám sřdní hodnoou SP 0 - Libor Žá ÚM - FSI VU Brno 08/9 Srána

2 Dfinic: Nchť j náhodná vličina dfinovaná na pravděpodobnosním prosoru Ω,Σ, P E, R nazvm chararisicou funcí náhodné vličiny.. Funci Chararisicou funci E, : R C náhodné vličiny lz zapsa v varu: E cos + i sin E cos + i E sin Výpoč chararisicé func Nchť j náhodná vličina dfinovaná na pravděpodobnosním prosoru Ω,Σ, P jjí disribuční func. Pa chararisicou funci lz vyjádř v varu: df Pro disréní náhodnou proměnnou s pravděpodobnosní funcí p: p cos p + i sin p x Z x Z Pro spojou náhodnou proměnnou s husoou pravděpodobnosi f: x Z f dx cos f dx + i sin f dx. F j Přílad. Nchť j disréní náhodná vličina s pravděpodobnosní funcí: x p SP 0 - Libor Žá ÚM - FSI VU Brno 08/9 Srána

3 Přílad. Nchť j disréní náhodná vličina s pravděpodobnosní funcí: x p / / + Přílad. Nchť j disréní náhodná vličina s pravděpodobnosní funcí: x p /5 4/ Přílad 4. Nchť j disréní náhodná vličina s pravděpodobnosní funcí: x p /6 / / SP 0 - Libor Žá ÚM - FSI VU Brno 08/9 Srána

4 Přílad 5. Nchť j disréní náhodná vličina s pravděpodobnosní funcí: x p /6 /6 /6 /6 /6 /6 6 6 Přílad 6. Nchť j spojá náhodná vličina ~ Ro0, 0 dx 0 SP 0 - Libor Žá ÚM - FSI VU Brno 08/9 Srána 4

5 Chararisicá func náhodné vličiny j vždy dfinovaná. 0 poud xisuj, jina lim 0, R 4 5 j sjnoměrně spojá na R Důaz: Y a + b, d a, b R, pa náhodná proměnná Y má chararisicou funci: ia Y b a Y jsou nzávislé náhodné proměnné. Pa náhodná proměnná Z + Y má chararisicou funci: Z Y Důaz: SP 0 - Libor Žá ÚM - FSI VU Brno 08/9 Srána 5

6 Přílady ~ A p p + p ~ Bi n, p p p n + ~ Po λ λ xp 4 ~ Ex a, λ ia λ λ 4 ~ N µ, σ xp µ 6 ~ χ n n σ SP 0 - Libor Žá ÚM - FSI VU Brno 08/9 Srána 6

7 Chararisicé func - momny Exisuj-li -ý obcný momn µ, pa xisuj -á drivac a plaí: 0 i µ Exisuj-li -ý obcný momn µ až do řádu n, pa n 0 i µ + o! d µ 0 a pro o plaí: o : lim 0 0 Důaz: n o Vzah chararisicé func náhodné proměnné Nchť a Y jsou náhodné vličiny a, Y jjich chararisicé func, pa Y Y Nchť náhodná proměnná má chararisicou funci. Poud plaí: d <, pa náhodná proměnná j spojého ypu. Nchť x a x jsou body spojosi disribuční func F náhodné proměnné. pa F x F x d π 4 Nchť spojá náhodná proměnná má chararisicou funci. Pa jjí husou lz vyjádř: f π d. Důaz viz Rnyi,ori pravděpodobnosi. Praha, Acadmia 97 SP 0 - Libor Žá ÚM - FSI VU Brno 08/9 Srána 7

8 Y a +, d a R, - pouz rálná func, pa Y Y a + b, d a, b R, pa Y j spojá náhodná proměnná j spojá náhodná proměnná Důaz: Přílad 4. Nchť j disréní náhodná vličina s pravděpodobnosní funcí: x p /6 / / SP 0 - Libor Žá ÚM - FSI VU Brno 08/9 Srána 8

9 Přílad ~ Po λ xp λ xp λ Přílad Nchť j spojá náhodná vličina ~ Ro0, 0 dx 0 SP 0 - Libor Žá ÚM - FSI VU Brno 08/9 Srána 9

10 SP 0 - Libor Žá ÚM - FSI VU Brno 08/9 Srána 0 Přílad ~ N, xp xp xp xp π d d d Přílad ~ N0, 0 xp 0 xp xp 0 xp π d d d

11 Chararisicá func NV Dfinic chararisicá func náhodného voru Nchť, L, j náhodný vor dfinovaný na pravděpodobnosním prosoru Ω,Σ, P. Func n n, L, n E, R nazvm chararisicou funcí náhodného voru. Chararisicou funci : R n C náhodného voru lz zapsa v varu: i i E E j j E cos + i E sin j j j j Nchť j náhodný vor dfinovaný na pravděpodobnosním prosoru Ω,Σ, P jho disribuční func. Pa chararisicou funci lz vyjádř v varu: L df x Pro disréní náhodný vor s pravděpodobnosní funcí p: L p x Z x Pro spojý náhodný vor s husoou pravděpodobnosi f: x L f dx. F j chararisicá func náhodného voru j vždy dfinovaná. 0 0, L,0, R n m 4 nchť j char. fc NV, a R, Bm, n, Y a + B, pa náhodný vor Y má ia s chararisicou funci: Y s B s s R 5 vzahy mzi drivací v bodě 0 a momny: j 0 Důaz: ie j, i E j j 0 m SP 0 - Libor Žá ÚM - FSI VU Brno 08/9 Srána

12 Nchť, L, n j náhodný vor s chararisicou funcí složa j náhodného voru má chararisicou funci: 0, L,, L,0 j náhodná proměnná S + L+ n má chararisicou funci: S, L,, L, mzi chararisicou funcí a náhodným vorm j vzájmně jdnoznačný vzah: Y 4 složy náhodného voru Y, L, L, n n n i i d j chararisicá func i-é složy. Důaz:, L, n jsou nzávislé, právě hdy, dyž Přílady Nchť j zadaná pravděpodobnosní func: 0 /0 0 /0 /0 0 /5 /0 /5 Spočě chararisicou funci., ~ Ex0,, nzávislé. Spočě: a chararisicou funci náhodné vličiny: Y + 4 b chararisicou funci náhodného voru: Y + Y Y + Řšní: SP 0 - Libor Žá ÚM - FSI VU Brno 08/9 Srána

5. Funkce náhodných veličin a náhodných vektorů. 5.1 Spojité náhodné veličiny

5. Funkce náhodných veličin a náhodných vektorů. 5.1 Spojité náhodné veličiny 5 Fc áhodých vliči a áhodých vorů 5 Spojié áhodé vliči V éo čási s bd zabýva problaio rasorac áhodé vliči a ja js již ěolirá zíili v přdchozí Njdřív vd dvě záladí vě o sbsici v igrálí poč Důaz ěcho vě

Více

NUMP403 (Pravděpodobnost a Matematická statistika II) 1. Na autě jsou prováděny dvě nezávislé opravy a obě opravy budou hotovy do jedné hodiny.

