Vzorové příklady - 5.cvičení

Rozměr: px
Začít zobrazení ze stránky:

Download "Vzorové příklady - 5.cvičení"

Transkript

1 Vzoroé příklady - 5.cičení Vzoroý příklad 5.. Voda teplá je ypouštěna z elké nádrže outaou potrubí ýtokem do olna B. Určete délku potrubí =? průměru ( = 0,6 mm, oceloé, ařoané po použití), při níž bude protékat průtok Q = 8,9 l. Je dáno: potrubí je litinoé po použití drnotí = 0,8 mm, délky potrubí = 0,5m a 3 = 5,6m, dě kolena 30 na potrubí. Součinitelé mítních ztrát tokem, kolen, entilu, zúžením a rozšířením, iz Tab. 7 až. Vykrelete čáru energie ČE a čáru tlakoou ČT. [Výledek: 9,09 m] Ř e š e n í Obrázek ronice Q =.S e určí průřezoé rychloti potrubí průměry a : 3 Q 8,9 l. 0,089m. Q 4. Q 4.0,089 0,9m. S..0,45 3 Q S,54m. Nyní je potřeba napat Bernoulliho ronici (hladina nádrže a ýtok do olna B): pa pab 3 h hb, g g g g kde jou ztrátoé ýšky (třením a mítní ztráty) K4 HY cičení 5

2 m t m t m3 t3 U ýtoku B je ronáací roina, tedy, h B 0m, na hladinu nádrže a i u ýtoku půobí atmoférický tlak, hodnota je tejná, yruší e nám tlakoé ýšky na obou pa pab tranách Bernoulliho ronice ( tj. ). ále platí, že nádrž je elká, možno. g. g uažoat = 0 a tedy 0. g Potom ronice přejde na tar: 3 h g Určení ztrátoých ýšek: je nutno určit oučinitele mítní ztrát (Tab. 7, 8, 0 a ): tok tok 0, 5 koleno 0, 7 koleno 30 entilu 4, 95 entil zúžení zuzeni 0, 4 ztaženo k průměru rozšíření rozireni 43 ztaženo k průměru 3 = ýtok do olna ytok 0 m m m3 g 0,9 0,5.0,7 4,95 g,54 0,4 g g g 0,0496m 0,9 g ,03m 0,0048m a dále oučinitele ztrát třením litinoého a oceloého potrubí: abolutní drnoti Δ = 0,8 mm, Δ = 0,6 mm z Tab. 4. Moodyho diagramu (Tab.5) e pro Reynoldoo čílo Re a relatiní drnot odečtou hodnoty oučinitelů ztrát třením λ, λ, λ3 potrubí:. 0,9.0,45 litina 0,8 mm 0,0077 Re 4385,5 6,4.0 přechodná oblat proudění, dle Moodyho diagramu (M, Tab.5.) 0, 07 a zároeň 0, 07 3.,54.0,5 ocel 0,6mm 0,004 Re 6,4.0 přechodná oblat proudění, dle M 0, 03. K4 HY cičení 5 554

3 t t t 3 3 0,5 0,9 0,07 g 0,45 g,54 0,03 g 0,5 g g 5,6 0,07 0,45 0,9 g 0,00045m 0,09. m 0,0004m Pro celkoou ztrátoou ýšku platí: m t m t m3 t3,5767 0,09. 0 oazením do upraené Bernoulliho ronice dotaneme hledanou délku potrubí. h 3 g 0,9 8,6 g 0,5767 0,09. 9,09m Schematické ykrelení čar (iz.obrázek ): Obrázek K4 HY 3 cičení 5

4 Vzoroý příklad 5.. ě elké nádrže, B hladinami na kótě,5 m, rep. 0 m jou pojeny tarším litinoým potrubím průměru = 0, m a délky = 0 m (obrázek 3). Nádrž je uzařena a na její hladinu půobí přetlak zduchu pp = 9805 Pa. Výtok z nádrže i tok do nádrže B jou otrohranné, dě kolena pojoacího potrubí mají zakřiení poloměrem r/ =,5. Voda má teplotu T = o. Vypočítejte průtok mezi nádržemi a ykrelete čáry energie ČE a čáru tlakoou ČT. [Výledek: 0,0 m 3. - ] Ř e š e n í Obrázek 3 ákladem řešení proudění potrubí je aplikace Bernoulliho ronice a ronice pojitoti, polu ronicí ztrát. Pro profily dané hladinami horní a dolní nádrži: p α pb αb H HB, kde pb pa. ρg g ρg g elkoé ztráty e yjádří za pomoci ronic pro mítní ztráty a arcy-weibachoy ronice pro ztrátu třením λ ζ ζ ζ n. g Protože i B jou elké nádrže, je možno uažoat 0, 0 a tedy B α g αb 0. g Ronici Bernoulliho pak lze uprait na tar p pa H HB λ ζ ζ ζn ρg ρg g a případně pp H HB λ ζ ζ ζ n, ρg g K4 HY 4 cičení 5

5 pp p pa 9805 kde,0 m. l.. g. g 999,5.9,8 Jelikož zatím neznáme průtok, a tudíž nemůžeme určit hodnotu Reynoldoa číla Re pro přené určení hodnoty oučinitele ztrát třením,, budeme předpokládat proudění kadratické oblati ztrát třením, kde není funkcí Re, ale pouze relatiní hydraulické drnoti. tabulky 4 e pro litinoé potrubí (uažuje e potrubí po použití) odečte hodnota hydraulické drnoti 0,005m. Relatiní drnot je Δ 0,005 tedy 0,05. le Moodyho diagramu (tabulka 5) nabýá oučinitel ztrát 0, třením pro tuto relatiní drnot kadratické oblati hodnoty = 0,044. Součinitel mítní ztráty otrohranným tokem a ýtokem do elké nádrže iz. tab. 7 rep. oučinitel mítní ztráty obloukem e určí z tab. (iz níže): ξ = 0,5; ξn =,0; rep. ξ = 0,34. oazením do Bernoulliho ronice: pp H HB λ ζ ζ ζn ρg g 0,5-0,0 0,044 0,5 0,34,0 0, 9,6 a jednoduchou matematickou úpraou dotaneme rychlot prodění potrubí:,5 0,0 9,6.,50 m.. 0 0,044 0,5 0,34,0 0, Nyní je nutno pooudit platnot předpokladu kadratické oblati ztrát třením. tabulky e pro odu o teplotě T= odečte hodnota kinematické ikozity 6,4 0 m /. Pro takto určenou kinematickou ikozitu a počítanou rychlot.,50.0, 5 je možno dopočítat elikot Reynoldoa číla Re, ,4.0 5 Pro hodnoty Re,0 0 a 0, 05 e dle Moodyho diagramu nacházíme kadratické oblati ztrát třením (předpoklad je potrzen). V případě, že by předpoklad nebyl plněn, je nutné ýpočet zopakoat pro oblat danou hodnotou Rea. průřezoé rychloti e ypočítá průtok Q: Q π 0, 4 3 S,50 0,096m.. K4 HY 5 cičení 5

6 Tab. trátoý oučinitel čtrtkruhoého kolena ξ ( = 90 o ) ξ ξ r /,00,5,0 4,0 6,0 0,0 0,0 hladká potrubí drná potrubí 0, 0,7 0,5 0, 0,09 0,07 0,05 0,4 0,34 0,30 0, 0,8 0,4 0,0 V r Schematické ykrelení čar iz.obrázek 4: Obrázek 4 K4 HY 6 cičení 5

