Základní prvky modelování ve fyzice a chemii 1/40? elementární èástice + gravitace: þteorie v¹ehoÿ { temná hmota... (známé) elementární èástice: standardní model { atomová jádra... jádra + elektrony + fotony: QED { pøesná spektroskopie... jádra + elektrony: Schrödingerova rovnice { vlastnosti malých molekul, spektra, rovnováhy v plynné fázi, kinetika, fotochemie... atomy : klasické (nebo kvantové) atomistické modelování { biomolekuly, kapaliny, fázové rovnováhy... hrubozrnné (coarse-grained) modely: mezo/nanoskopická ¹kála (více atomù = 1 objekt) { surfaktanty, polymery... mikroskopická ¹kála: vìt¹í èástice { hromada písku, micely... materiál jako kontinuum: parciální diferenciální rovnice { tok tepla, difuze, statika, atomová bomba... gravitace: Einsteinovy rovnice { èerné díry, gravitaèní vlny... multiscale modeling: QM/MM { enzymy... pøíp. pomocná centra / vìt¹í skupiny (-CH 3 )
(Hyper)plocha potenciální energie [plot/rcoord.sh] 2/40 Jádra jsou mnohem tì¾¹í ne¾ elektrony elektronové pohyby jsou mnohem rychlej¹í (tzv. Bornova{Oppenheimerova aproximace) potential energy surface (PES) energie jako funkce souøadnic poloh v¹ech atomových jader Reakce probíhá cestou nejmen¹ího odporu = pøes sedlový bod (pøesnìji: v jeho blízkosti) = tranzitní stav E pot ( r 1, r 2,..., r N ) credits: http://www.ucl.ac.uk/ ucecmst/publications.html, http://theory.cm.utexas.edu/henkelman/research/ltd/
Jádra, elektrony, atomy: dìlba práce 3/40 jádra elektrony kvantová termodynamika (kvantové simulace) molekulový model statistická mechanika makroskopické vlastnosti kinetická teorie simulace
Pøed r. 1930 4/40 molekulový model statistická mechanika makroskopické vlastnosti kinetická teorie
Molekulová mechanika { statický pohled Pou¾íváme PES, zpravidla popsanou silovým polem Minimalizace energie (T = 0), þoptimalizace strukturyÿ Renement { zpøesnìní struktury (z rozptylových experimentù) 5/40 Biochemie: tvar molekul (klíè + zámek), síly (hydrolní/hydrofobní...) Deskriptory pro QSAR (Quantitative Structure{Activity Relationship)... ale co pohyb?
Co je to pohyb? þskuteènýÿ pohyb molekul v èase V¹echny mo¾né kongurace (molekul) zprùmìrované v èase: 6/40 Statistická termodynamika se zabývá výpoètem velièin (bod varu, anita ligandu k receptoru... ) na základì pøedstavy (makro)stavu systému jako þprùmìruÿ v¹ech mo¾ných kongurací
Molekulové simulace molekulová dynamika (MD) èasový vývoj systému slo¾eného z mnoha molekul pohyb ka¾dého atomu je urèen silami, které na nìj v ka¾dém okam¾iku pùsobí 7/40 metoda Monte Carlo (MC); pøesnìji Metropolisova metoda a varianty posloupnost kongurací systému generována pomocí náhodných èísel provedeme náhodný pohyb molekuly a rozhodneme se, zda jej pøijmeme { tak, aby pravdìpodobnosti výskytu kongurací molekul byly stejné jako v realitì kinetické Monte Carlo simulovaný dìj je rozdìlen na elementární události (napø. adsorpce atomu na rostoucím krystalu, reakce na katalyzátoru) událost, ke které dojde, vybíráme podle známé pravdìpodobnosti kvantové simulace { MD, MC metody Las Vegas { náhodná cesta k deterministickému výsledku
Co simulujeme Kapaliny: vliv struktury na vlastnosti (anomálie vody), roztoky fázové rovnováhy, rozpustnost povrchy a rozhraní, surfaktanty Pevné látky: struktura krystalù, materiály (poruchy) adsorpce (zeolity) Biochemie: proteiny, nukleové kyseliny, iontové kanály, lipidické membrány Nanoobjekty: micely, polymery, samoskladba (coarse-grained modely, møí¾ky) Podobnými metodami lze studovat: atd. sypké materiály, rùzné minimalizace (MC), ¹íøení epidemií 8/40
[uvodsim/blend.sh] Optimalizace struktury (molekulová mechanika) 9/40 chair ¾idlièka experiment: 28 kj/mol model: 26 kj/mol twist (skew) boat zkøí¾ená vanièka experiment: 45 kj/mol model: 53 kj/mol
Pøíklad { voda [water/liquidwater.sh] 10/40 10000 molekul 300 K periodické ve smìrech x,y adhezivní podlo¾ka neadhezivní poklièka
Pøíklad { elektrosprej Cytochromu C [uvodsim/cytox.sh] 11/40 Yi Mao, J. Woenckhaus, J. Kolafa, M.A. Ratner, M.F. Jarrold Elektrosprej: rozpra¹ování nabitých èástic Mìøí se úèinný prùøez
SIMOLANT Vlastnosti: Jevy: 2D þatomyÿ (potenciál Lennard-Jonesova typu) odpudivé/pøita¾livé stìny, gravitace MC i MD konstantní energie i termostat kondenzace plynu zmrznutí kapky poruchy krystalu kapilární deprese a elevace plyn v gravitaèním poli nukleace [cd uvodsim; simolant -g +100+50 -T.1] 12/40 Chcete si sami nainstalovat? Staèí Google SIMOLANT...