NUMP403 (Pravděpodobnost a Matematická statistika II) 1. Na autě jsou prováděny dvě nezávislé opravy a obě opravy budou hotovy do jedné hodiny. Spojiá rozdělení I.. Na auě jou prováděny dvě nezávilé opravy a obě opravy budou hoovy do jedné hodiny. Předpokládejme, že obě opravy jou v akové fázi, že rozdělení čau do ukončení konkréní opravy je rovnoměrné.

Více

4. PRŮBĚH FUNKCE. = f(x) načrtnout.

4. PRŮBĚH FUNKCE. = f(x) načrtnout. Etrém funkc 4. PRŮBĚH FUNKCE Průvodc studim V matmatic, al i v fzic a tchnických oborch s často vsktn požadavk na sstrojní grafu funkc K nakrslní grafu funkc lz dns většinou použít vhodný matmatický softwar.

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Číselné charateristiy náhodných proměnných Charateristiy náhodných proměnných dělíme nejčastěji na charateristiy polohy a variability. Mezi charateristiy polohy se nejčastěji

Více

0.1 reseny priklad 4. z

0.1 reseny priklad 4. z Uvadim dva rsn priklad, abch pokud mozno napravil zmak na cvicni. Js o okomnuju pris.. rsn priklad 4. z 9.. Najd sandardni fundamnalni maici pro Cauchho ulohu = 7 + + 5 = Prislusna maic j 7 5 a jji vlasni

Více

3.3. Derivace základních elementárních a elementárních funkcí

3.3. Derivace základních elementárních a elementárních funkcí Přdpokládané znalosti V násldujících úvahách budm užívat vztahy známé z střdní školy a vztahy uvdné v přdcházjících kapitolách tohoto ttu Něktré z nich připomnm Eponnciální funkc Výklad Pro odvozní vzorců

Více

MECHANICKÉ KMITÁNÍ TLUMENÉ

MECHANICKÉ KMITÁNÍ TLUMENÉ MECHNICKÉ KMITÁNÍ TLUMENÉ V skučnosi s čás nrgi u všch mchanických pohybů přměňuj vlivm řní a odporu prosřdí na plo, a nní dy využia V om případě s vlikosi po sobě jdoucích ampliud zmnšují a kmiající sousava

Více

Derivace funkce více proměnných

Derivace funkce více proměnných Derivace funkce více proměnných Pro sudeny FP TUL Marina Šimůnková 21. prosince 2017 1. Parciální derivace. Ve výrazu f(x, y) považujeme za proměnnou jen x a proměnnou y považujeme za konsanu. Zderivujeme

Více

Metody ešení. Metody ešení

Metody ešení. Metody ešení Mtod šní z hldiska kvalit dosažného výsldku ) p ř sné mtod p ř ímé ř šní difrnciálních rovnic, většinou pro jdnoduché konstrukc nap ř. ř šní ohbu prutu p ř ímou intgrací ) p ř ibližné mtod náhrada hldané

Více

Složité systémy řízení

Složité systémy řízení VYSOKÁ ŠKOLA BAŇSKÁ - ECHNICKÁ UNIVERZIA OSRAVA Faula srojní Složié sysémy řízení I. Díl: Regulace sousav s náhodnými poruchami ing. Jiří ůma, CSc. Prosinec 997 Leoroval: Doc. RNDr. Jaroslav Marl Ing.

Více

Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné.

Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné. INTEGRÁLNÍ POČET FUNKCÍ JEDNÉ PROMĚNNÉ NEURČITÝ INTEGRÁL NEURČITÝ INTEGRÁL Průvodc studim V kapitol Difrnciální počt funkcí jdné proměnné jst s sznámili s drivováním funkcí Jstliž znát drivac lmntárních

Více

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA,

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, STABILITA. Jednokový impuls (Diracův impuls, Diracova funkce, funkce dela) někdy éž disribuce dela z maemaického hlediska nejde o pravou funkci (přesný popis eorie

Více

Funkce hustoty pravděpodobnosti této veličiny je. Pro obecný počet stupňů volnosti je náhodná veličina

Funkce hustoty pravděpodobnosti této veličiny je. Pro obecný počet stupňů volnosti je náhodná veličina Přdnáša č 6 Náhodné vličiny pro analyticou statistiu Při výpočtch v analyticé statistic s používají vhodné torticé vličiny, tré popisují vlastnosti vytvořných tstovacích charatristi Mzi njpoužívanější

Více

NUMP403 (Pravděpodobnost a Matematická statistika I)

NUMP403 (Pravděpodobnost a Matematická statistika I) NUMP0 (Pravděpodobnost a Matematicá statistia I Střední hodnota disrétního rozdělení. V apce máte jednu desetiorunu, dvě dvacetioruny a jednu padesátiorunu. Zloděj Vám z apsy náhodně vybere tři mince.

Více

ž í í ý í š í í ý ů í í ů á í ý í ý ů í é í é á í č ě ý ýú ů íý ě í ů í Ž í ů ě ě éů ěž í íž č é ě í á í ě í á č í ě í á í ě ý á áš í á ě é é á č ěá Ž

ž í í ý í š í í ý ů í í ů á í ý í ý ů í é í é á í č ě ý ýú ů íý ě í ů í Ž í ů ě ě éů ěž í íž č é ě í á í ě í á č í ě í á í ě ý á áš í á ě é é á č ěá Ž ž í í í Á á á áš íú í í Ž í í š á ě ě á ě á ě á á á í Ž í á áš í á í ó á í ž á á á éč á í ž íá áš í á ě é é Ž í í ú í á á í á í í á ě í é í ě ší ů á á í á á áš í áš ě á ě é Ú í Ú í é áš íú í ě á áš á ě

Více

Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka

Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka Náhodná veličina Náhodnou veličinou nazýváme veličinu, terá s určitými p-stmi nabývá reálných hodnot jednoznačně přiřazených výsledům příslušných náhodných pousů Náhodné veličiny obvyle dělíme na dva záladní

Více

SP NV Normalita-vlastnosti

SP NV Normalita-vlastnosti SP - - NV Normala-vlasos Přpomeuí vlasosí Normálího rozděleí Charakerscká fukce Lévyho-Ldebergova věa - cerálí lmí věa -rozměré ormálí rozděleí -rozměré ormálí rozděleí Přpomeuí vlasosí Normálího rozděleí

Více

Parciální funkce a parciální derivace

Parciální funkce a parciální derivace Parciální funkce a parciální derivace Pro sudeny FP TUL Marina Šimůnková 19. září 2018 1. Parciální funkce. Příklad: zvolíme-li ve funkci f : (x, y) sin(xy) pevnou hodnou y, například y = 2, dosaneme funkci

Více

hledané funkce y jedné proměnné.

hledané funkce y jedné proměnné. DIFERCIÁLNÍ ROVNICE Úvod Df : Občjnou difrniální rovnií dál jn DR rozumím rovnii, v ktré s vsktují driva hldané funk jdné proměnné n n Můž mít pliitní tvar f,,,,, n nbo impliitní tvar F,,,,, Řádm difrniální

Více

NÁHODNÁ VELIČINA. 3. cvičení

NÁHODNÁ VELIČINA. 3. cvičení NÁHODNÁ VELIČINA 3. cvičení Náhodná veličina Náhodná veličina funkce, která každému výsledku náhodného pokusu přiřadí reálné číslo. Je to matematický model popisující více či méně dobře realitu, který

