Opakování: Standardní stav þ ÿ
|
|
- Silvie Doležalová
- před 6 lety
- Počet zobrazení:
Transkript
1 Opakování: Standardní stav þ ÿ s øíjna 215 Standardní stav þ ÿ = èistá slo¾ka ve stavu ideálního plynu za teploty soustavy T a standardního tlaku = 1 kpa, døíve 11,325 kpa. Èistá látka: Pøibli¾nì: T,, id. pl. Pøesnì: T,, id. pl. pv =n Chceme T, p T, p, id. pl. pv =n T, p p=pv,t T, p napø.: ln ϕ = p z 1 p dp Smìs: Pøibli¾nì: A : T,, id. pl. + B : T,, id. pl. smìs: T,, id. pl. pv =n smìs: T, p, id. pl. Pøesnì: A: T,, id. pl. + B: T,, id. pl. smìs: = T,, id. pl. pv =n T, p p=pv,t T, p
2 Opakování: Smìs ideálních plynù s.2 Hm p, T = x i H mi Sm p, T = x i S mi R k x i ln px i G m p, T = H = m p, T T S x i G mi + k je pøi T, ; u H st na tlaku nezále¾í id. plyn m p, T x i ln px i
3 Korekce na neideální chování plynu { entalpie s.3 H m = entalpie 1 molu smìsi reálných plynù Hm = i x i H mi = entalpie 1 molu stejné smìsi ideálních plynù [p,t ] Korekce: dh = T ds + V dp = C p dt + H m = Hm + Pro ideální plyn H/ p T = Hm p H m = Hm + [ [ p T, x V m T V T dp + Vm T V T p p ] Hm p, x ] p dp dp T, x dp
4 Korekce na neid. chování plynu { Gibbsova energie s.4 G m = Gibbsova energie 1 molu smìsi reálných plynù Gm = i x i G mi + i x i ln px i = entalpie 1 molu stejné smìsi ideálních plynù [p, T ] Korekce: G m = Gm + dg = SdT + V dp Gm p Pro ideální plyn G m / p T = Vm id.pl G m = Gm + p st T, x = p V m p dp + p Gm p T, x dp bez problému i pro p dp + p V mdp
5 Fugacita pro èistou látku s.5 Ideální plyn: neboli µ = G m = G/n dg = V dp [T ] Gp = G + n ln p µp = µ + ln p pro reálný plyn denujeme fugacitu f vztahem µ T = µ id. plyn T, µt, p = µ T + ln ft, p fugacita je þkorigovaný tlakÿ, tedy tlak, který by mìl ideální plyn, aby þpùsobil stejnìÿ jako daný reálný plyn. Rozmìr [f] = [p]. Fugacitní koecient: stejné T, p ϕ = f µ µ id.plyn p = exp Ideální plyn: f = p, ϕ = 1
6 Závislost fugacity na teplotì a tlaku s.6 f = exp µ µ Závislost fugacity na teplotì: ln f = H m Hm T 2 p... lze snadno integrovat ln f p T = V m Oops! Nelze integrovat od p =, proto¾e pak V m =. Øe¹ení: pou¾ijeme ϕ = f/p. ln ϕ p T = V m 1 p = z 1 p kde z 1 pro p. Tedy ln ϕ = 1 p V m p dp = proto¾e ϕ = 1 pro p =. p z 1 p dp Pøíklad. Vypoètìte fugacitní koecient CO 2 za tlaku 1 MPa a teploty 4 C. B4 C = 11 cm 3 mol
7 Generalizovaný diagram fugacitního faktoru s.7
8 [xjoe rkfug/dusik.ev] ϕ z diagramu a stavové rovnice vdw typu s.8 Pøíklad: Vypoètìte fugacitní koecient dusíku za teploty 2 K a tlaku 1 MPa. T c = K, p c = 3.39 MPa. Doplnìk: EOS tvaru pv, T { integruji pøes V m nelze pro kapalinu! p [ z 1 ln ϕ = p dp Vm = V m p 1 ] p pv m V m diagram:.82, RK:.813 T dv m nebo i pro kapalinu { vyplývá z µ µ id.pl = F F id.pl + pv m [ pvm ln ϕ = V m p 1 ] dv m ln z + z 1 V m dolní mez V m p je øe¹ení rovnice pv m, T = p pro zadané p Napø. Redlich-Kwong: p p = pv m, T = V m T V m b = V m b 2 + a T a T Vm V m + b 2V m + b [V m V m + b] 2
9 Opakování: Parciální molární velièiny s.9 Nech» Y = Y p, T, n 1,..., n k je extenzivní velièina. Denice parciální molární velièiny neplést s parciálním tlakem!: Y i = Y n i T,p,n j i Zmìna Y v otevøeném systému: dy = Y T p, n dt + Y p T, n dp + Y i dn i Napø. pro G: dg = SdT + V dp + µ i dn i Eulerùv vztah: Y = n i Y i [T, p, x]
10 Gibbsovy rovnice v otevøeném systému + s.1 du = T ds p dv + dh = T ds + V dp + µ i dn i µ i dn i df = SdT p dv + dg = SdT + V dp + µ i dn i µ i dn i H µ i = n i S,p,n jj i atd.