7 Vzoroý příklad 5.3. Vypočítejte kapacitu (Q) náoky a určete nejyšší možné umítění rcholu náoky (K =? [m n.m.]). Náoka přeádí odu z horní nádrže, která má hladinu na kótě H = 36,5 m n.m. m pře zýšené míto a oda ytéká na konci etupného potrubí do olna. Vtok do náoky je, m pod hladinou nádrže, ýtok je 3,5 m pod úroní hladiny. Potrubí náoky je z použitého oceloého potrubí průměru = 0, m. Vtok zaahuje do nádrže, na zetupné čáti je otrohranné koleno δ = 45 º a rchol náoky je tořen praoúhlým obloukem poloměrem zakřiení r/ =. élka zetupné čáti potrubí (od toku po rchol náoky) je S = 3,4 m a etupné čáti = 7,7 m. Teplotu ody uažujte 5. Vykrelete průběh čáry energie a tlakoé čáry. [Výledek: 6,9 l. - ; 33,47 m n.m. ] Ř e š e n í Obrázek 5 Kapacita náoky (tj. elikot průtoku Q náokou) záií na rozdílu energetických ýšek na začátku a konci náoky. Proto je nejpre třeba etait Bernoulliho ronici pro profil hladiny nádrže () a ýtoku do olna (): H pa g g H pa g g tmoférický tlak půobící obou profilech e ykrátí, rychlotní ýška profilu hladiny nádrži e zanedbá (poažujeme nádrž za elkou). Potom ronice přejde na tar H H H g, kde H je přeýšení hladiny nádrži nad ýtokem z náoky. elkoé ztráty e ypočítají jako oučet ztrát třením a ztrát mítních: t m K4 HY 7 cičení 5

8 tráty třením e tanoí podle ronice arcy-weibachoy, t g g ocel ařoaná 0,0005 m 0,005. Neznáme průtok a tedy ani rychlot proudění potrubí, nemůžeme tanoit oblat proudění. Budeme předpokládat kadratickou oblat ztrát třením a tedy dle Moodyho diagramu (M) = 0,03. Pro ztráty mítní platí: m. g oučinitel mítní ztráty pro tok do potrubí: 0, VT 9 (potrubí zaahuje do nádrže), oučinitel mítní ztráty pro koleno 45 : 0, 3 K45 oučinitel mítní ztráty pro čtrtkruhoý oblouk: 0, O 30 m VT K 45 O. g Pro hledaný průtok Q po doazení do Bernoulliho ronice zíkáme rychlot proudění: H g VT K 45 O g 3,5 * g 3,46m. 3,4 7,7 0,03 0,9 0,3 0,3 0, VT K 45 O g Pro oěření předpokladu kadratické oblati je nutné určit hodnotu Reynoldoa. 3,46.0, 5 číla: Re ,5.0 le Moodyho diagramu e nacházíme na hranici kadratické a přechodné oblati proudění, předpoklad je tedy plněn. V případě, že by e hledaný bod nalézal oblati přechodoé, je třeba odečít pro / a Re noou hodnotu oučinitele tření, a zíkat opraenou hodnotu rychloti. elý potup by e měl opakoat tak dlouho až e mezi děma kroky hodnota již nebude lišit. (Při ýpočtu je možné použít ke tanoení hodnoty některou z empirických ronic.) Hledaná kapacita náoky je: Q.0, ,46. 0,069. S m 6,9 l.. K4 HY 8 cičení 5

9 ruhá čát úlohy počíá učení umítění rcholu náoky (tj. K =?) nou e etaí Bernoulliho ronice, tentokrát pro profil hladiny odběrné nádrže a rcholu náoky. K pa g g K p g g a při α = dále K K pa g p g g K p a g g. Hodnota podtlaku e rcholu náoky (tj. mítě minimálním tlakem) bodě by pro bezproblémoou funkci náoky neměla být příliš elká (při elkých podtlacích hrozí nebezpečí zniku kaitace, eentuelně až přerušení průtoku ody). doporučeného rozpětí maximálních podtlaků uáděných literatuře zolme hodnotu podtlakoé ýšky 7 m. l. p a a ( 6 8 m. l. 7m. l. g max p g tráty e tentokrát muí tanoit pro úek mezi počátkem náoky a jejím rcholem. Pro určení ztrát třením je tomto případě releantní pouze délka zetupné čáti potrubí od toku po rchol náoky, mítní ztráty jou obdobné jako předchozím případě, změna je pouze případě čtrtkruhoého oblouku, kde uažujeme jen poloinu ztráty ( 0,5 O ). Průřezoá rychlot = je uedena předchozím ýpočtu ypočtené dříe. t m 3,4 3,46 0,03 0,9 0,3 0,5.0,3 0, g VT K 45 0,5.,498m O ). c g pa K K g g 36,5 3,46 g 7,498 33,47m n. m. K4 HY 9 cičení 5

10 Schematické ykrelení čar iz. obrázek 7: Obrázek 7 K4 HY 0 cičení 5

Vzorové příklady - 4.cvičení

Vzorové příklady - 4.cvičení Vzoroé říklady -.cičení Vzoroý říklad.. V kruhoém řiaděči e mění růřez z hodnoty = m na = m (obrázek ). Ve tuním růřezu byla ři utáleném roudění změřena růřezoá rychlot = m. -. Vyočítejte růtok a růřezoou

Více

Vzorové příklady - 7. cvičení

Vzorové příklady - 7. cvičení Voroé příklady - 7 cičení Voroý příklad 7 Nádobou na obráku protéká oda Nádoba je rodělena na tři ektory přepážkami otory Prní otor je čtercoý, o ploše S = cm, další da jou kruhoé, S = 5 cm, S = cm Otory

Více

Vzorové příklady - 5.cvičení

Vzorové příklady - 5.cvičení Vzoroé příklady - 5.cičení Vzoroý příklad 5.. Voda teplá je ypouštěna z elké nádrže outaou potrubí ýtokem do olna B. Určete délku potrubí =? průměru ( = 0,6 mm, oceloé, ařoané po použití), při níž bude

Více

1141 HYA (Hydraulika)

1141 HYA (Hydraulika) ČVUT Praze, Fakulta staební Katedra hydrauliky a hydroloie (K4) Přednáškoé slidy ředmětu 4 HYA (Hydraulika) erze: /04 K4 FS ČVUT Tato weboá stránka nabízí k nahlédnutí/stažení řadu df souborů složených

Více

Fakulta stavební ČVUT v Praze Katedra hydrauliky a hydrologie. Předmět HYA2 K141 FSv ČVUT. Hydraulika potrubí

Fakulta stavební ČVUT v Praze Katedra hydrauliky a hydrologie. Předmět HYA2 K141 FSv ČVUT. Hydraulika potrubí Fakulta staební ČVUT Praze Katedra hydrauliky a hydrologie Předmět HYA K4 FS ČVUT Hydraulika potrubí Doc. Ing. Aleš Halík, CSc., Ing. Tomáš Picek PhD. K4 HYA Hydraulika potrubí 0 DRUHY PROUDĚNÍ V POTRUBÍ

Více

Y Q charakteristice se pipojují kivky výkonu

Y Q charakteristice se pipojují kivky výkonu 4. Mení charakteritiky erpadla 4.1. Úod Charakteritika erpadla je záilot kutené mrné energie Y (rep. kutené dopraní ýšky H ) na prtoku Q. K této základní P h Q, úinnoti η Q a mrné energie pro potrubí Y

Více

silový účinek proudu, hydraulický ráz Proudění v potrubí

silový účinek proudu, hydraulický ráz Proudění v potrubí : siloý účinek proudu, hydraulický ráz SILOVÝ ÚČINEK PROUDU: x nější síly na ymezený objem kapaliny: stupní ýstupní i Výpočtoá ektoroá ronice pro reálnou kapalinu: Q rychlost y G A G R A R A = p S... tlakoá

Více

Fakulta stavební ČVUT v Praze Katedra hydrauliky a hydrologie. Předmět HYA2 K141 FSv ČVUT. Hydraulika potrubí

Fakulta stavební ČVUT v Praze Katedra hydrauliky a hydrologie. Předmět HYA2 K141 FSv ČVUT. Hydraulika potrubí Fakulta staební ČVUT Praze Katedra hydrauliky a hydroloie Předmět HYA K4 F ČVUT Hydraulika potrubí Doc. In. Aleš Halík, Cc., In. Tomáš Picek PhD. K4 HYA Hydraulika potrubí 0 DRUHY PROUDĚNÍ V POTRUBÍ Rozdělení