Více

Přechodové jevy RC. Řešení přechodového jevu v obvodech 1. řádu RC. a) varianta nabíjení ideálního kondenzátoru u C (t)

Přechodové jevy RC. Řešení přechodového jevu v obvodech 1. řádu RC. a) varianta nabíjení ideálního kondenzátoru u C (t) čbní xy pro Elkrochnik Ing. Kindrá Alxandr Přchodové jvy Účlm éo knihy j nači sdny řši přchodové jvy v obvodch. řád yp a sznámi j s oricko problmaiko přchodových jvů v obvodch. řádů yp. Přchodové jvy v

Více

listopadu 2016., t < 0., t 0, 1 2 ), t 1 2,1) 1, 1 t. Pro X, U a V najděte kvantilové funkce, střední hodnoty a rozptyly.

listopadu 2016., t < 0., t 0, 1 2 ), t 1 2,1) 1, 1 t. Pro X, U a V najděte kvantilové funkce, střední hodnoty a rozptyly. 6. cvičení z PSI 7. -. lisopadu 6 6. kvanil, sřední hodnoa, rozpyl - pokračování příkladu z minula) Náhodná veličina X má disribuční funkci e, < F X ),, ) + 3,,), a je směsí diskréní náhodné veličiny U

Více

Vstupní tok požadavků

Vstupní tok požadavků Vsupní o požadavů Bodový proces, záladní ypy procesů Bodový proces Sledujeme chod určiého procesu, v němž čas od času dochází jisé význačné událosi posloupnos časových oamžiů = 1 3 4 proces deerminován

Více

á Š ý ň á Č Ú á Č á Í á á á š Ť ť Ž Í ú á á Íý á ý áá Č á ý á Íá Č á Ú á Č á á á Ž á á Ž á ú á ý á Ú á ó ý á ý á á á Č á Ú á Č á á á ú á ý á Ú á ý á ý ý á Ú á á Č á Ú á Č Í á Í á Í Žá ú ý á ď á ý á ý Ě

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru

Více

íú É í í í ú Ž ě í é ý í š í í í é ě Ž é ě ší é í é ě í Í í í ů í í í í ě í í í í ě ě ě ě ý ě ý ě ý é ě í Ž ý é é Ž Ž ý Ž é š í ý Í ó ž ý ě ý ú ěž ý Í

íú É í í í ú Ž ě í é ý í š í í í é ě Ž é ě ší é í é ě í Í í í ů í í í í ě í í í í ě ě ě ě ý ě ý ě ý é ě í Ž ý é é Ž Ž ý Ž é š í ý Í ó ž ý ě ý ú ěž ý Í Í íú É í í í ú Ž ě í é ý í š í í í é ě Ž é ě ší é í é ě í Í í í ů í í í í ě í í í í ě ě ě ě ý ě ý ě ý é ě í Ž ý é é Ž Ž ý Ž é š í ý Í ó ž ý ě ý ú ěž ý Í í ě ý í ě é ěž é Ž í íž Žší ý ě Ž ý ě ě í ší é í

Více

š á Č á í ž š á č ž í š á š Č íž á ří š á í ř čí ó í á á ě á ě í é č í č í á ž í ě á é š ž í áš š á í é ž é ž í ž í é ž ý á á é ž ú úč í ů ž ž ů ž ž ř

š á Č á í ž š á č ž í š á š Č íž á ří š á í ř čí ó í á á ě á ě í é č í č í á ž í ě á é š ž í áš š á í é ž é ž í ž í é ž ý á á é ž ú úč í ů ž ž ů ž ž ř á í Č í á ří í ř í ó í á á ě á ě í é í í á í ě á é í á í é é í í é ý á á é ú ú í ů ů ř í é é é í é í ú é á í ář ó í ář í í ý í ář í ý á úř ě ěř ý ří ě ů í ý ěř é ě á é ě á úř ě ěř ý á é úř ě ěř é í í ář

Více

Inovace bakalářského studijního oboru Aplikovaná chemie

Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Základy zpracování dat chemometrie, statistika Doporučenáliteratura

Více

ř ě ř í ř í ř ě ř í í ú í ř í ří í ě é ú ý ú í ů ě í ě ší ř ů ě í ří ů ý ů ě ěž í íý í í ý ř ů í ý í í ž í ěž í í ů ý é ú í ěž í ý í í ž ý ř ů ý ě ě í

ř ě ř í ř í ř ě ř í í ú í ř í ří í ě é ú ý ú í ů ě í ě ší ř ů ě í ří ů ý ů ě ěž í íý í í ý ř ů í ý í í ž í ěž í í ů ý é ú í ěž í ý í í ž ý ř ů ý ě ě í Á Ě í ň Á Ý Ř Á Í Ř Í í ě ě ě ý ů ě í ě ší ř ů é ší í ř ů ý Č é í í Íí í ě í ě ší ř ů í ř í í ď í í ý ů ý ů í ě í ě ší ř ů ú í ý ě Č í Í Í š é í ú í é í ú í ě í ě é ě Ě í ň Č ě í ď ů í é ě í í ř í ú í

Více

Definice spojité náhodné veličiny zjednodušená verze

Definice spojité náhodné veličiny zjednodušená verze Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f

Více

5.2. Určitý integrál Definice a vlastnosti

5.2. Určitý integrál Definice a vlastnosti Určitý intgrál Dfinic vlstnosti Má-li spojitá funkc f() n otvřném intrvlu I primitivní funkci F(), pk pro čísl, I j dfinován určitý intgrál funkc f() od do vzthm [,, 7: [ F( ) = F( ) F( ) f ( ) d = (6)

Více

Modely veličin spojitých v čase funkce spojité v čase Binární matematické operace konvoluce a korelace

Modely veličin spojitých v čase funkce spojité v čase Binární matematické operace konvoluce a korelace Modly vličin spojiých v čas funkc spojié v čas Binární mamaické oprac konvoluc a korlac Základní informac Na konvoluci lz nahlíž jako na nudnou mamaickou opraci mzi dvěma funkcmi s jjími vlasnosmi a zákoniosmi.

Více

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad.

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad. 8. Taylorova řada. V urzu matematiy jsme uázali, že je možné funci f, terá má v oolí bodu x derivace aproximovat polynomem, jehož derivace se shodují s derivacemi aproximované funce v bodě x. Poud má funce

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru

Více

3. Mocninné a Taylorovy řady

3. Mocninné a Taylorovy řady 3. Mocninné a Taylorovy řady A. Záladní pojmy. Obor onvergence Mocninné řady jsou nejjednodušším speciálním případem funčních řad. Jsou to funční řady, jejichž členy jsou mocninné funce. V této apitole

Více

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné . Definiční obor a hladiny funkce více proměnných Nalezněte a graficky znázorněte definiční obor D funkce f = f(x, y), kde a) f(x, y) = x y, b) f(x, y) = log(xy + ), c) f(x, y) = xy, d) f(x, y) = log(x

Více

1. Písemka skupina A1..

1. Písemka skupina A1.. 1. Psemka skupina A1.. Nartněte grafy funkc (v grafu oznate všechny průseky funkce s osami) 3 y y sin( ) y y log ( 1) 1 y 1 y = arccotg - 1) Urete, jestli je funkce y = - + 1 omezená zdola nebo shora?