11 Chemický potenciál s.11 Chemický potenciál = parciální molární Gibbsova energie G G i = µ i = G = n i µ i n i T,p,n j i Chemický potenciál v ideální plynné smìsi: Gm p, T = µ i µ i = G i = G mi x i µ i + k x i ln px i = µ i + ln px i = µ i + ln p i
12 Fugacita slo¾ky ve smìsi µ i = µ i + ln f i neboli f i = µi µ exp i s.12 Fugacitní koecient slo¾ky: Výpoèet: ϕ i = f i x i p = exp ln ϕ i = 1 µ i µ id.plyn i p Smìs ideálních plynù: f i = p i, ϕ i = 1 stejná teplota a tlak jako µ i èili f i = x i p ϕ i slo¾ité a/ n i V i dp p
13 Lewisovo-Randallovo pravidlo s.13 Amagatùv zákon ideální smìs reálných plynù: V i = V mi ϕ i = ϕ i f i = x i p ϕ i = x if i id. smìs, [T, p] id. smìs, [T, p] Pøíklad. Vypoètìte fugacitní koecienty slo¾ek v ekvimolární smìsi dusíku a oxidu uhlièitého za teploty 2 C a tlaku 1 MPa. Data 2 C: B CO2 = 132 cm 3 mol 1, B N2 = 6 cm 3 mol 1 ϕco2 =.947, ϕ N2 =.998
14 Aktivita s.14 Plyn ve smìsi: a i = exp µi µ i = f i = ϕ ip i = ϕ ix i p Je-li plyn v rovnováze s kapalinou, jsou fugacity stejné, tak¾e mohu mluvit i o fugacitì slo¾ky v kapalné smìsi. V kapalné smìsi, kde pou¾ívám std. stav þèistá slo¾ka za T, p soustavyÿ: a i = exp µi µ i = f i f i Obecnì nebo» f i = pst : a i = f i f i fugacita je þefektivní tlakÿ bezrozmìrná aktivita je þefektivní relativní tlakÿ vzhledem k fugacitní aktivitní koecient je mírou neideality pøi daném tlaku
Klasická termodynamika (aneb pøehled FCH I)
Klasická termodynamika (aneb pøehled FCH I) 1/16 0. zákon 1. zákon id. plyn: pv = nrt pv κ = konst (id., ad.) id. plyn: U = U(T) }{{} Carnotùv cyklus dq T = 0 2. zákon rg, K,... lim S = 0 T 0 S, ds = dq
Viriálová stavová rovnice 1 + s.1
Viriálová stavová rovnice 1 + s.1 (Mírnì nestandardní odvození Prùmìrná energie molekul okolo vybrané molekuly (β = 1/(k B T : 0 u(r e βu(r 4πr 2 dr Energie souboru N molekul: U = f 2 k B T + N 2 2V Tlak
Termochemie { práce. Práce: W = s F nebo W = F ds. Objemová práce (p vn = vnìj¹í tlak): W = p vn dv. Vratný dìj: p = p vn (ze stavové rovnice) W =
Termochemie { práce Práce: W = s F nebo W = Objemová práce (p vn = vnìj¹í tlak): W = V2 V 1 p vn dv s2 Vratný dìj: p = p vn (ze stavové rovnice) W = V2 V 1 p dv s 1 F ds s.1 Diferenciální tvar: dw = pdv
Rovnováha kapalina{pára u binárních systémù
Rovnováha kapalina{pára u binárních systémù 1 Pøedpoklad: 1 kapalná fáze Oznaèení: molární zlomky v kapalné fázi: x i molární zlomky v plynné fázi: y i Poèet stupòù volnosti: v = k f + 2 = 2 stav smìsi
Stanislav Labík. Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost
Stanislav Labík Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost 325 labik@vscht.cz 220 444 257 http://www.vscht.cz/fch/ Výuka Letní semestr N403032 Základy fyzikální chemie
Do známky zkoušky rovnocenným podílem započítávají získané body ze zápočtového testu.