Více

Proudění mostními objekty a propustky

Proudění mostními objekty a propustky Fakulta staební ČVUT Praze Katedra draulik a droloie Předmět HYV K141 FS ČVUT Proudění mostními objekt a propustk Doc. In. Aleš Halík, CSc., In. Tomáš Picek PD. MOSTY ýška a šířka mostnío otoru přeládá

Více

1.8.9 Bernoulliho rovnice

1.8.9 Bernoulliho rovnice 89 Bernoulliho ronice Předpoklady: 00808 Pomůcky: da papíry, přicucáadlo, fixírka Konec minulé hodiny: Pokud se tekutina proudí trubicí s různými průměry, mění se rychlost jejího proudění mění se její

Více

4. cvičení- vzorové příklady

4. cvičení- vzorové příklady Příklad 4. cvičení- vzorové příklady ypočítejte kapacitu násosky a posuďte její funkci. Násoska převádí vodu z horní nádrže, která má hladinu na kótě H A = m, přes zvýšené místo a voda vytéká na konci

Více

1. M ení místních ztrát na vodní trati

1. M ení místních ztrát na vodní trati 1. M ení místních ztrát na odní trati 1. M ení místních ztrát na odní trati 1.1. Úod P i proud ní tekutiny potrubí dochází liem její iskozity ke ztrátám energie. Na roných úsecích potrubních systém jsou

Více

Výpočet stability (odolnosti koryta)

Výpočet stability (odolnosti koryta) CVIČENÍ 5: VÝPOČET STABILITY KORYTA Výpočet stability (odolnosti koryta) Výpočtem stability se prokazuje, že koryto jako celek je pro nárhoé hydraulické zatížení stabilní. Nárhoé hydraulické zatížení pro

Více

Výpočet stability (odolnosti koryta)

Výpočet stability (odolnosti koryta) CVIČENÍ 5: VÝPOČET STABILITY KORYTA Výpočet stability (odolnosti koryta) Výpočtem stability se prokazuje, že koryto jako celek je pro nárhoé hydraulické zatížení stabilní. Nárhoé hydraulické zatížení pro

Více

Hydraulická funkce mostních objektů a propustků Doc. Ing. Aleš Havlík, CSc. Ing. Tomáš Picek, Ph.D.

Hydraulická funkce mostních objektů a propustků Doc. Ing. Aleš Havlík, CSc. Ing. Tomáš Picek, Ph.D. oc. In. Aleš Halík, CSc. In. Tomáš Picek, P.. PF tořeno zkušební erzí pdffactor www.fineprint.cz Most ýška a šířka mostnío otoru přeládá nad délkou, ýznamné eneretické ztrát: tokem, ýtokem Propustk délka

Více

1141 HYA (Hydraulika)

1141 HYA (Hydraulika) ČVUT Praze, akulta staební katedra hydrauliky a hydrologie (K4) Přednáškoé slidy předmětu 4 HYA (Hydraulika) erze: 09/008 K4 FS ČVUT Tato weboá stránka nabízí k nahlédnutí/stažení řadu pd souborů složených

Více

1141 HYA (Hydraulika)

1141 HYA (Hydraulika) ČVUT Praze, fakulta staební katedra hydrauliky a hydrologie (K) Přednáškoé slidy předmětu HYA (Hydraulika) erze: 0/0 K ČVUT Tato weboá stránka nabízí k nahlédnutí/stažení řadu pdf souborů složených z přednáškoých

Více

5. ÚVOD DO TEORIE MATEMATICKÉ PRUŽNOSTI

5. ÚVOD DO TEORIE MATEMATICKÉ PRUŽNOSTI 5. ÚVOD DO TOR MATMATCKÉ PRUŽNOST 5..Základní předpoklad a pojm. Látka která táří přílušné těleo je dokonale lineárně pružné mei napětím a přetořením je lineární áilot.. Látka hmotného tělea je homogenní

Více

EPIC B521 G111 X Tabulky tlakových ztrát. Systém Ekoplastik

EPIC B521 G111 X Tabulky tlakových ztrát. Systém Ekoplastik EPIC B521 G111 X721 2015 Tabulky tlakoých ztrát Systém Ekoplastik Tabulky tlakoých ztrát Obsah Taroky...2 Celoplastoé trubky PP...3-8 Vícersté trubky FIBE BASALT PLUS, STABI PLUS...9-11 Vícersté trubky

Více

CVIČENÍ 5: Stabilita částice v korytě, prognóza výmolu v oblouku

CVIČENÍ 5: Stabilita částice v korytě, prognóza výmolu v oblouku CVIČENÍ 5: Stabilita částice korytě prognóza ýmolu oblouku Výpočet stability (odolnosti koryta) metoda tečnýc napětí Výpočtem stability se prokazuje že koryto jako celek je pro nároé ydraulické zatížení

Více

(Aplikace pro mosty, propustky) K141 HYAR Hydraulika objektů na vodních tocích

(Aplikace pro mosty, propustky) K141 HYAR Hydraulika objektů na vodních tocích Hydraulika objektů na vodních tocích (Aplikace pro mosty, propustky) 0 Mostní pole provádějící vodní tok pod komunikací (při povodni v srpnu 2002) 14. století hydraulicky špatný návrh úzká pole, široké

Více

Jehlan s obdélníkovou podstavou o rozměrech a dm a b dm má boční hranu délky s dm. Vypočítejte povrch a objem tohoto jehlanu.

Jehlan s obdélníkovou podstavou o rozměrech a dm a b dm má boční hranu délky s dm. Vypočítejte povrch a objem tohoto jehlanu. Jehlan obdélníkoou podtaou o rozměrech a dm a b dm má boční hranu délky dm. ypočítejte porch a objem tohoto jehlanu. a = b = = 5 dm 6,5 dm 1,8 dm a = 1,55348557 dm pomocí Pythagoroy ěty z praoúhlého E

Více

Hydraulika a hydrologie

Hydraulika a hydrologie Hydraulika a hydrologie Cvičení č. 1 - HYDROSTATIKA Příklad č. 1.1 Jaký je tlak v hloubce (5+P) m pod hladinou moře (Obr. 1.1), je-li průměrná hustota mořské vody ρ mv = 1042 kg/m 3 (měrná tíha je tedy

Více

Úloha č. 10. Měření rychlosti proudu vzduchu. Měření závislosti síly odporu prostředí na tvaru tělesa

Úloha č. 10. Měření rychlosti proudu vzduchu. Měření závislosti síly odporu prostředí na tvaru tělesa yzikálí praktiku I Úloha č10 Měřeí oporu prouícího zuchu (erze 0/01) Úloha č 10 Měřeí rychloti prouu zuchu Měřeí záiloti íly oporu protřeí a taru tělea 1) Poůcky: Aeroyaický tuel, ikroaoetr, Pratloa trubice,

Více

w i1 i2 qv e kin Provozní režim motoru: D = 130 P e = 194,121 kw Z = 150 i = 6 n M = /min p e = 1,3 MPa V z = 11,95 dm 3

w i1 i2 qv e kin Provozní režim motoru: D = 130 P e = 194,121 kw Z = 150 i = 6 n M = /min p e = 1,3 MPa V z = 11,95 dm 3 Sestate základní energetickou bilanci plnícího agregátu znětoého motoru LIAZ M638 (D/Z=30/50 mm, 4dobý, 6 álec) přeplňoaného turbodmychadlem K 36 377 V - 5. pulzačním praconím režimu. Proozní režim motoru:

Více

Proudění s volnou hladinou (tj. v otevřených korytech)

Proudění s volnou hladinou (tj. v otevřených korytech) (tj. v otevřených korytech) TYPY OTEVŘENÝCH KORYT PŘÍRODNÍ přirozená a upravená KORYTA - přirozená: nepravidelného geometrického průřezu - upravená: zhruba pravidel. průřezu (upravené většinou jen břehy,

Více

nafty protéká kruhovým potrubím o průměru d za jednu sekundu jestliže rychlost proudění nafty v potrubí je v. Jaký je hmotnostní průtok m τ

nafty protéká kruhovým potrubím o průměru d za jednu sekundu jestliže rychlost proudění nafty v potrubí je v. Jaký je hmotnostní průtok m τ HYDRODYNAMIKA 5.37 Jaké objemové nmožství nafty protéká kruhovým potrubím o průměru d za jednu sekundu jestliže rychlost proudění nafty v potrubí je v. Jaký je hmotnostní průtok m τ. d 0mm v 0.3ms.850kgm