Self-assembly (samoskladba) [show/janus.sh] 13/40 Supramolekulární chemie: skládání molekul pomocí (zpravidla) nekovalentních sil (van der Waals, vodíkové vazby) do strukturovaných celkù Ukázka: dvoufunkèní èástice v roztoku Janus particles Ukázka: + ètyøfunkèní èástice Janus Janus Iapetus credit: wikipedie, www.nasa.gov/mission pages/cassini credit: Atwood et al., Science 309, 2037 (2005)
Jak dostat minimum energie [uvodsim/min.sh] 14/40 Na 10 Cl 10 rychlé chlazení pomalé chlazení
[uvodsim/salesman.sh 100] Simulované ¾íhání (simulated annealing) 15/40 Hledáme globální minimum funkce (þenergieÿ) s mnoha lokálními minimy Zaèneme nìjakou ¹patnou kongurací (napø. náhodnou) Navrhneme vhodné zmìny kongurace A i A j Aplikujeme Metropolisovu metodu za sni¾ující se þteplotyÿ T Pøíklad: Problém obchodního cestujícího (traveling salesman) 100 mìst náhodnì ve ètverci 1 1 Kongurace = poøadí mìst þenergieÿ = délka cesty Zmìna kongurace = zámìna 2 náhodnì zvolených mìst \greedy" (Metropolis T = 0) simulované ¾íhání genetický algoritmus
[../simul/rayleigh/show.sh] (Plateauova-)Rayleighova nestabilita 16/40 Èúrek vody se rozpadá na kapky. Nestabilita pro kr < 1 (pro poruchu sin(kz)), max. nestabilita pro kr = ln 2.
Nukleace pøi supersonické expanzi [show/supexp.sh] 17/40 Vodní pára o tlaku cca 5 bar se pou¹tí velmi úzkým otvorem pøes trysku do vakua a adiabaticky se ochlazuje pod bod mrazu. Lze tak studovat napø. chem. reakce ve stratosféøe. Otázka: Jaký je tvar, velikost a struktura klastrù ledu? credit: M. Fárník
Tání nanoèástic kroupa z 600 molekul vody (led Ih) ohøívání èas simulace = 5 ns tento model vody taje pøi 250 K nanoèástice taje pøi ni¾¹í teplotì [show/kroupa.sh] 18/40 nanokrystal s 489 atomy zlata ohøívání èas simulace 77 ps
Síly mezi molekulami 19/40 Londonovy (disperzní) síly pro vìt¹í vzdálenosti: model uktuující dipól{ {indukovaný dipól elst. pole E 1/r 3 indukovaný dipól µ ind E energie u(r) µe 1/r 6 (v¾dy záporná) Odpuzování na krat¹ích vzdálenostech: u(r) e const r Celkem: u(r) = Ae Br C/r 6 Aproximace odpudivých sil: Ae Br A /r 12 Lennard-Jonesùv potenciál: E / (kj mol -1 ) [ (σ ) 12 ( σ ) ] 6 0 0.2 0.4 0.6 0.8 1 u(r) = 4ɛ r r r / nm 2 0 Ar...Ar Tyto síly jsou souèástí interakcí mezi v¹emi atomy a molekulami
Elektrické síly náboj{náboj (ionty) U = 1 4πɛ 0 q i q j r ij 20/40 parciální náboje: takové náboje na atomových jádrech, aby se to chovalo stejnì jako skuteèné nábojové rozlo¾ení dipólový moment polarizovatelnost (el. pole indukuje dipól)