Podmínky pro získání zápočtu a zkoušky z předmětu Chemicko-inženýrská termodynamika pro zpracování ropy Zápočet je udělen, pokud student splní zápočtový test alespoň na 50 %. Zápočtový test obsahuje 3
Matematika II Aplikace derivací
Matematika II Aplikace derivací RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Derivace slo¾ené funkce Vìta o derivaci slo¾ené funkce.
Rovnováha Tepelná - T všude stejná
Fázové heterogenní rovnováhy Fáze = homogenní část soustavy, oddělná fyzickým rozhraním, na rozhraní se vlastnosti mění skokem Rovnováha Tepelná - T všude stejná Mechanická - p všude stejný Chemická -
Osnova pro předmět Fyzikální chemie II magisterský kurz
Osnova pro předmět Fyzikální chemie II magisterský kurz Časový a obsahový program přednášek Týden Obsahová náplň přednášky Pozn. Stavové chování tekutin 1,2a 1, 2a Molekulární přístup kinetická teorie
Matematika II Limita a spojitost funkce, derivace
Matematika II Limita a spojitost funkce, derivace RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Prstencové a kruhové okolí bodu
Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013
Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná
Matematika II Urèitý integrál
Matematika II Urèitý integrál RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Motivace Je dána funkce f(x) = 2 + x2 x 4. Urèete co
Trocha termodynamiky ještě nikdy nikoho nezabila (s pravděpodobností
Trocha termodynamiky ještě nikdy nikoho nezabila (s pravděpodobností 95 %) Studium tohoto podpůrného textu není k vyřešení úlohy B3 potřeba, slouží spíše k obohacení vašich znalostí o rovnovážných dějích,
MAGISTERSKÝ VÝBĚR úloh ze sbírek
MAGISTERSKÝ VÝBĚR úloh ze sbírek Příklady a úlohy z fyzikální chemie I a II (VŠCHT Praha 2000 a VŠCHT Praha 2002) (http://www.vscht.cz/fch/cz/pomucky/sbfchold.html) k nimž je doplněno zanedbatelné množství
Matematika I Ètvercové matice - determinanty
Matematika I Ètvercové matice - determinanty RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Co u¾ známe? vektory - základní operace
6. Stavy hmoty - Plyny
skupenství plynné plyn x pára (pod kritickou teplotou) stavové chování Ideální plyn Reálné plyny Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti skupenství plynné reálný plyn ve stavu
Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
Fenomenologická termodynamika
Atkins 1 Fenomenologická termodynamika Popisuje makroskopický stav Neuvažuje vnitřní stavbu hmoty okolí termodynamická soustava (systém) okolí Vnitřní parametry teplota T vnitřní energie U tlak p látková
Termodynamika a živé systémy. Helena Uhrová
Termodynamika a živé systémy Helena Uhrová Základní pojmy termodynamiky soustava izolovaná otevřená okolí vlastnosti soustavy znaky popisující soustavu stav rovnováhy tok m či E =0 funkce stavu - soubor
Fázové heterogenní rovnováhy Fáze = homogenní část soustavy, oddělná fyzickým rozhraním, na rozhraní se vlastnosti mění skokem
Fázové heterogenní rovnováhy Fáze = homogenní část soustavy, oddělná fyzickým rozhraním, na rozhraní se vlastnosti mění skokem Rovnováha Tepelná - T všude stejná Mechanická - p všude stejný Chemická -
Nultá věta termodynamická
TERMODYNAMIKA Nultá věta termodynamická 2 Práce 3 Práce - příklady 4 1. věta termodynamická 5 Entalpie 6 Tepelné kapacity 7 Vnitřní energie a entalpie ideálního plynu 8 Výpočet tepla a práce 9 Adiabatický