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE HYDRODYNAMICKÉ MÍCHÁNÍ SMĚSI VODY A POPÍLKU

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV VODNÍCH STAVEB FACULTY OF CIVIL ENGINEERING INSTITUTE OF WATER STRUCTURES NUMERICKÉ MODELOVÁNÍ HYDRAULICKÝCH ZTRÁT V POTRUBÍ

Více

MIČKAL, Karel. Technická mechanika II: pro střední odborná učiliště. Vyd. 3., nezm. Praha: Informatorium, 1998c1990, 118 s. ISBN

MIČKAL, Karel. Technická mechanika II: pro střední odborná učiliště. Vyd. 3., nezm. Praha: Informatorium, 1998c1990, 118 s. ISBN Ientifikátor ateriálu: ICT 1 10 Regitrační čílo projektu Náze projektu Náze příjece popory náze ateriálu (DUM) Anotace Autor Jazyk Očekáaný ýtup Klíčoá loa Druh učebního ateriálu Druh interaktiity Cíloá

Více

MATEMATICKÝ POPIS TVÁŘECÍHO FAKTORU A JEHO VLIV NA VÁLCOVACÍ SÍLY ZA TEPLA

MATEMATICKÝ POPIS TVÁŘECÍHO FAKTORU A JEHO VLIV NA VÁLCOVACÍ SÍLY ZA TEPLA 4.-6.5.005, Hradec nad Moraicí MATEMATICKÝ POPIS TVÁŘECÍHO FAKTORU A JEHO VLIV NA VÁLCOVACÍ SÍLY ZA TEPLA MATHEMATICAL DESCRIPTION OF THE FORMING FACTOR AND ITS INFLUENCE ON HOT ROLLING FORCES Stanila

Více

VLHKÝ VZDUCH. - Stavová rovnice suchého vzduchu p v.v = m v.r v.t (5.4). Plynová konstanta suchého vzduchu r v 287 J.kg -1.K -1.

VLHKÝ VZDUCH. - Stavová rovnice suchého vzduchu p v.v = m v.r v.t (5.4). Plynová konstanta suchého vzduchu r v 287 J.kg -1.K -1. TEZE ka. 5 Vlhký zduch, ychrometrický diagram (i x). Charakteritika lhkých materiálů, lhkot olná, ázaná a ronoážná. Dehydratace otrainářtí. Změny ušicím zduchu komoroé ušárně. Kontrolní otázky a tyy říkladů

Více

CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM

CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM Místní ztráty, Tlakové ztráty Příklad č. 1: Jistá část potrubí rozvodného systému vody se skládá ze dvou paralelně uspořádaných větví. Obě potrubí mají průřez

Více

Výtok velkým obdélníkovým otvorem pod hladinou

Výtok velkým obdélníkovým otvorem pod hladinou Náv a adra školy: Střdní škola růmylová a umělcká, Oava, říěvková organiac, Prakova 99/8, Oava, 746 Náv oračního rogramu: OP Vdělávání ro konkurncchonot, oblat odory.5 Rgitrační čílo rojktu: CZ..7/.5./4.9

Více

Podpovrchové vody. Podzemní voda

Podpovrchové vody. Podzemní voda Podpocoé ody Podzemní oda Rozdělení podzemníc od podle ýkytu ody featické ody olnou ladinu, pod účinkem atmoféickéo tlaku ody atéké - jou pod účinkem ydotatickéo tlaku, napjatá ladina ody puklinoé - podzemní

Více

Fakulta životního prostředí HYDRAULIKA PŘÍKLADY

Fakulta životního prostředí HYDRAULIKA PŘÍKLADY Fakulta žiotnío prostředí HYDRAULIKA PŘÍKLADY prof Ing Pael Pec CSc Ing Radek Roub PD 0 Skripta znikla za finanční podpory projektu OP Praa Adaptabilita CZ7/300/369 Modernizace ýuky udržitelnéo ospodaření

Více

PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -2.

PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -2. PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -. Řešené příklady z hydrodynamiky 1) Příklad užití rovnice kontinuity Zadání: Vodorovným

Více

11. SEMINÁŘ Z MECHANIKY sin α 1 cos. což je vzhledem k veličinám, které známe, kvadratická rovnice vzhledem k tg α. Její diskriminant je

11. SEMINÁŘ Z MECHANIKY sin α 1 cos. což je vzhledem k veličinám, které známe, kvadratická rovnice vzhledem k tg α. Její diskriminant je - 9 - SEMINÁŘ Z MECHANIKY Dělo rá třel počáteční rclotí = m Je nutno zaánout cíl, který je orizontální zálenoti = m o ěla a e ýši = m na ním Jaký je minimální eleační úel ěla? = m ; = m ; = m ; = 9,8 m

Více

HYDRAULICKÝ VÝPOČET SAMOSTATNÉHO KOMÍNA

HYDRAULICKÝ VÝPOČET SAMOSTATNÉHO KOMÍNA HYDRULICKÝ VÝPOČET MOTTNÉHO KOMÍN Obecné záady Záadními podmínkami pro řešení výpočtu komínového průduchu jou znaloti: - výšky komínového průduchu - výkonu, paliva, přebytku vzduchu a režimu provozu připojeného

Více

Řešení úloh 1. kola 51. ročníku fyzikální olympiády. Kategorie D = s v 2

Řešení úloh 1. kola 51. ročníku fyzikální olympiády. Kategorie D = s v 2 Řešení úloh 1. kola 51. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů 1.a) Dobaprvníjízdynaprvníčtvrtinětratije 1 4 1 4 48 t 1 = = h= 1 v 1 60 60 h=1min anazbývajícíčátitrati t = 4 v = 4

Více

5. cvičení z Matematické analýzy 2

5. cvičení z Matematické analýzy 2 5. cvičení z Matematické analýz 2 30. října - 3. litopadu 207 5. linearizace funkce a Pro funkci f, = e nalezněte její linearizaci v bodě a 0 = 6, 0. Použijte ji k přibližnému určení hodnot funkce f v

Více

4. cvičení z Matematické analýzy 2

4. cvičení z Matematické analýzy 2 4. cvičení z Matematické analýzy 2 22. - 26. října 208 4. Po funkci fx, y, z xy 2 + z 3 xyz učete v bodě a 0,, 2 deivaci ve měu u, kteý je učen tím, že víá kladnými měy ouřadných o potupně úhly 60, 45

Více

VLIV SLUNEČNÍHO ZÁŘENÍ NA VĚTRANÉ STŘEŠNÍ KONSTRUKCE

VLIV SLUNEČNÍHO ZÁŘENÍ NA VĚTRANÉ STŘEŠNÍ KONSTRUKCE VLIV SLUNEČNÍHO ZÁŘENÍ N VĚTRNÉ STŘEŠNÍ KONSTRUKCE ZÁKLDNÍ PŘEDPOKLDY Konstrukce douplášťoých ětraných střech i fasád ke sé spráné funkci yžadují tralé ětrání, ale případě, že proedeme, zjistíme, že ne

Více

Hydrodynamika. ustálené proudění. rychlost tekutiny se v žádném místě nemění. je statické vektorové pole

Hydrodynamika. ustálené proudění. rychlost tekutiny se v žádném místě nemění. je statické vektorové pole Hydrodynamika ustálené proudění rychlost tekutiny se žádném místě nemění je statické ektoroé pole proudnice čáry k nimž je rychlost neustále tečnou při ustáleném proudění jsou proudnice skutečné trajektorie

Více

Vyztužení otvoru v plášti válcové nádoby zatížené vnějším přetlakem

Vyztužení otvoru v plášti válcové nádoby zatížené vnějším přetlakem Příka ZSPZ yztužení otoru pášti ácoé náoby zatížené nějším přetakem (poe ČSN 69000, čát. 4.) φ i 3 φ i Pášť náoby Hro ýztužný prtenec 3 3 Náčrt náoby hrem Zaané honoty: nější průměr náoby nitřní průměr