Více

Křivkové integrály prvního druhu Vypočítejte dané křivkové integrály prvního druhu v R 2.

Křivkové integrály prvního druhu Vypočítejte dané křivkové integrály prvního druhu v R 2. Křivové integrál prvního druhu Vpočítejte dané řivové integrál prvního druhu v R. Přílad. ds x, de je úseča AB, A[, ], B[4, ]. Řešení: Pro řivový integrál prvního druhu platí: fx, ) ds β α fϕt), ψt)) ϕ

Více

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2 Cvičení 1 Lineární rovnice prvního řádu 1. Najděe řešení Cauchyovy úlohy x + x g = cos, keré vyhovuje podmínce x(π) =. Máme nehomogenní lineární diferenciální ( rovnici prvního řádu. Funkce h() = g a q()

Více

ů ď é řá š ř í é á Ž é é é ří š ř í á ň Š é š ř í ř é ď ě ů ř é ý á í é ď ří ř ří é é Ž í á í í á í ý í ř í í Á ř ř á ůž ží ř ýš ě í ý ě í ž í á ž é š

ů ď é řá š ř í é á Ž é é é ří š ř í á ň Š é š ř í ř é ď ě ů ř é ý á í é ď ří ř ří é é Ž í á í í á í ý í ř í í Á ř ř á ůž ží ř ýš ě í ý ě í ž í á ž é š ří é á í á ý ó í řá ý á í ř í ě é á ě á á í á ý á ě ě í ěří š ý á á í á ě á íé í í á ě ě í ý í í í Ž í í í í á ě á íé ě ě ě ý í í ů í á ě í ěší ř ů ří í řá ý á í ř í řá á á í ř í ď í ů í ě íšíř í ě éá

Více

část 8. (rough draft version)

část 8. (rough draft version) Gntika v šlchtění zvířat TGU 006 9 Odhad PH BLUP M část 8. (rough draft vrsion V animal modlu (M s hodnotí každé zvíř samostatně a současně v závislosti na užitkovosti příbuzných jdinců hodnocné populac.

Více

ř é ú ě á é ý ř á á á á ě ň Ž ř ů Ž á á á ý ř á ú ě é ř é Ž ý é ú ř é ě ě ě ů á é ř á á ř é ú ř ě é ř é á úř Ž é á ř ě ý úř Ž ř á ě Žá á ř ý ů Žá Č Ž

ř é ú ě á é ý ř á á á á ě ň Ž ř ů Ž á á á ý ř á ú ě é ř é Ž ý é ú ř é ě ě ě ů á é ř á á ř é ú ř ě é ř é á úř Ž é á ř ě ý úř Ž ř á ě Žá á ř ý ů Žá Č Ž ě ý úř Ž ř á á ř ě ú Č ů ř ř á ř é ě ý Úř Ž ř ř ý á á á ě á ě á ě ý á ů á ě ě ř ů á á á ě Žá Č Ž Ž á é Ž á á ř á ě é ú ú Ú Ž ř Ž ř á ř á ř á á ě ě ř ů ů é ú á Ž é ř é á ř ř é á Č á Č ř é Č á á á é á á

Více

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2017/2018 Tutoriál č. 2:, náhodný vektor Jan Kracík jan.kracik@vsb.cz náhodná veličina rozdělení pravděpodobnosti náhodné

Více

transformace Idea afinního prostoru Definice afinního prostoru velké a stejně orientované.

transformace Idea afinního prostoru Definice afinního prostoru velké a stejně orientované. finní ransformace je posunuí plus lineární ransformace má svou maici vzhledem k homogenním souřadnicím využií například v počíačové grafice [] Idea afinního prosoru BI-LIN, afinia, 3, P. Olšák [2] Lineární

Více

2. Frekvenční a přechodové charakteristiky

2. Frekvenční a přechodové charakteristiky rkvnční a přchodové charaktristiky. rkvnční a přchodové charaktristiky.. Obcný matmatický popis Přchodové a frkvnční charaktristiky jsou důlžitým prostřdkm pro analýzu a syntézu rgulačních obvodů a tdy

Více

Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc.

Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc. Náhodné veličiny III Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc. Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman

Více

Buckinghamův Π-teorém (viz Barenblatt, Scaling, 2003)

Buckinghamův Π-teorém (viz Barenblatt, Scaling, 2003) Bucinghamův Π-teorém (viz Barenblatt, Scaling, 2003) Formalizace rozměrové analýzy ( výsledné jednoty na obou stranách musí souhlasit ). Rozměr fyziální veličiny Mějme nějaou třídu jednote, napřílad [(g,

Více

Radek Hendrych. Stochastické modelování v ekonomii a financích. 18. října 2010

Radek Hendrych. Stochastické modelování v ekonomii a financích. 18. října 2010 Sochasické modelování v ekonomii a financích 18. října 21 Program 1 2 3 4 Úroková míra R, T ) Uvažujme bezrizikový bezkuponový dluhopis s mauriou T a nominální hodnoou 1 $, jeho cenu v čase budeme nadále

Více

á č č é úč ř á á ů č č é úč ř ř é é á č Š á é é á Í á č ů č á ž Ť á é Ť ř Š á á ů á č á ž ř Í ř Š č ř ť č Í á ž č á Č á á á ř Š á á č Š á á ář č ů á á

á č č é úč ř á á ů č č é úč ř ř é é á č Š á é é á Í á č ů č á ž Ť á é Ť ř Š á á ů á č á ž ř Í ř Š č ř ť č Í á ž č á Č á á á ř Š á á č Š á á ář č ů á á á č á é ř ý ř ž á á ďá č á ž é á ž ů é ů á á á Ž á ř č á ú é ů é á ú á ř é ř Š ř ž č ž ú ý č ř Š ř á Í č Č é ř é ú Š Š ř č á ž á ý ř á á á ř ó č ú á ó ř ó č ť řá é á ář ž Ž žáď é éú á žá é ř ů á á á ž

Více

Přednáška. Další rozdělení SNP. Limitní věty. Speciální typy rozdělení. Další rozdělení SNP Limitní věty Speciální typy rozdělení

Přednáška. Další rozdělení SNP. Limitní věty. Speciální typy rozdělení. Další rozdělení SNP Limitní věty Speciální typy rozdělení VI Přednáška Další rozdělení SNP Limitní věty Speciální typy rozdělení Rovnoměrné rozdělení R(a,b) Příklad Obejít celý areál trvá strážnému 30 minut. Jaká je pravděpodobnost, že u vrátnice budete čekat

Více

AVDAT Náhodný vektor, mnohorozměrné rozdělení

AVDAT Náhodný vektor, mnohorozměrné rozdělení AVDAT Náhodný vektor, mnohorozměrné rozdělení Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Opakování, náhodná veličina, rozdělení Náhodná veličina zobrazuje elementární

Více

Náhodná veličina Číselné charakteristiky diskrétních náhodných veličin Spojitá náhodná veličina. Pravděpodobnost

Náhodná veličina Číselné charakteristiky diskrétních náhodných veličin Spojitá náhodná veličina. Pravděpodobnost Pravděpodobnost Náhodné veličiny a jejich číselné charakteristiky Petr Liška Masarykova univerzita 19.9.2014 Představme si, že provádíme pokus, jehož výsledek dokážeme ohodnotit číslem. Před provedením

Více

Electron Density. One-el. Functions. Traditional Ab initio. Model of independent electrons. Electron correlation neglected

Electron Density. One-el. Functions. Traditional Ab initio. Model of independent electrons. Electron correlation neglected CCSD(T) Stationary Schrödingr quation H Ψ = EΨ MP Elctron corrlation Expansion ovr Slatr dt. Φ= C0Ψ 0 + CSΨ S + CDΨ D + Non-rlativistic Hamiltonian Born-Oppnhimr approximaion occ Elctron Dnsity ρ( r) ϕ

Více

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet?