Tepelná vodivost. střední rychlost. T 1 > T 2 z. teplo přenesené za čas dt: T 1 T 2. tepelný tok střední volná dráha. součinitel tepelné vodivosti
Tepelná vodivost teplo přenesené za čas dt: T 1 > T z T 1 S tepelný tok střední volná dráha T součinitel tepelné vodivosti střední rychlost Tepelná vodivost součinitel tepelné vodivosti při T = 300 K součinitel
Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
bak-06=1/1 http://www.vscht.cz/fch/cz/pomucky/kolafa/n403011p.html
bak-06=1/1 pst=101325 = 1.013e+05 Pa R=8.314 = 8.314JK 1 mol 1 Gibbsovo fázové pravidlo v = k f + 2 C počet stupnů volnosti počet složek počet fází počet vazných podmínek 1. Gibbsovo fázové pravidlo Určete
Brownovská (stochastická) dynamika, disipativní èásticová dynamika = MD + náhodné síly. i = 1,..., N. r i. U = i<j. u(r ij ) du(r ji ) r ji
Molekulová dynamika Síly: tuhé koule ap. { nárazy þklasickáÿ MD { integrace pohybových rovnic 1/20 Brownovská (stochastická) dynamika, disipativní èásticová dynamika = MD + náhodné síly Pøíklad: f i =
TERMOMECHANIKA 1. Základní pojmy
1 FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 1. Základní pojmy OSNOVA 1. KAPITOLY Termodynamická soustava Energie, teplo,
FYZIKÁLNÍ CHEMIE I: 1. ČÁST KCH/P401
Univerzita J. E. Purkyně v Ústí nad Labem Přírodovědecká fakulta FYZIKÁLNÍ CHEMIE I: 1. ČÁST KCH/P401 Magda Škvorová Ústí nad Labem 2013 Obor: Toxikologie a analýza škodlivin, Chemie (dvouoborová) Klíčová
Matematika II Lineární diferenciální rovnice
Matematika II Lineární diferenciální rovnice RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Lineární diferenciální rovnice Denice
2.4 Stavové chování směsí plynů Ideální směs Ideální směs reálných plynů Stavové rovnice pro plynné směsi
1. ZÁKLADNÍ POJMY 1.1 Systém a okolí 1.2 Vlastnosti systému 1.3 Vybrané základní veličiny 1.3.1 Množství 1.3.2 Délka 1.3.2 Délka 1.4 Vybrané odvozené veličiny 1.4.1 Objem 1.4.2 Hustota 1.4.3 Tlak 1.4.4
Aplikovaná fyzikální chemie. Magda Škvorová KFCH CN463 tel. 3302
Aplikovaná fyzikální chemie Aplikovaná fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 1. září 2014 Aplikovaná fyzikální chemie Bylo nebylo... Bylo nebylo... Nejvzácnějšímu
Úvodní info. Studium
[mozilla le:/home/jiri/www/fch/cz/pomucky/kolafa/n4316.html] 1/16 Úvodní info Jiøí Kolafa Ústav fyzikální chemie V CHT Praha budova A, místnost 325 (zadním vchodem) jiri.kolafa@vscht.cz 2244 4257 Web pøedmìtu:
Jednosložkové soustavy
Jednosložkové soustavy Fázové rovnováhy Prezentace je určena pro výuku. roč. studjního oboru Nanotechnologí a není dovoleno její šíření bez vědomí garanta předmětu. K jejímu vytvoření bylo použto materálů
Fázové rovnováhy I. Phase change cooling vest $ with Free Shipping. PCM phase change materials
Fázové rovnováhy I PCM phase change materials akumulace tepla pomocí fázové změny (tání-tuhnutí) parafin, mastné kyseliny tání endotermní tuhnutí - exotermní Phase change cooling vest $149.95 with Free
Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn
Termodynamika materiálů Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Důležité konstanty Standartní podmínky Avogadrovo číslo N A = 6,023.10
Elektrické jevy na membránách