Více

přednáška TLAK - TAH. Prvky namáhané kombinací normálové síly a ohybového momentu

přednáška TLAK - TAH. Prvky namáhané kombinací normálové síly a ohybového momentu 7..0 přednáška TLAK - TAH Prvky namáhané kombinací normálové íly a ohybového momentu Namáhání kombinací tlakové (tahové) íly a momentu tlak Namáhání kombinací tlakové (tahové) íly a momentu Namáhání kombinací

Více

Třecí ztráty při proudění v potrubí

Třecí ztráty při proudění v potrubí Třecí ztráty při proudění v potrubí Vodorovným ocelovým mírně zkorodovaným potrubím o vnitřním průměru 0 mm proudí 6 l s - kapaliny o teplotě C. Určete tlakovou ztrátu vlivem tření je-li délka potrubí

Více

Příklad 1 (25 bodů) Částice nesoucí náboj q vletěla do magnetického pole o magnetické indukci B ( 0,0, B)

Příklad 1 (25 bodů) Částice nesoucí náboj q vletěla do magnetického pole o magnetické indukci B ( 0,0, B) Přijímací zkouška na naazující magisterské studium - 05 Studijní program Fyzika - šechny obory kromě Učitelstí fyziky-matematiky pro střední školy, Varianta A Příklad Částice nesoucí náboj q letěla do

Více

Vodní skok, tlumení kinetické energie

Vodní skok, tlumení kinetické energie Fakulta stavební ČVUT v Praze Katedra a hdraulik a hdrologie og Předmět HYV K4 FSv ČVUT Vodní skok, tlumení kinetické energie Řešení průběhu hladin v otevřených kortech Doc. Ing. Aleš Havlík, CSc., Ing.

Více

CÍL V této kapitole se seznámíte s čerpadly, s jejich účelem, principem činnosti, se základy jejich konstrukce, výpočtu a regulace.

CÍL V této kapitole se seznámíte s čerpadly, s jejich účelem, principem činnosti, se základy jejich konstrukce, výpočtu a regulace. 1 ČERPADLA! čerpadla, tlak, objemoý průtok, ýtlačná ýška, regulace čerpadel, oběžné kolo CÍL této kapitole se seznámíte s čerpadly, s jejich účelem, principem činnosti, se základy jejich konstrukce, ýpočtu

Více

Í ž ž Ž ž Ž Ž ž Š ď Ž Í ť ž Í Ž Ž Ž Í Ý Š Í Š ž Ž Š ž ž ť Ž Š

Í ž ž Ž ž Ž Ž ž Š ď Ž Í ť ž Í Ž Ž Ž Í Ý Š Í Š ž Ž Š ž ž ť Ž Š Á Í Í É ď ď Í Á ž Ž ž ž ž ž Í Í Ý Ě Í Í Í ž Š Ž Í ž Í ž ž ž ž ž ž Í ž ž Ž ž Ž Ž ž Š ď Ž Í ť ž Í Ž Ž Ž Í Ý Š Í Š ž Ž Š ž ž ť Ž Š ž Š ž ž ž Í ž ž Ž ž ž ť Í ž Ž ž ť Ž ž ž Š Ž ž Ž ž ť ž ž Í ž Š Ž ď ž ž ž ť

Více

š č šú ň š š Ž č Ž š č ůž ň š ůž ů Í ž č č č ň č Ž Ž Ž Ž šú š ů š č š Ž Ž Ž š č č šú Ž ů Ž ž č Ž ň ú š Ž Ž š Ž

š č šú ň š š Ž č Ž š č ůž ň š ůž ů Í ž č č č ň č Ž Ž Ž Ž šú š ů š č š Ž Ž Ž š č č šú Ž ů Ž ž č Ž ň ú š Ž Ž š Ž š č Č Č š ž č č č Ž Č č č č š č Á Č Č č Ů Ž š ú č ž ž č ůž ň š Ž š úč Ž ž Ž č Ž ž Ž ž Ž č š č šú ň š š Ž č Ž š č ůž ň š ůž ů Í ž č č č ň č Ž Ž Ž Ž šú š ů š č š Ž Ž Ž š č č šú Ž ů Ž ž č Ž ň ú š Ž Ž š Ž

Více

07 Vnitřní vodovod 2.díl

07 Vnitřní vodovod 2.díl 07 Vnitřní vodovod 2.díl Roman Vavřička ČVUT v Praze, Fakulta strojní Ústav techniky prostředí 1/25 http://utp.fs.cvut.cz Roman.Vavricka@fs.cvut.cz ČSN 75 5455 dimenzování vodovodu Q - objemový průtok

Více

Identifikátor materiálu: ICT 1 18

Identifikátor materiálu: ICT 1 18 Identifikátor ateriálu: ICT 8 Reistrační číslo rojektu Náze rojektu Náze říjece odory náze ateriálu (DUM) Anotace Autor Jazyk Očekáaný ýstu Klíčoá sloa Dru učenío ateriálu Dru interaktiity Cíloá skuina

Více

Návody do cvičení z předmětu Využití počítačů v oboru

Návody do cvičení z předmětu Využití počítačů v oboru VYSOKÁ ŠKOLA BÁŇSKÁ - TECHNICKÁ UNIVERZITA OSTRAVA fakulta trojní katera hyromechaniky a hyraulických zařízení Náoy o cičení z přemětu Využití počítačů oboru Tomáš Blejchař Vikozita oleje.50e-04.00e-04

Více

Proudění vody v potrubí. Martin Šimek

Proudění vody v potrubí. Martin Šimek Proudění vody v potrubí Martin Šimek Zadání problému Umělá vlna pro surfing Dosavadní řešení pomocí čerpadel Sestrojení modelu pro přívod vody z řeky Vyčíslení tohoto modelu Zhodnocení výsledků Návrh systému

Více

Stropní anemostaty. Série ADLR s kruhovou čelní částí. Série ADLR-Q se čtvercovou čelní částí 2/16/TCH/7

Stropní anemostaty. Série ADLR s kruhovou čelní částí. Série ADLR-Q se čtvercovou čelní částí 2/16/TCH/7 2/16/TCH/7 Stropní anemostaty Série ADLR s kruhoou čelní částí Série ADLR-Q se čtercoou čelní částí TROX GmbH Telefon +420 2 83 880 380 organizační složka Telefax +420 2 86 881 870 Ďáblická 2 e-mail trox@trox.cz

Více

ů č č č č úč č ž ň ž č ž ž š ž č ř č ů ř ř č ó é Á ř é š Á

ů č č č č úč č ž ň ž č ž ž š ž č ř č ů ř ř č ó é Á ř é š Á ť č Ě č Í Č Č Č Č Č é é Č Č úč č ř é ž ú š é ů ř ř č č Č š ř é č ř š Č š č č ř ř ů č č č č úč č ž ň ž č ž ž š ž č ř č ů ř ř č ó é Á ř é š Á É ď ď Ť É š ř É š É č Č ř ž ž é ř ř ř č ř ň Á é Š ň č ž ř ř ž

Více

Vířivé anemostaty. Série FD 2/6/TCH/5. doporučené pro instalaci v místnostech 2,60..,4,00 m

Vířivé anemostaty. Série FD 2/6/TCH/5. doporučené pro instalaci v místnostech 2,60..,4,00 m 2/6/TCH/5 Vířié anemostaty Série FD doporučené pro instalaci místnostech 2,60..,4,00 m TROX GmbH Telefon +420 2 83 880 380 organizační složka Telefax +420 2 86 881 870 Ďáblická 2 e-mail trox@trox.cz 182

Více

1.6.7 Složitější typy vrhů

1.6.7 Složitější typy vrhů .6.7 Složitější tp rhů Předpoklad: 66 Pedaoická poznámka: Tato hodina přesahuje běžnou látku, probírám ji pouze případě, že mám přebtek času. Za normálních podmínek není příliš reálné s ětšinou tříd řešit