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet? Náhodné veličiny Náhodné veličiny Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Příklad Vytáhneme tři karty z balíčku zajímá nás, kolik je mezi nimi es.

Více

á Š á á á Í é á í á é é ň Ž é á Í á ě Ž ň š Ž á č š íč ší ň ší í á Ž é í Ďá í ňí ě ě ňí í ň Íí áň ň á Á č í í Ď Ú ě í Ů á á í ŠÍ á í í í í í Ů ňí š ě

á Š á á á Í é á í á é é ň Ž é á Í á ě Ž ň š Ž á č š íč ší ň ší í á Ž é í Ďá í ňí ě ě ňí í ň Íí áň ň á Á č í í Ď Ú ě í Ů á á í ŠÍ á í í í í í Ů ňí š ě ť Š í ň á ě É á á é č é ň í í á ě ě ě č ě ě é é č ě ň í í áží Ž á ě í ň č é á č é ň á čď á íň ě ť ň Ž š Í é á Ů í Ž ě á Ů Ž í Ď í čí ě ší ě ší í ě í í í á í Ž Ž í ě ě é š á á é ě é ěň á í Í ě é Í ň ší

Více

áš á á Á Ž Ř Á í Ě í Ž š é šíď é á í č Ž áš ť í á í á ě á í í á í ě šíčá ě á ě ě Ú ě ší Ž Í ě á é Ť é á í ě Ť ě Ů Í Ť é ě Ž é ě á á č áň í í ě ě č ě á

áš á á Á Ž Ř Á í Ě í Ž š é šíď é á í č Ž áš ť í á í á ě á í í á í ě šíčá ě á ě ě Ú ě ší Ž Í ě á é Ť é á í ě Ť ě Ů Í Ť é ě Ž é ě á á č áň í í ě ě č ě á áš á á Á Ž Ř Á í Ě í Ž š é šíď é á í č Ž áš ť í á í á ě á í í á í ě šíčá ě á ě ě Ú ě ší Ž Í ě á é Ť é á í ě Ť ě Ů Í Ť é ě Ž é ě á á č áň í í ě ě č ě á č á í č á é Žá č í á ň á í ě í č ě é é Žá ě ň é á

Více

MA1: Cvičné příklady funkce: D(f) a vlastnosti, limity

MA1: Cvičné příklady funkce: D(f) a vlastnosti, limity MA: Cvičné příklady funkc: Df a vlastnosti, ity Stručná řšní Na zkoušc j samozřjmě nutné své kroky nějak odůvodnit. Rozsáhljší pomocné výpočty s tradičně dělají stranou, al bývá také moudré nějak naznačit

Více

Přijímací zkouška na navazující magisterské studium 2014

Přijímací zkouška na navazující magisterské studium 2014 Přijímací zkouška na navazující magisterské studium 24 Příklad (25 bodů) Spočtěte Studijní program: Studijní obor: Matematika Finanční a pojistná matematika Varianta A M x 2 dxdy, kde M = {(x, y) R 2 ;

Více

Í í É ť ď í é í ř ě ž ří á í í í í ů ě ě é ě É ž ě í á š ý ň á ý ř ů á Í é ž ě ě í á ů á í í ří á ž é ř ě ř á á ř Í č ů í Í ž ří ě ý ě Í ě ří ř ší á í

Í í É ť ď í é í ř ě ž ří á í í í í ů ě ě é ě É ž ě í á š ý ň á ý ř ů á Í é ž ě ě í á ů á í í ří á ž é ř ě ř á á ř Í č ů í Í ž ří ě ý ě Í ě ří ř ší á í Í í É ť ď í é í ř ě ž ří á í í í í ů ě ě é ě É ž ě í á š ýň á ý ř ů á Í é ž ě ě í á ů á í í ří á ž é ř ě ř á á ř Í č ů í Í ž ří ě ý ě Í ě ří ř ší á í Í ď Í ý ší ř Í é ě ř ó Í š ř Í í ň á ú í ř ě ý ě ší

Více

30. listopadu Derivace. VŠB-TU Ostrava. Dostupné: s1a64/cd/index.htm.

30. listopadu Derivace. VŠB-TU Ostrava. Dostupné:   s1a64/cd/index.htm. KMA/MAT1 Přednáška a cvičení č. 11 30. listopadu 2017 [KS] Jaromír Kuben Petra Šarmanová: Diferenciální počet funkcí jedné proměnné. VŠB-TU Ostrava. Dostupné: http://homel.vsb.cz/ s1a64/cd/inde.htm. 1

Více

š ř ě ř š é ř é ř í é á í á ě ě í í ěř í ř ří ě ř Ž í é ě á í ě í é á í á ě í á í ů ě í ý ů á áš í á ří ář ří í ň í í í ž š ů ěř í áš í í á í é á á á

š ř ě ř š é ř é ř í é á í á ě ě í í ěř í ř ří ě ř Ž í é ě á í ě í é á í á ě í á í ů ě í ý ů á áš í á ří ář ří í ň í í í ž š ů ěř í áš í í á í é á á á řá í í ě Č é í ří é ě ý í Ž ř ř í á á řá á í í í í ě í í á ě Žá é ář ě é á ě é á ř í ší ů ř á í řá é é é í ř í á í é á ě Žá é ář ě é á ě é á ř í Ší ř á í řá é é é í Č Žá ě á í ě ř í á ý ě í é á í é á í

Více

Ž Ž Ž á ž á é á ě á ž á ě á á ě ý á ů á á žď é Ť ž á šť á Ť ž á é á é é ú á á ě ě ž é é ú é š ú Š á é ú ě Č é Ť ě ž é á á ě á á š ě ý ě Ž ě ů á é Ž ů

Ž Ž Ž á ž á é á ě á ž á ě á á ě ý á ů á á žď é Ť ž á šť á Ť ž á é á é é ú á á ě ě ž é é ú é š ú Š á é ú ě Č é Ť ě ž é á á ě á á š ě ý ě Ž ě ů á é Ž ů á ě ě š ě á Č Č áš š ů Š Š ě ý ě š ý Íá ú á ě ě ě š ů á ďě žá é á ě á é á ě é ď Č á ž ý á š ú ůť á ž é Ř á Č á á ě á ě ň é á á á é é é á á á ě ě š ů áš á é ě ě š ů ú ě ú ý á š ě žď á á š Í ž Ž Ž Ž Ž á

Více

Alternativní rozdělení. Alternativní rozdělení. Binomické rozdělení. Binomické rozdělení

Alternativní rozdělení. Alternativní rozdělení. Binomické rozdělení. Binomické rozdělení Alternativní rozdělení Alternativní rozdělení Alternativní rozdělení Alternativní rozdělení Náhodná veličina X má alternativní rozdělení s parametrem p, jestliže nabývá hodnot 0 a 1 s pravděpodobnostmi