Silové pole 21/40 Molekulový model èi silové pole (force eld) je matematický zápis energie molekuly nebo souboru molekul jako funkce souøadnic atomù, r i, i = 1,..., N. malé: tuhá tìlesa { rotace (voda 25 C: vibruje 0.05 % molekul) velké: mnoho èlenù vazebné síly: vibrace vazeb (1{2): U = K(r r 0 ) 2 lze nahradit pevnou vazbou vibrace úhlù torze (1{4) a torzní potenciál: n K n cos(nφ) \improper torsion" (dr¾í >C=O v rovinì) nevazebné síly (èást. 1{4, 1{dále): Lennard-Jones, náboje A v¹echny pøíspìvky seèteme = aproximace párové aditivity Noo, ideálnì pøesná není, øeknìme na 90 % 1 2 3 4 φ
Molekulová dynamika tuhé koule ap. { nárazy þklasickáÿ MD { integrace pohybových rovnic Brownovská (stochastická) dynamika { MD + náhodné síly 22/40 Teorie, kterou teprve usly¹íte: Síla = gradient (rychlost zmìny) potenciální energie: f i = U( rn ) r i i = 1,..., N Newtonovy pohybové rovnice: d 2 r i dt 2 = f i m i, i = 1,..., N... nepropadejte panice, zkusíme to je¹tì jednodu¹eji
Metoda leap-frog 23/40 rychlost = dráha (zmìna polohy) za jednotku èasu (h) v(t + h/2) = r(t + h) r(t) h zrychlení = zmìna rychlosti za jednotku èasu a(t) = v(t + h/2) r(t + h) v(t + h/2) v(t h/2) h = v(t h/2) + a(t)h = r(t) + v(t + h/2)h = f m opakujeme s t := t + h credit: http://www.anagrammer.com/scrabble/leapfrog Tahle metoda se skuteènì pou¾ívá!
Pøíklad: dráha planety [uvodsim/verlet.sh] 24/40
Teplota V mechanickém systému se zachovává U + E kin. Ale kde je teplota? 25/40 Teorie, kterou teprve usly¹íte: Ekvipartièní princip Ka¾dý stupeò volnosti odpovídající kvadratické funkci ve výrazu pro celkovou energii (pot.+kin.) pøispívá 1 2 k BT k prùmìrné hodnotì. (k B = R/N A = 1.38 10 23 J K 1 = Boltzmannova konstanta.) Napø. plynný argon má U m = N 3 A2 k B T = 3 2RT, proto¾e ka¾dá slo¾ka rychlosti je kvadratická funkce a celkem jich je v molu 3N A Ve MD simulaci proto teplotu mìøíme: f = 3N f zachování 3N T = E kin 1 2 k Bf Ale u¾iteènìj¹í je mít konstantní teplotu: = T kin pøe¹kálování rychlostí: _ ri,new = _ ri (T/T kin ) q, q < 1/2 náhodné ¹»ouchance a dal¹í...
Monte Carlo integrace (naivní Monte Carlo) Pøíklad: Výpoèet èísla π metodou MC [xpi] 26/40 INTEGER n celkový poèet bodù INTEGER i INTEGER nu poèet bodù v kruhu REAL x,y souøadnice bodu ve ètverci REAL rnd(-1,1) funkce vracející náhodné èíslo v intervalu ( 1, 1) nu := 0 FOR i := 1 TO n DO x := rnd(-1,1) y := rnd(-1,1) IF x*x+y*y < 1 THEN nu := nu + 1 PRINT "pi=", 4*nu/n plocha ètverce = 4 PRINT "chyba=", 4*sqrt((1-nu/n)*(nu/n)/(n-1))
Boltzmannova pravdìpodobnost 27/40 Teorie, kterou teprve usly¹íte: Boltzmannova pravdìpodobnost Pravdìpodobnost stavu s energií E je úmìrná Pøíklady: e E/k BT Barometrická rovnice pro tlak ve vý¹ce h: Potenciální energie molekuly je E = hmg, a proto pro tlak (který je úmìrný hustotì) proto¾e R = N A k B a M = N A m. p = p 0 e hmg/k BT = p 0 e hmg/rt Rychlost reakce r (èasto) závisí na teplotì podle vztahu r = r 0 e E A/RT kde E A je molární aktivaèní energie { potøebná pro to, aby reakce mohla zaèít probíhat.