Více

vzdálenost těžiště (myslí se tím těžiště celého tělesa a ne jeho jednotlivých částí) od osy rotace

vzdálenost těžiště (myslí se tím těžiště celého tělesa a ne jeho jednotlivých částí) od osy rotace Přehled příkladů 1) Valiý pohyb, zákon zachoání energie ) Těžiště tělesa nebo moment setračnosti ýpočet integrací - iz http://kf.upce.cz/dfjp/momenty_setracnosti.pdf Nejčastější chyby: záměna momentu setračnosti

Více

Fluidace Úvod: Úkol: Teoretický úvod:

Fluidace Úvod: Úkol: Teoretický úvod: Fluidace Úod: Fluidace je mechanická operace (hydro- nebo aeromechanická), při které se udržují tuhé částice e znosu tekuté (kapalné nebo plynné) fázi. Uplatňuje se energetice při spaloání uhlí, katalytických

Více

ř š ř ů úč Ž č Š Ý Ý č Ý ř ů ř č Í č Ý ů č č ó ó ť ó ů č č ř č Í ů ů ů ů ů Ý ů č ř

ř š ř ů úč Ž č Š Ý Ý č Ý ř ů ř č Í č Ý ů č č ó ó ť ó ů č č ř č Í ů ů ů ů ů Ý ů č ř ř Ž úč úč Ú Ž č š úč ú ř úč č Ž ř ř č ů ř ú ů č úč Ž úč ů č č úč ř č ř ř ř úč š Í č úč Ú Ž č š ů ů ř úč ř č č č č ř š ř ů úč Ž č Š Ý Ý č Ý ř ů ř č Í č Ý ů č č ó ó ť ó ů č č ř č Í ů ů ů ů ů Ý ů č ř Ňó ň

Více

Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF

Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF Václav Uruba uruba@fst.zcu.cz home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF 14.12.14 Mechanika tekuln 12/13 1 Mechanika teku,n - přednášky 1. Úvod, pojmy,

Více

Stanovení závislosti měrné energie čerpadla Y s na objemovém průtoku Q v

Stanovení závislosti měrné energie čerpadla Y s na objemovém průtoku Q v LS2007 VYSOKÁ ŠKOLA BÁŇSKÁ-TU OSTRAVA MĚŘENÍ Č.1 ČERPACÍ TECHNIKA A POTRUBÍ Stanoení záislosti měrné energie čerpadla Y s na objemoém průtoku Q Skupina G442 Jan Noák Zadání: Stanote měřením záislost měrné

Více

TECHNICKÁ UNIVERZITA V LIBERCI Katedra fyziky, Studentská 2, 461 17 Liberec

TECHNICKÁ UNIVERZITA V LIBERCI Katedra fyziky, Studentská 2, 461 17 Liberec TECHNICKÁ UNIVERZITA V LIBERCI Katedra fyziky, Studentká, 6 7 Liberec POŽADAVKY PRO PŘIJÍMACÍ ZKOUŠKY Z FYZIKY Akademický rok: 0/0 Fakulta mechatroniky Studijní obor: Nanomateriály Tématické okruhy. Kinematika

Více

Prvky betonových konstrukcí BL01 9 přednáška

Prvky betonových konstrukcí BL01 9 přednáška Prvky betonových kontrukcí BL01 9 přednáška Prvky namáhané momentem a normálovou ilou základní předpoklady interakční diagram poouzení, návrh namáhání mimo oy ouměrnoti kontrukční záady Způoby porušení

Více

ě č ě é é ě ě ř ž ý ý ě é ř ý ě é ř ž č ů ě úě ř š ý čů č ý ě é ř é úě ě ě šš č ů ý ě ž č ů ě ž ř č č ý ú é ě ů ě ý ý ě é ř ž č ů ř ž č ě č ů ř š ř ž

ě č ě é é ě ě ř ž ý ý ě é ř ý ě é ř ž č ů ě úě ř š ý čů č ý ě é ř é úě ě ě šš č ů ý ě ž č ů ě ž ř č č ý ú é ě ů ě ý ý ě é ř ž č ů ř ž č ě č ů ř š ř ž ř ř ř Č ř ř č ř č ý ý ě é ř č ě č ý š ě ú ě ř ř č Š Č ř ě ř ř ú ř é Ž ý ý ž ř č Ů ř ý ý é š ěř é ž ř č ř ěř ř ř Ě ř ž ě ů Č ž š Č ř ě ú ě š ě ř ú ě ů ýš č Č ě č ě é é ě ě ř ž ý ý ě é ř ý ě é ř ž č ů ě

Více

V = π f 2 (x) dx. f(x) 1 + f 2 (x) dx. x 2 + y 2 = r 2

V = π f 2 (x) dx. f(x) 1 + f 2 (x) dx. x 2 + y 2 = r 2 Odození zorců pro ýpočet objemů porchů některých těles užitím integrálního počtu Objem rotčního těles, které znikne rotcí funkce y f(x) n interlu, b kolem osy x, lze spočítt podle zorce b V f (x) dx Porch

Více

Kinetická teorie plynů

Kinetická teorie plynů Kinetická teorie plynů 1 m 3 při tlaku 10 5 Pa teplotě o C obsahuje.,5 x 10 5 molekul při tlaku 10-7 Pa teplotě o C obsahuje.,5 x 10 13 molekul p>100 Pa makroskopické choání, plyn se posuzuje jako hmota

Více

4. Práce, výkon, energie

4. Práce, výkon, energie 4. Práce, výkon, energie Mechanická práce - konání mechanické práce z fyzikálního hledika je podmíněno vzájemným ilovým půobením těle, která e přitom vzhledem ke zvolené vztažné outavě přemíťují. Vztahy

Více

ÚSTŘEDNÍ KOMISE FYZIKÁLNÍ OLYMPIÁDY ČESKÉ REPUBLIKY

ÚSTŘEDNÍ KOMISE FYZIKÁLNÍ OLYMPIÁDY ČESKÉ REPUBLIKY ÚSTŘEDNÍ KOMISE YZIKÁLNÍ OLYMPIÁDY ČESKÉ REPUBLIKY E-mail: ivo.volf@uhk.cz, tel.: 493 331 19, 493 331 189 Řešení úloh krajkého kola 55. ročníku yzikální olympiády Kategorie E Předložená řešení by neměla

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Gradovaný řetězec úloh Téma: Komolý kužel Autor: Kubešová Naděžda Klíčové pojmy:

Více

ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D.

ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D. ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Modelování termohydraulických jevů 3.hodina Hydraulika Ing. Michal Kabrhel, Ph.D. Letní semestr 008/009 Pracovní materiály pro výuku předmětu.

Více

ů ý ž ý ý ú Ý ů ý ů Ž Ž ú ů

ů ý ž ý ý ú Ý ů ý ů Ž Ž ú ů ý ý Ž Ž ý Ž ý ů ů ů ý ý ý Ž Ú ý ů ý ů Ž Ž ů ý ž ý ý ú Ý ů ý ů Ž Ž ú ů ý ý ý ý ý ž ž ů ý ý ž ž Ž ž ý ž ý ý ů ý ý ů ň ž É ů ú ý ů Ž ů ÍŽ ů ů ú ý ů Ž ů ž ů É ý ý ý ů ý ů ů ý ů Í ů Ů ž Ž Ó ň ň Š ů ů ú ž ů

Více

1.8.10 Proudění reálné tekutiny

1.8.10 Proudění reálné tekutiny .8.0 Proudění reálné tekutiny Předpoklady: 809 Ideální kapalina: nestlačitelná, dokonale tekutá, bez nitřního tření. Reálná kapalina: zájemné posouání částic brzdí síly nitřního tření. Jaké mají tyto rozdíly

Více

102FYZB-Termomechanika

102FYZB-Termomechanika České vysoké učení technické v Praze Fakulta stavební katedra fyziky 102FYZB-Termomechanika Sbírka úloh (koncept) Autor: Doc. RNDr. Vítězslav Vydra, CSc Poslední aktualizace dne 20. prosince 2018 OBSAH