Více

ý ý ů ů ý ů ř Š úř ř ř ů ř ý ř ů ň ý ř ň ó ř ý ů ř Ú ř ý Á ý ň ř ř ř ř ý ř ý ř Č ú

ý ý ů ů ý ů ř Š úř ř ř ů ř ý ř ů ň ý ř ň ó ř ý ů ř Ú ř ý Á ý ň ř ř ř ř ý ř ý ř Č ú ů Í Ě ď Ť Š ň Ž Č ř ý ť Í ř ý ý ř ř ď ř ř ď ů ř ý ý ů ů ý ů ř Š úř ř ř ů ř ý ř ů ň ý ř ň ó ř ý ů ř Ú ř ý Á ý ň ř ř ř ř ý ř ý ř Č ú Á ř ď ý ř ý Í ď ď ď Í ď ď Ú ř ď ř ď ř ý ď ó ý ú ů ř ď ř ď Ž ř ď ď Ž ř

Více

IMITANČNÍ POPIS SPÍNANÝCH OBVODŮ

IMITANČNÍ POPIS SPÍNANÝCH OBVODŮ IMITANČNÍ POPIS SPÍNANÝCH OBVODŮ Doc. Ing. Dalibor Biolk, CSc. K 30 VA Brno, Kounicova 65, PS 3, 6 00 Brno tl.: 48 487, fax: 48 888, mail: biolk@ant.f.vutbr.cz Abstract: Basic idas concrning immitanc dscription

Více

3. Charakteristiky a parametry náhodných veličin

3. Charakteristiky a parametry náhodných veličin 3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo

Více

č ěř č č č ř č é ó é é ž é ř ý ž č č ó č ř ř ž č č é ě č č ě č é ř ě č č ě č ř é é ě ě ě ť ř č č ý ž č č ř ř ž ý č ý Í ř ý č ý č ý ž é ř ý ž č

č ěř č č č ř č é ó é é ž é ř ý ž č č ó č ř ř ž č č é ě č č ě č é ř ě č č ě č ř é é ě ě ě ť ř č č ý ž č č ř ř ž ý č ý Í ř ý č ý č ý ž é ř ý ž č ř é ř é ř ř Í č ř ě ř ř é ř ř ž ř ě é č ň é ě úř úř ř ř ě é ě č ě ř ě é ř ř č ř ý ě ř č ž ř č é č ě č ž é č ěř ř č ěř ř č ěř Í Í ž é ř ý ž č Í ř ř é ř č ř č ř ě úř č ěř č č č ř č é ó é é ž é ř ý ž č č

Více

7. Soustavy lineárních diferenciálních rovnic.

7. Soustavy lineárních diferenciálních rovnic. 7 837 4:3 Josf Hkrdla sousavy liárích difrciálích rovic 7 Sousavy liárích difrciálích rovic Příklad 7 3 + 5 + ( ) ξ 3 + ( ) ξ Maicový zápis 3 5 + 3 ( ) ξ ( ) ξ Dfiic 7 (sousava liárích difrciálích rovic

Více

ε, budeme nazývat okolím bodu (čísla) x

ε, budeme nazývat okolím bodu (čísla) x Množinu ( ) { R < ε} Okolím bodu Limit O :, kd (, ) j td otvřný intrval ( ε ε ) ε, budm nazývat okolím bodu (čísla).,. Bod R j vnitřním bodm množin R M, jstliž istuj okolí O tak, ž platí O( ) M. M, jstliž

Více

je daná vztahem v 0 Ve fyzice bývá zvykem značit derivaci podle proměnné t (podle času) tečkou, proto píšeme

je daná vztahem v 0 Ve fyzice bývá zvykem značit derivaci podle proměnné t (podle času) tečkou, proto píšeme DERIVACE FUNKCE Má zásadí výzam při vyštřováí fukčích závislostí j v matmatic, al také v aplikacích, apř v chmii, fyzic, koomii a jiých vědích oborch Pricip drivováí formulovali v 7 stoltí závisl a sobě

Více

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná.

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná. Matmatika I část II Graf funkc.. Graf funkc Výklad Chcm-li určit graf funkc můžm vužít přdchozích znalostí a určit vlastnosti funkc ktré shrnm do níž uvdných bodů. Můž s stát ž funkc něktrou z vlastností

Více

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu.

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu. 6. NÁHODNÝ VEKTOR Průvodce studiem V počtu pravděpodobnosti i v matematické statistice se setkáváme nejen s náhodnými veličinami, jejichž hodnotami jsou reálná čísla, ale i s takovými, jejichž hodnotami

Více

G( x) %, ν%, λ. x, x, N, N nezáporné přídatné proměnné, ( ) 2 Matematické programování

G( x) %, ν%, λ. x, x, N, N nezáporné přídatné proměnné, ( ) 2 Matematické programování Matematicé programování Označení a definice veličin. opt i/maimalizace w, Žádaná hodnota,transpozice, relace typu nebo Inde diagonální formy vetoru. Obecná omezovací podmína Γ ( ( = ( Є, R, y podmíny typu

Více

ODHADY VARIABILITY POSLOUPNOSTÍ

ODHADY VARIABILITY POSLOUPNOSTÍ ÚVOD MÍRY VARIABILITY, ODHADY VLASTNOSTI FF SEGMENTACE ZÁZNAMU MINIMALIZACE MSE SNÍŽENÍ ROZPTYLU ODHADY VARIABILITY POSLOUPNOSTÍ NEURONOVÝCH IMPULSŮ Kamil Rajdl Úsav maemaiky a saisiky Přírodovědecká fakula

Více

Úhrada za ústřední vytápění bytů II

Úhrada za ústřední vytápění bytů II Úhrada za úsřdní vyápění byů II Anoac Článk j druhým z séri příspěvků, krými jsou prsnovány dlouholé výsldky prác na Tchnické univrziě v Librci v oblasi rozpočíávání nákladů na vyápění pomocí poměrových

Více

8. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE Diferenciální rovnice prvního řádu separovatelná, homogenní, lineární, Bernoulliova, exaktní...

8. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE Diferenciální rovnice prvního řádu separovatelná, homogenní, lineární, Bernoulliova, exaktní... Sbírka úloh z mamaik 8. Občjné difrnciální rovnic 8. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE... 94 8.. Difrnciální rovnic prvního řádu sparovalná homognní linární Brnoulliova akní... 94 8... Sparovalná difrnciální

Více

Ú čá á á í á á ř š í á á í í ů ř Š ě ží ří í é ř Ž í č í í š ě á í žá ě í í š ě ě ě ě ší í š í ě ě ě ě ě ř Ž á í Ž ý Ě č řá ě ří í ží á í š ě Ž ý á č

Ú čá á á í á á ř š í á á í í ů ř Š ě ží ří í é ř Ž í č í í š ě á í žá ě í í š ě ě ě ě ší í š í ě ě ě ě ě ř Ž á í Ž ý Ě č řá ě ří í ží á í š ě Ž ý á č Ú čá á š ě á ě ý ř šť ěá ě ý ř š čá Ú Č í á ě á ř š Ží ří í é ř Ž í č í í š ě á í žá ě á í čí í řá é í ě ý ř šť ň í ě ř Ží á í ž ý É ě řá ě ří í ř ží á í š ě ž Ý á ď ší ž ů ě ý š í á á Ú Č á í é ý ří í