Elektrické jevy na membránách Polopropustná (semipermeabilní) membrána; frita, diafragma propou¹tí ionty, vzniká el. napìtí rùzné koncentrace iontù na obou stranách rùzná propustnost/difuzivita pro rùzné
PROCESY V TECHNICE BUDOV 8
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 8 Dagmar Janáčová, Hana Charvátová Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního
Fáze a fázové přechody
Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Fáze a fázové přechody Pojem fáze je zobecněním pojmu skupenství, označuje homogenní část makroskopického tělesa. Jednotlivé fáze v
Úvodní info. Studium
[mozilla le:///home/jiri/www/fh/z/pomuky/kolafa/n4341.html] 1/16 Úvodní info Jiøí Kolafa Ústav fyzikální hemie V CHT Praha budova A, místnost 325 (zadním vhodem) jiri.kolafa@vsht.z 2244 4257 Web pøedmìtu:
Stavové chování kapalin a plynů II. 12. března 2010
Stavové chování kapalin a plynů II. 12. března 2010 Stavové rovnice - obecně Van der Waalsova rovnice V čem je ukryta síla van der Waalse... A b=4n A V mol. Van der Waalsova rovnice (r. 1873) - první úspěšná
d T FP = fázový přechod (tání, tuhnutí, vypařování, kapalnění, sublimace)
Fázové rovnováhy jednoložkový ytém Gibbův fázový zákon k f C Popi záviloti tlaku naycených par na teploě Clapeyronova rovnice: d p F P m n e b o F P d l np F P m F P z FP fázový přechod (tání, tuhnutí,
Zákony ideálního plynu
5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8
Pravdìpodobnostní popis
Pravdìpodobnostní popis 1/19 klasická mechanika { stav = { r 1,..., r N, p 1,..., p N } stavù je { hustota pravdìpodobnosti stavù ρ( r 1,..., r N, p 1,..., p N ) kvantové mechaniky { stav = stavù je koneènì
Technické ůdaje GP 55 T7
ůdaje GP 55 T7 30 C/35 C 6600 4,5 1466 2,7 16,5 40 C/45 C 6336 3,6 1760 3 21 50 C/55 C 6160 3 2052 3,5 26 Monoblok Kondenzátor split Monoblok sondy - split Kondenzátor split a Průměr připojení PEX 25-20
Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2
Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn
Lehký úvod do elektrostatiky { vakuum ( ε = ε 0 )
Lehký úvod do elektrostatiky { vakuum ( ε = ε 0 ) 1/16 Síla na náboj q zpùsobená nábojem Q: F = 1 qq r 4πε 0 r 2 r Intenzita pole: E = F q = 1 Q r 4πε 0 r 2 r Potenciál: φ = 1 Q 4πε 0 r, platí φ ( r φ
Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2
Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn
Hydrochemie koncentrace látek (výpočty)
1 Atomová hmotnostní konstanta/jednotka m u Relativní atomová hmotnost Relativní molekulová hmotnost Látkové množství (mol) 1 mol je takové množství látky, které obsahuje tolik částic, kolik je atomů ve
Zápo tová písemná práce. 1 z p edm tu 01RMF varianta A
Zápo tová písemná práce. 1 z p edm tu 1MF varianta A tvrtek 19. listopadu 215, 13:215:2 ➊ (5 bod ) Nech f (x), g(x) L 1 () a f (x) dx = A, x f (x) dx = µ, Vypo ítejte, emu se rovná z( f g)(z) dz. g(x)
FyzChem_kap1_3. (inovovaný prozatímní učební text, srpen 2012)
FyzChem_kap1_3 (inovovaný prozatímní učební text, srpen 2012) PŘEDMLUVA Tato Sbírka příkladů a úloh z fyzikální chemie přináší výpočetní materiál ke kurzu fyzikální chemie, jak se přednáší na přírodovědných
2
Edièní st edisko V CHT P íklady a úlohy z fyzikální chemie I Prof. Josef Novák, CSc. Ing. Josef obr, CSc. Ing. Michal Bure, CSc. Ing. Karel ehák, CSc. Doc. Lidmila Bartovská, CSc. Praha 2000 2 Obsah Úvod.........................................