Více

č ú ž ů č ň č ů ů ů ř č šť ř ž š ď Ě ž ř ď ř š ř š šť ř ž ř ř č ú ů č ř ů šť ř č ř š úř ž ů č ž ř ů š ř ř š ř č ů ů š ř ů ř ů š š š ď ň ř č Č č Č ř Č

č ú ž ů č ň č ů ů ů ř č šť ř ž š ď Ě ž ř ď ř š ř š šť ř ž ř ř č ú ů č ř ů šť ř č ř š úř ž ů č ž ř ů š ř ř š ř č ů ů š ř ů ř ů š š š ď ň ř č Č č Č ř Č Ž Í Ř Í š Á Ě šť Ř č Č ů ž ř ů ů ž ř š ř ů č ú ů č ž ů ů ř ů Ň ú š ž ř ů žň ž ů ž ř ú č č Á č ř ř ú ž č ú ž ů č ň č ů ů ů ř č šť ř ž š ď Ě ž ř ď ř š ř š šť ř ž ř ř č ú ů č ř ů šť ř č ř š úř ž ů č ž ř ů

Více

Spodní výpusti 5. PŘEDNÁŠKA. BS053 Rybníky a účelové nádrže

Spodní výpusti 5. PŘEDNÁŠKA. BS053 Rybníky a účelové nádrže Spodní výpusti 5. PŘEDNÁŠKA BS053 Rybníky a účelové nádrže Spodní výpusti Obsah Rozdělení spodních výpustí Konstrukční zásady Dimenzování spodních výpustí Rekonstrukce a opravy Rozdělení spodních výpustí

Více

Ů ý ů Č Ž Ž Ú ž é ů é é Č é Č é Č é Č ý é é ý Č é é ýš ž é ý é é Č ý é é ý ý Ú ž Ú Ú š Ž é ž ý Č ÚČ Ú š ž ž ň é ž š š žň ž š š š Í é ž ů é é š š

Ů ý ů Č Ž Ž Ú ž é ů é é Č é Č é Č é Č ý é é ý Č é é ýš ž é ý é é Č ý é é ý ý Ú ž Ú Ú š Ž é ž ý Č ÚČ Ú š ž ž ň é ž š š žň ž š š š Í é ž ů é é š š Č é Č Č é Č é ý é é ý Č ý ý ž ý ž é é é Ú ů ý é ž š é ý š ž š é é ž ď ž é Č é Č Č é Č é ž ý ý Č é ž Ů ý ů Č Ž Ž Ú ž é ů é é Č é Č é Č é Č ý é é ý Č é é ýš ž é ý é é Č ý é é ý ý Ú ž Ú Ú š Ž é ž ý Č ÚČ Ú

Více

Hoval IDKM 250 plochý kolektor pro vestavbu do střechy. Popis výrobku ČR 1. 10. 2011. Hoval IDKM 250 plochý kolektor

Hoval IDKM 250 plochý kolektor pro vestavbu do střechy. Popis výrobku ČR 1. 10. 2011. Hoval IDKM 250 plochý kolektor pro estabu do střechy Popis ýrobku ČR. 0. 20 Hoal IDKM 250 plochý kolektor ysoce ýkonný plochý kolektor se skleněnou přední stěnou, určený pro termické yužití sluneční energie sestaením několika kolektorů

Více

Á Ž č Ž ó ě č ý ž Ž ó ě Č Í ý Á Ž Ž č Ž ó é č ý Ž Ž Ó ě č ý Ž ř ě é š ě é ý č Ž Í ř Í č é ó é é Č é Ž č ž š č č ř ě ě ý ř ž ž é š ě ž ÍŽ é Ž Ž ý Ž ř Ž

Á Ž č Ž ó ě č ý ž Ž ó ě Č Í ý Á Ž Ž č Ž ó é č ý Ž Ž Ó ě č ý Ž ř ě é š ě é ý č Ž Í ř Í č é ó é é Č é Ž č ž š č č ř ě ě ý ř ž ž é š ě ž ÍŽ é Ž Ž ý Ž ř Ž ř ě ý ř é č ň ř ú ě é Š ý ž č Í Ž ř Ž Ž ý ě ě ě ě ř ň ř ř ú ě é š Í ř Í Í ů Í č Í Ž ř ř ý ř ě ř ó ř é ň ř ú ě é š č ý ý ř é ř ě é ý ň ý ř Ú ě é ř š ě é é č é ř č Ž é Í ó č ř ů č é é Á Ž č Ž ó ě č ý ž Ž

Více

ě ě é ň é ř ř ě ř é ě ě č ě úč ě é č č ě č é ě é čů ř ů č é ě ž ř ú ř ř č ř ě ě ř é Š ř é ř ě ř ř ú č ě ř é Š ř ě ř ř é č ě é é ž é Č é č é é ř ě žň ě

ě ě é ň é ř ř ě ř é ě ě č ě úč ě é č č ě č é ě é čů ř ů č é ě ž ř ú ř ř č ř ě ě ř é Š ř é ř ě ř ř ú č ě ř é Š ř ě ř ř é č ě é é ž é Č é č é é ř ě žň ě ě ě Á Ř É Ě É Ř Á Č é ř ř ů č ř ě č š č č č ě š ě ř é ě ř é Š ž č č ř ř č ř ě ř ř Č ř ř č ě č ů ů ž ě č ž ů č ř č ů ů ř ů ě ř ě ř ě ř é é ř ř ř č č é é ě ě é ň é ř ř ě ř é ě ě č ě úč ě é č č ě č é ě é

Více

á č é ů é ž Á é áří í á í Š á š í í í í í ů ě ů á í á í ů ě č é ů ů á ř í í á ž áň č řá úč í á ě řá ě ěš á ě á ý ý á ž ů á é ů ě Žá é ř í ů ří á é ř á

á č é ů é ž Á é áří í á í Š á š í í í í í ů ě ů á í á í ů ě č é ů ů á ř í í á ž áň č řá úč í á ě řá ě ěš á ě á ý ý á ž ů á é ů ě Žá é ř í ů ří á é ř á é é ž Á é í í í Š š í í í í í ě í í ě é í í ž Ň ú í ě ě ěš ě ž é ě Ž é í í é š é í í ší ě Ů í í Č ž Č ž é Č í ž í ú ě í í í ě Č ž í í Ž í í í Č ě í í ě š í ě í Ž í ž ě ě í Č ě í ě í š í ě í é ú í é í é

Více

tečné napětí (τ), které je podle Newtona úměrné gradientu rychlosti, tj. poměrnému

tečné napětí (τ), které je podle Newtona úměrné gradientu rychlosti, tj. poměrnému III. TERMODYNAMIKA PROUDÍCÍCH PLYNŮ A PAR Termodynamika plynů a par sleduje změny stau látek za předpokladu, že jsou látky klidu, nebo že li rychlosti proudění látky má zanedbatelný li na změnu termodynamického

Více

Řešení úloh celostátního kola 60. ročníku fyzikální olympiády Úlohy navrhli J. Thomas (1, 2, 3) a V. Wagner (4)

Řešení úloh celostátního kola 60. ročníku fyzikální olympiády Úlohy navrhli J. Thomas (1, 2, 3) a V. Wagner (4) Řešení úlo elostátnío kola 60. ročníku fyzikální olympiády Úloy narli J. Tomas 1,, 3) a V. Wagner 4) 1.a) Z ronosti ydrostatiký tlaků 1,5Rρ 1 g = 1 ρ g 1 = 1,5R ρ 1 = 3 R = 3,75 m. ρ 8 1 b) Označme ýšku

Více

6. Mechanika kapalin a plynů

6. Mechanika kapalin a plynů 6. Mechanika kapalin a plynů 1. Definice tekutin 2. Tlak 3. Pascalův zákon 4. Archimedův zákon 5. Rovnice spojitosti (kontinuity) 6. Bernoulliho rovnice 7. Fyzika letu Tekutiny: jejich rozdělení, jejich

Více

é ř ř ý ž ý ž ž é Ť ř ř ý ř ř é ř é ř ř ý ý ř é é š ý ž ž é ž ň ý ň é š éž š Ř ř ň é ý é ň é ýš ý ý ň ý ň ž Č ř ř é ň é ň š é ž ň é ř ď é š ř ů ň ý Ť