Více

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D. Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost

Více

n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y)

n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y) 5. NÁHODNÝ VEKTOR 5.1. Rozdělení náhodného vektoru Náhodný vektor X = (X 1, X 2,..., X n ) T n-rozměrný vektor, složky X i, i = 1,..., n náhodné veličiny. Vícerozměrná (n-rozměrná) náhodná veličina n =

Více

Přijímací zkoušky do NMS 2013 MATEMATIKA, zadání A,

Přijímací zkoušky do NMS 2013 MATEMATIKA, zadání A, Přijímací zkoušk do NMS MATEMATIKA, zadání A, jméno: V násldujících dsti problémch j z nabízných odpovědí vžd právě jdna správná. Zakroužkujt ji! Za každou správnou odpověď získát uvdné bod. Za nsprávnou

Více

ň Í š ě á ýř é ý á úč ž é ý ě á ů č Ý ů ž č ý á ů á Í é ž ý ž ů áš ý ž áš č ě áš č ý Ž ž ú áč ř š Ťž áš č ý ý ž Č á á č é ú á ř č éú Ž ě Š á á čá ů ř

ň Í š ě á ýř é ý á úč ž é ý ě á ů č Ý ů ž č ý á ů á Í é ž ý ž ů áš ý ž áš č ě áš č ý Ž ž ú áč ř š Ťž áš č ý ý ž Č á á č é ú á ř č éú Ž ě Š á á čá ů ř á ú ÍÚ á š Í á š Í ě ý á Í á š á ř ú Úč á á ř á ů Í č á ú á č ů ř ý ů á Í Í ě ž Í Í š é ř ň é á ř Ě Í á ř ř á ř á á ě á ě č ř č á Č á ý ž ý š é šť á é á ě á é á č á š ě ř ě Íď ž ň Í š ě á ýř é ý á úč ž

Více

ž ž ž ž ž ž ž ž ž Ř ž ž Ž Ž É Ě Ň ž

ž ž ž ž ž ž ž ž ž Ř ž ž Ž Ž É Ě Ň ž É Á É Á Ž ž ž ž Ý Ě ž ž Ž ž ž ž ž ž ž ž ž ž ž ž ž ž ž Ř ž ž Ž Ž É Ě Ň ž ž Š Š ž ž ž Ž Ř ž ž ž ž ž ž ž Ž ž Š É ž Ň ž Ó ž ž ž ž Ž Ž ž Ž ž ž Ž ž ž ž Š ž ž ž Ž ž Ž ž Ř Ž ž ž ž ž ž Ž ž Š ž Š ž Ž Ž ž ž Ž Š Ž

Více

Č Ý Ý Ě Ď Ý ÉŘ Á ó ě ě ě ě ě Á ě ě ě ě ě ě ě ě

Č Ý Ý Ě Ď Ý ÉŘ Á ó ě ě ě ě ě Á ě ě ě ě ě ě ě ě Ý Ý Ě ÉŘ Á ó ě ě ě ů ě ů ě ě ě Č Ý Ý Ě Ď Ý ÉŘ Á ó ě ě ě ě ě Á ě ě ě ě ě ě ě ě Ý Ý Ě ÉŘ Á Č ó ě ě ě ě ě ě ě ě ě ě Č Ý Ý Ě Č ÉŘ Á Č Č ó ě ě ě ě ů É ě ě Ý Ý Ě ÉŘ Á ó ó ě ě ě ě ů ě ó ů Ž ě ě Ý Ý Ě Ý É Ř Á

Více

ř ř Ž ž ě á ň ě ě Ž ý ý ú ů ž ý ř š áť ý š ě ž ě ť é šť á š á ž éž á Ž š á ě ý á ý ú Ý š ř á ž áž ě é ř Ž Š ě ž ě á é řá é Í š ř á ř ěř ň é ž ž ě Ú é

ř ř Ž ž ě á ň ě ě Ž ý ý ú ů ž ý ř š áť ý š ě ž ě ť é šť á š á ž éž á Ž š á ě ý á ý ú Ý š ř á ž áž ě é ř Ž Š ě ž ě á é řá é Í š ř á ř ěř ň é ž ž ě Ú é Ž ř á Č ř é ýí ě á ě ř ý ž á ě é Ž ý úř Ú á ž á ř ý ž á á Ť š á Č Íá ř é ě ý ó á š á ř é ž é é á ž á á Ž á ň á ž áš á á ú ů Ž ó ú ů ž á ú ůž á ě á ž á Í Ž ž Í á ř ě ž ř ě Ž Ž š š Íé šť á é áž Í é é ř ě

Více

Diferenciál funkce. L Hospitalovo pravidlo. 22. a 23. března 2011

Diferenciál funkce. L Hospitalovo pravidlo. 22. a 23. března 2011 Diferenciál funkce Derivace vyšších řádů L Hospitalovo pravidlo Jiří Fišer 22. a 23. března 2011 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT2 Přednáška č. 6 22. a 23. března 2011 1 / 18 y ω(h) dy O x Obrázek:

Více

Navazující magisterské studium MATEMATIKA 2016 zadání A str.1 Z uvedených odpovědí je vždy

Navazující magisterské studium MATEMATIKA 2016 zadání A str.1 Z uvedených odpovědí je vždy Navazující magistrské studium MATEMATIKA 16 zadání A str.1 Příjmní a jméno: Z uvdných odpovědí j vžd právě jdna správná. Zakroužkujt ji! V násldujících dsti problémch j z nabízných odpovědí vžd právě jdna

Více

ě ů ť Í ě á ú ě á é é ů ě á é ů ě ě á ž ť ř ó á ú ě á á řů Š ř ř á ě é ť á ú ě ó á řů š ř ř á á Ú ě á ě ř ě š ů É é ř š ů š ě ž á ů é ě é š ř ř é ú ě

ě ů ť Í ě á ú ě á é é ů ě á é ů ě ě á ž ť ř ó á ú ě á á řů Š ř ř á ě é ť á ú ě ó á řů š ř ř á á Ú ě á ě ř ě š ů É é ř š ů š ě ž á ů é ě é š ř ř é ú ě Á ň úř á š Č Í ř ě ó ú Ď Á Š Ř Á ÁŠ Í Ú Í Í áá Íá ě úř ú ř š á ú á á řá á á á ú ř Ž á Žá á ě ř á ě ř á Á Č é ú Í ž á ě á á á áš ě š ú ú ř ř á ú ř ě ů á á ú ě ř ú ť é Ž ě ů ř Ž ř ř š á é áž éá á ě ř š á

Více

X 3U U U. Skutečné hodnoty zkratových parametrů v pojmenovaných veličinách pak jsou: Průběh zkratového proudu: SKS =

X 3U U U. Skutečné hodnoty zkratových parametrů v pojmenovaných veličinách pak jsou: Průběh zkratového proudu: SKS = 11. Výpoče poměrů při zkraeh ve vlasní spořebě elekrárny Zkra má v obvodeh shémau smysl pouze v čáseh provozovanýh s účinně uzemněným sředem zdroje, čili mimo alernáor, vyvedení výkonu a přilehlá vinuí