Termomechanika 4. přednáška
ermomechanika 4. přednáška Miroslav Holeček Upozornění: ato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím citovaných zdrojů
Sbírka příkladů a úloh z fyzikální chemie
Univerzita Jana Evangelisty Purkyně Přírodovědecká fakulta Sbírka příkladů a úloh z fyzikální chemie Ludmila Boublíková Magda Škvorová Ivo Nezbeda Ústí nad Labem 2014 Název: Autoři: Recenzenti: Sbírka
Stavové rovnice. v = (zobecnìný) vylouèený objem. plyn + kapalina
Stavové rovnice Stavová rovnice je vztah mezi p, T, V a n (u smìsí slo¾ením n i ), alternativnì p, T, Vm = V/n (u smìsí je¹tì x i ) èi jinými ekvivalentními velièinami. plyn ideální plyn: pvm/rt = 1 viriálová
V xv x V V E x. V nv n V nv x. S x S x S R x x x x S E x. ln ln
Souhrn 6. přednášky: 1) Terodynaka sěsí a) Ideální sěs: adtvta objeů a entalpí, Aagatův zákon b) Reálná sěs: pops poocí dodatkových velčn E Def. Y Y Y, d Aplkace: - př. obje reálné dvousložkové sěs V xv
Poznámky k cvičením z termomechaniky Cvičení 3.
Vnitřní energie U Vnitřní energie U je stavová veličina U = U (p, V, T), ale závisí pouze na teplotě (experiment Gay-Lussac / Joule) U = f(t) Pro měrnou vnitřní energii (tedy pro vnitřní energii jednoho
PDWHULiO FS>-NJ ±. FS>NFDONJ ± ƒ& VW teur åhoh]r FtQ KOLQtN N HPtN. OHG DONRKRO ROHM FFD FFD SHWUROHM UWX YRGD Y]GXFK YRGQtSiUD KHOLXP
Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího
Plyn. 11 plynných prvků. Vzácné plyny He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2
Plyny Plyn T v, K 11 plynných prvků Vzácné plyny He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 H 2 20 He 4.4 Ne 27 Ar 87 Kr 120 Xe 165 Rn 211 N 2 77 O 2 90 F 2 85 Cl 2 238 1 Plyn
Stavové chování kapalin a plynů. 4. března 2010
Stavové chování kapalin a plynů 4. března 2010 Studium plynů Plyn JE tekutina Studium plynů Studium plynů Létání v balónu aneb... Jak se vzepřít gravitaci? Studium plynů Studium plynů Létání v balónu aneb...
Termodynamika. Vnitøní energie. Malá zmìna této velièiny je
Termodynamika 1/19 Vnitøní energie U = ψ E(ψ)π(ψ) Malá zmìna této velièiny je du = ψ π(ψ) de(ψ) + ψ dπ(ψ) E(ψ) de(ψ): zmìnila se energetická hladina dπ(ψ): zmìnila se pravdìpodobnost výskytu stavu ψ Termodynamika:
Transportní jevy. J = konst F
Transportní jevy 1/23 Transportní (kinetické) jevy: difuze, elektrická vodivost, viskozita (vnitøní tøení), vedení tepla... Tok (ux) (té¾ zobecnìný tok) hmoty, náboje, hybnosti, tepla... : J = mno¾ství
Motivace: Poissonova rovnice
Motivace: Poissonova rovnice Zachovává se poèet el. indukèních èar: Q = D d s, S D = ε E Integrál spoèítáme pøes povrch krychlièky dx dy dz: dq = dvρ = D d s = dydz[d x (x + dx) D x (x)] = dxdydz S ( Dx
VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 11
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 11 Termodynamika reálných plynů část 1 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní
VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 12
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 2 Termodynamika reálných plynů část 2 Hana Charvátová, Dagmar Janáčová Zlín 203 Tento studijní
8. Chemické reakce Energetika - Termochemie
- Termochemie TERMOCHEMIE oddíl termodynamiky Tepelné zabarvení chemických reakcí Samovolnost chemických reakcí Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti - Termochemie TERMOCHEMIE
Statistická termodynamika (mechanika)
Statistická termodynamika (mechanika) 1/16 Makroskopické velièiny jsou výsledkem zprùmìrovaného chování mnoha èástic Tlak ideálního plynu z kinetické teorie 1 [tchem/simplyn.sh] 2/16 Molekula = hmotný