é ř ř ý ž ý ž ž é Ť ř ř ý ř ř é ř é ř ř ý ý ř é é š ý ž ž é ž ň ý ň é š éž š Ř ř ň é ý é ň é ýš ý ý ň ý ň ž Č ř ř é ň é ň š é ž ň é ř ď é š ř ů ň ý Ť é Č Á ň ž Č é ďé ř ř ř ř ř ř Č Č ú Č é ý ý ř é é ž ž é é Č Č ř ú éž Á Á é ý é ž é ž ú ý ů é é š ů ý ž ž ú ž ž ý ř ý ů é ř ř ý ž ý ž ž é Ť ř ř ý ř ř é ř é ř ř ý ý ř é é š ý ž ž é ž ň ý ň é š éž š Ř ř ň

Více

é ý ř ř ř ý ř ý ř Ž š č É é š ř ý ž ý ý ř ř é ů Í ý ř éč ý ř éč ř ř ý ř ů ý ř ů ý ů ý ň Ž

é ý ř ř ř ý ř ý ř Ž š č É é š ř ý ž ý ý ř ř é ů Í ý ř éč ý ř éč ř ř ý ř ů ý ř ů ý ů ý ň Ž Ě Ě ů ř Ž ř Ů Ú Ě ú Ž ř ř Ž ř é úč ř ú Í ř Ž Í ř ů š ř é ů ů é é Í é ý ř ř ř ý ř ý ř Ž š č É é š ř ý ž ý ý ř ř é ů Í ý ř éč ý ř éč ř ř ý ř ů ý ř ů ý ů ý ň Ž ř ř ý ý ž é ř ů ů é ř ž ů ž ý ž č ý é Ž ů Í

Více

ří ěř čí Úč í ú í Ť í á č ě í ě č íř č č Úč í ú í Ť í á ř áš Ří á č íř č č č í č č č š Š š á ý ěčí č č á á ý ěčí č č Š ý áš š č ř ů č íč č č č š č íč

ří ěř čí Úč í ú í Ť í á č ě í ě č íř č č Úč í ú í Ť í á ř áš Ří á č íř č č č í č č č š Š š á ý ěčí č č á á ý ěčí č č Š ý áš š č ř ů č íč č č č š č íč ě ý úř č í úř íř č č Č á Ú ě á úř č ě č íř č č Á Í Í É Ú Í Í ŘÍ Í Í Ú Í Á Í Ř ÁŠ ě č íř č č Žá á í í í ě í á í í í í í í Š Ú č á čí ú í íř á á í ú í č ý í úř ě é úř č í úř ří š ý í á č ú í á á í í řá í

Více

Zpráva o průběhu přijímacího řízení na vysokých školách dle Vyhlášky MŠMT č. 343/2002 a její změně 276/2004 Sb. na ak. rok 2016/2017 FS ČVUT v Praze

Zpráva o průběhu přijímacího řízení na vysokých školách dle Vyhlášky MŠMT č. 343/2002 a její změně 276/2004 Sb. na ak. rok 2016/2017 FS ČVUT v Praze Zpráva o průběhu přijímacího řízení na vysokých školách dle Vyhlášky MŠMT č. 4/2002 a její změně 276/2004 Sb. na ak. rok 2016/2017 FS ČVUT v Praze 1. Informace o přijímacích zkouškách Studijní program:

Více

ς = (R-2) h ztr = ς = v p v = (R-4)

ς = (R-2) h ztr = ς = v p v = (R-4) Stanoení součinitele ooru a relatiní ekialentní élky araturního rku Úo: Potrubí na orau tekutin (kaalin, lynů) jsou ybaena araturníi rky, kterýi se regulují růtoky (entily, šouata), ění sěry toku (kolena,

Více

ů ů ď

ů ů ď ň ň ň ú ť É Ň ž ů ů ď ď ň ň ť ň ž Ě Í ň Ú ď ž ň ž ě ě Ú ž ž ž ď ž ž Ž ď ď ň ž É Ě ž ž Ž Š ď ď ž ě ž Ě ž ď ž ň ě ě ž Š ž ž ň Ě ž ž Ú Ú Š Ě ž ž ě Ž ě ě Í ě Ú ž ň ž ž Ť Ť ž ě ž Ž ě ě ď ž ě ě ě ď ž ž ž ž ě

Více

Í š á Ž ě žá š é ř ř ě á š á š á á á á ř ůž ř á á á č ř á č ř š á ř šš é é ďě á á š á ě ě š ř ů é á ě ř š é á á á á ě á š ů č č é ě á ž é é á ě žš ž á

Í š á Ž ě žá š é ř ř ě á š á š á á á á ř ůž ř á á á č ř á č ř š á ř šš é é ďě á á š á ě ě š ř ů é á ě ř š é á á á á ě á š ů č č é ě á ž é é á ě žš ž á ě Ý á ě ř Ť ř ě é ě č á á č Í ě ě š ř ů á č č ú č ů ě ě š ř ů á ě ř š á ř šš é é ďě á á š á ě ě š ř ů á á ě č Ú á č č Í á ě úř á ě ř ě č á č č ř ě é á á Š á ř úč ř ě č ř ě é úč ř ě á Ť š ě č ů Ť š á ě

Více

Únik plynu plným průřezem potrubí

Únik plynu plným průřezem potrubí Únik plynu plným průřezem potrubí Studentská vědecká konference 22. 11. 13 Autorka: Angela Mendoza Miranda Vedoucí práce: doc. Ing. Václav Koza, CSc. Roztržení, ocelové potrubí DN 300 http://sana.sy/servers/gallery/201201/20120130-154715_h.jpg

Více

š ř ž ů ř š ů ř Ž ř é Č ř ř ú Č ř ř ř é Č ř é ý é ýš ú Ť ý Í Ž Ž ú ú ň é ř Ž ř ů Ž ú ř Ž Ž ř ů ú ú Ž Ž ů ř é Č é é ž š é é ž š ř ř ř

š ř ž ů ř š ů ř Ž ř é Č ř ř ú Č ř ř ř é Č ř é ý é ýš ú Ť ý Í Ž Ž ú ú ň é ř Ž ř ů Ž ú ř Ž Ž ř ů ú ú Ž Ž ů ř é Č é é ž š é é ž š ř ř ř Í ý é ř ž ů š ř ý ý Č é ý ň š Č Č Ž Č ú é š é ý Š Í ř Ž ř Č Č ř ý ú Ž é ý š Ž ř é Č Ý ú ř é ý Ž Č ř ř é š ř ž ů ř š ů ř Ž ř é Č ř ř ú Č ř ř ř é Č ř é ý é ýš ú Ť ý Í Ž Ž ú ú ň é ř Ž ř ů Ž ú ř Ž Ž ř ů ú

Více

Projekt 1 malé vodní nádrže 4. cvičení

Projekt 1 malé vodní nádrže 4. cvičení 4. cvičení Václav David K143 e-mail: vaclav.david@fsv.cvut.cz Konzultační hodiny: viz web Obsah cvičení Účel spodní výpusti Součásti spodní výpusti Typy objektů spodní výpusti Umístění spodní výpusti Napojení

Více

Č í ří í ř ž í í ř ě í ř í í ř č ř í ž í í š ě ž í š ě í ž ř í í ě íž í í ř í í í í ŽŠÍ ží í ě ř ž č ó ě í š í ě ř š í č í žší ží í ž ří í ě í š í ě í

Č í ří í ř ž í í ř ě í ř í í ř č ř í ž í í š ě ž í š ě í ž ř í í ě íž í í ř í í í í ŽŠÍ ží í ě ř ž č ó ě í š í ě ř š í č í žší ží í ž ří í ě í š í ě í ě úř í úř š ď Ú Ť Í Ú Í Í č ě úř ď í úř í úř ří š í č ú í í í ř í ě í ě ší ř ů í ú í ří í ž í Ž í í í ě í ří í í í ě í ň í žíč ú ó č ž ě í í š č ě šíú ě ú í ň í ř í ú í ř í í í ě í ří í í íž č ú í ží č

Více