Více

Literatura: O. Zindulka: Matematika 3 (kapitola 4, kapitola 5)

Literatura: O. Zindulka: Matematika 3 (kapitola 4, kapitola 5) Předmět: MA03 Opakování: formulace okrajové úlohy (OÚ), skalární součin funkcí, ortogonalita funkcí Nová látka: vlastní čísla a vlastní funkce OÚ ortogonalita vlastních funkcí řešitelnost OÚ Literatura:

Více

INTERGRÁLNÍ POČET. PRIMITIVNÍ FUNKCE (neurčitý integrál)

INTERGRÁLNÍ POČET. PRIMITIVNÍ FUNKCE (neurčitý integrál) INTERGRÁLNÍ POČET Motivac: Užití intgrálního počtu spočívá mj. v výpočtu obsahu rovinného obrazc ohraničného různými funkcmi příp. čarami či v výpočtu objmu rotačního tělsa, vzniklého rotací daného obrazc

Více

2 VYBRANÉ PRAVDPODOBNOSTNÍ MODELY. as ke studiu: 60 minut. Cíl: Po prostudování této kapitoly budete umt popsat a použít pro popis technických proces:

2 VYBRANÉ PRAVDPODOBNOSTNÍ MODELY. as ke studiu: 60 minut. Cíl: Po prostudování této kapitoly budete umt popsat a použít pro popis technických proces: as sudiu: 6 minu Cíl: o rosudování éo aiol bud um osa a ouží ro ois chnicých rocs: Erlangovo rozdlní Wibullovo rozdlní Logarimico normální rozdlní Vícrozmrné normální rozdlní VÝKLAD. Erlangovo rozdlní

Více

1 Klasická pravděpodobnost. Bayesův vzorec. Poslední změna (oprava): 11. května 2018 ( 6 4)( 43 2 ) ( 49 6 ) 3. = (a) 1 1 2! + 1 3!

1 Klasická pravděpodobnost. Bayesův vzorec. Poslední změna (oprava): 11. května 2018 ( 6 4)( 43 2 ) ( 49 6 ) 3. = (a) 1 1 2! + 1 3! Výsledky příkladů na procvičení z NMSA0 Klasická pravděpodobnost. 5. ( 4( 43 ( 49 3. 8! 3! 0! = 5 Poslední změna (oprava:. května 08 4. (a! + 3! + ( n+ n! = n k= ( k+ /k! = n k=0 ( k /k!; (b n k=0 ( k

Více

é á í ž í Č í ž í é Č ž í ůž ý á í í ž í ě á ší á ší á ý á á á í í ž í á í ý é ý ž í á ě í é ěř í í í ž í ř áš Č í ů ří é ý ž í á ž í Č í ž í á í í é

é á í ž í Č í ž í é Č ž í ůž ý á í í ž í ě á ší á ší á ý á á á í í ž í á í ý é ý ž í á ě í é ěř í í í ž í ř áš Č í ů ří é ý ž í á ž í Č í ž í á í í é é ž í Č í ť á í ů ž í é é ří é ý ž é í á ý Á Á Á á ž í ř íď ž í á á á á Č ž í ž é é ž í ý á ý é ž á ť ď í ě ář ž í ůž ů é íč é ž í á á ě á í é á í ó ě ě á é á á í á á ý á ý ý ž í á š ř ň á í ý á ě á ý

Více

é ž ý á ž é é ž ř ý é ž Í ř ř ů ď ř é ď áš č ó Č ř á ý ž ý áš Č á ř ť é ý á á úř Š á ď á é ř ř á ýč é ř ý ů ýč é ú á ř á ý ř ý č č ý á č ř ý á ů š ř ů

é ž ý á ž é é ž ř ý é ž Í ř ř ů ď ř é ď áš č ó Č ř á ý ž ý áš Č á ř ť é ý á á úř Š á ď á é ř ř á ýč é ř ý ů ýč é ú á ř á ý ř ý č č ý á č ř ý á ů š ř ů Ý ÚŘ Í ž š á Í Č ž á č š á č é á á ď á č Í á á á á á á žá á é á á á é Í á é žá ž á á á áš á á á á á áš č á á á Í Í č Í é č á Í é š é ž é š é š Í é š é á á é é ž ý á ž é é ž ř ý é ž Í ř ř ů ď ř é ď áš č

Více

Model spotřeby soukromého sektoru (domácností)

Model spotřeby soukromého sektoru (domácností) Makokonomická analýza přdnáška Modl spořby soukomého skou (domácnosí) Přdpoklady Exisují pouz domácnosi j. uvažujm pouz spořbu nxisují žádné invsic. Exisuj pouz jdn yp spořbního saku. Exisují pouz dvě

Více

Č é š ě é é á é é ó á ú é š ě é š ě šř é é é á ú š ě é š ě šř é é á ú é š ě úř é š ó Č š ó ý Ž ý á ř ě ř é ě ý ř á úř á ř á ě ž ř ý á ý ř é ř á žš á ž

Č é š ě é é á é é ó á ú é š ě é š ě šř é é é á ú š ě é š ě šř é é á ú é š ě úř é š ó Č š ó ý Ž ý á ř ě ř é ě ý ř á úř á ř á ě ž ř ý á ý ř é ř á žš á ž Á Í Ú Á Ě š úř á š ě Ú Í ď ř ř á á ě á úř ěš úř úř úř é š ě úř á Ž á Š á ě á á Ř Á ÁŠ Í Í Í ý á á á ě úř úř ř š ý á ú á á řá á ě ě š ř ů á á ř ž á žá Č Č á ě ě Č š á á ě ř á á á á ó áš á ě ě á á ě řá é

Více

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC Přednáša 04 Přírodovědecá faulta Katedra matematiy KMA/P506 Pravděpodobnost a statistia KMA/P507 Statistia na PC jiri.cihlar@ujep.cz Záon velých čísel Lemma Nechť náhodná veličina nabývá pouze nezáporných

Více

Předpoklady: a, b spojité na intervalu I.

Předpoklady: a, b spojité na intervalu I. Diferenciální rovnice Obyčejná diferenciální rovnice řádu n: F t, x, x, x,, x n Řešení na intervalu I: funce x : I R taová, že pro aždé t I je F t, xt, x t,, x n t Maximální řešení: neexistuje řešení na

Více

Č ž ů í Ú ř Ž é Ž á á ů ý ě Ú ř ž í í ů í ě í ží í ů ů ě á í í ě Č ř ř á á ž ž á ší ř Ž í í ě í ř áš í ž á ě í á éň ý ů ří í í ů ř é ž á ůž á í Č Ž ů

Č ž ů í Ú ř Ž é Ž á á ů ý ě Ú ř ž í í ů í ě í ží í ů ů ě á í í ě Č ř ř á á ž ž á ší ř Ž í í ě í ř áš í ž á ě í á éň ý ů ří í í ů ř é ž á ůž á í Č Ž ů í řá á í á é ú ú ř í š ě á í í á í ř á í á é ú á á í á á í ř ý ý í ž í á ě á á á á í řá á í á é ú ú ř í š ě á ě ý ý ří í í ň á í á é ř é é í ž á Č á í Ú Ú Žď á á ří ň ý í í á é é ů ří ě ý í í Č é á á í

Více