Monte Carlo { Metropolisova metoda 28/40 naivní MC importance sampling Zvolíme èástici i, kterou se bude hýbat r zkus i = náhodná poloha vybrané èástice U = U( r zkus i ) U( r i ) { je-li U 0, pohyb pøijmeme v¾dy { je-li U > 0, pohyb pøijmeme s pravdìpodobostí e U/kT odmítneme s pravdìpodobostí 1 e U/kT Opakujeme...
Okrajové podmínky vakuové, volné (kapka, protein ve vakuu aj.) pevné stìny velké povrchové jevy periodické (to je ale divná baòka!) [simolant -N5] 29/40 B D C A póry, vrstva (slab),... E
Struktura tekutin { korelaèní funkce 30/40 náhodnì rozmístìné molekuly (ideální plyn) kapalina g(r) = párová korelaèní funkce = radiální distribuèní funkce = hustota pravdìpodobnosti nalezení èástice ve vzdálenosti r od jiné èástice normovaná tak, ¾e pro náhodnì rozmístìné molekuly vyjde 1
Struktura tekutin { korelaèní funkce 31/40
Jak získám strukturu { experiment 32/40 Mìøím (neutrony, elektrony, rtg.) þstrukturní faktorÿ
Jak získám strukturu? 33/40
Korelaèní funkce ze strukturního faktoru 34/40 inverzní Fourierova transformace Teorie, kterou teprve usly¹íte: Fourierova transformace V podstatì to dìlá va¹e ucho, kdy¾ rozeznává tóny
Argon a voda 35/40 Struktura jednoduché tekutiny (kapalný argon) je organizovaná po slupkách Struktura vody je dána tetraedrickou geometrií vodíkových vazeb Ve vzdálenosti nìkolika molekulových prùmìrù jsou ji¾ molekuly nekorelované { pohybují se nezávisle
Molekulový poèítaèový experiment 36/40 té¾ þpseudoexperimentÿ REÁLNÝ EXPERIMENT Vedení laboratorního deníku POÈÍTAÈOVÝ EXPERIMENT Vedení laboratorního deníku Stavba aparatury (z èástí) Stáhni/kup/napi¹ poèítaèový program, slo¾ bloky kódu Nakup chemikálie, syntetizuj, co není ke koupi Pøiprav experiment Proveï experiment, pozornì sleduj, co se dìje Analyzuj a poèítej Ukliï laboratoø Stáhni silové pole, natuj parametry, které nejsou dostupné Pøiprav poèáteèní konguraci ap. Spus» program, sleduj èasovou závislost velièin vè. kontrolních Stanov støední hodnoty (s odhady chyb) Zapi¹ zálohy, vyma¾ nepotøebné soubory
Realizace pseudoexperimentu Start: krystal, náhodná kongurace, známá kongurace Zrovnová¾nìní [sleep 3; simul/spce.sh] 37/40 Mìøení vè. odhadu chyb: prùmìrná hodnota velièiny v èase
[start /home/jiri/www/fch/cz/pomucky/kolafa/nacl.avi] Ukázka: þzonální tavbaÿ krystalu NaCl 38/40 pøíprava krystalku Na 108 Cl 108 simulace krystalku za dané teploty a tlaku pøíprava trojnásobného krystalku (hranol) roztavení poloviny krystalku del¹í rozmìr se mù¾e mìnit = konst. tlak simulace v rovnováze: krystal roste: T < T tání krystal taje: T > T tání
Møí¾kové modely: Isingùv model 39/40 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Jako model feromagnetu: U = J <i,j> s i s j + h i s i, Jako møí¾kový plyn: U = ɛ <i,j> n i n j + µ i n i, Jako model binární slitiny: U = <i,j> ɛ ki k j + i µ ki, s i { 1, +1} = {, } n i {0, 1} = {, } J = interakèní konstanta: ɛ = velikost pøita¾livých sil J > 0: feromagnet, µ = chemický potenciál J < 0: antiferomagnet Ekvivalence: h = intenzita magn. pole n Kritický (Curieùv) bod: h c = i = (1 + s i )/2 0; 2D: T c /J = 2/ ln(1 + 2) k i {, } ɛ,, ɛ,, ɛ, = interakce sousedních atomù µ, µ = chem. pot. atomù Ekviv.: n i = 0 k i = n i = 1 k i =.
Isingùv model rychle ochlazená slitina: kritický (Curieùv) bod: [tchem/showisi.sh] 40/40