Kapaliny Molekulové vdw síly, vodíkové můstky
Kapaliny Molekulové vdw síly, vodíkové můstky Metalické roztavené kovy, ionty + elektrony, elektrostatické síly Iontové roztavené soli, FLINAK (LiF + NaF + KF), volně pohyblivé anionty a kationty, iontová
Fázové rozhraní - plocha,na které se vlastnosti systému mění skokem ; fáze o určité tloušťce
Fázové rozhraní Fázové rozhraní - plocha,na které se vlastnosti systému mění skokem ; fáze o určité tloušťce Homogenní - kapalina/plyn - povrch;kapalina/kapalina Nehomogenní - tuhá látka/plyn - povrch;
Teorie transportu plynů a par polymerními membránami. Doc. Ing. Milan Šípek, CSc. Ústav fyzikální chemie VŠCHT Praha
Teorie transportu plynů a par polymerními membránami Doc. Ing. Milan Šípek, CSc. Ústav fyzikální chemie VŠCHT Praha Úvod Teorie transportu Difuze v polymerních membránách Propustnost polymerních membrán
FYZIKÁLNÍ CHEMIE chemická termodynamika
FYZIKÁLNÍ CHEMIE chemická termodynamika ermodynamika jako vědní disciplína Základní zákony termodynamiky Práce, teplo a energie Vnitřní energie a entalpie Chemická termodynamika Definice termodynamiky
h nadmořská výška [m]
Katedra prostředí staveb a TZB KLIMATIZACE, VĚTRÁNÍ Cvičení pro navazující magisterské studium studijního oboru Prostředí staveb Cvičení č. 1 Zpracoval: Ing. Zdeněk GALDA Nové výukové moduly vznikly za
Technické ůdaje GP 55 M7
ůdaje GP 55 M7 sondy z podzemní vody Teplota odpařování země 0 C / Tlak 3,6 y 30 C/35 C 6600 4,5 5500 3,75 1466 7 16,5 40 C/45 C 6336 3,6 5280 3 1760 8,5 21 50 C/55 C 6160 3 5130 2,5 2052 10 26 Průměr
Fázová rozhraní a mezifázová energie
Fázová rozhraní a mezifázová energie druhy: l/g l/l }{{} mobilní s/g s/l s/s 1/14 Pøíklad. Kolik % molekul vody je na povrchu kapièky mlhy o prùmìru a) 0.1 mm (hranice viditelnosti okem) b) 200 nm (hranice
Úloha 3-15 Protisměrné reakce, relaxační kinetika... 5. Úloha 3-18 Protisměrné reakce, relaxační kinetika... 6
3. SIMULTÁNNÍ REAKCE Úloha 3-1 Protisměrné reakce oboustranně prvého řádu, výpočet přeměny... 2 Úloha 3-2 Protisměrné reakce oboustranně prvého řádu, výpočet času... 2 Úloha 3-3 Protisměrné reakce oboustranně
2. SÉRIE: SOUSTAVY LINEÁRNÍCH ROVNIC, METODY E ENÍ. lineárních rovnic (prove te zkou²ku dosazením):
ZÁKLADY MATEMATIKY 2 2. SÉRIE: SOUSTAVY LINEÁRNÍCH ROVNIC, METODY E ENÍ P ípravní úlohy. V této sérii se p edpokládá, ºe uº umíte ur it v²echna e²ení jednoduchých soustav lineárních rovnic. Otestujte se
1141 HYA (Hydraulika)
ČVUT v Praze, fakulta stavební katedra hydrauliky a hydrologie (K4) Přednáškové slidy předmětu 4 HYA (Hydraulika) verze: 09/008 K4 Fv ČVUT Tato webová stránka nabízí k nahlédnutí/stažení řadu pdf souborů
Stavové chování plynů a kapalin
Stavové chování plynů a kapalin Ing. Martin Keppert Ph.D. Katedra materiálového inženýrství a chemie keppert@fsv.cvut.cz A 329 Stav a velikost systému stav systému je definován intenzivními veličinami:
5.7 Vlhkost vzduchu 5.7.5 Absolutní vlhkost 5.7.6 Poměrná vlhkost 5.7.7 Rosný bod 5.7.8 Složení vzduchu 5.7.9 Měření vlhkosti vzduchu
Fázové přechody 5.6.5 Fáze Fázové rozhraní 5.6.6 Gibbsovo pravidlo fází 5.6.7 Fázový přechod Fázový přechod prvního druhu Fázový přechod druhého druhu 5.6.7.1 Clausiova-Clapeyronova rovnice 5.6.8 Skupenství
Hydrochemie koncentrace látek (výpočty)
Atomová hmotnostní konstanta/jednotka m u Relativní atomová hmotnost Relativní molekulová hmotnost Látkové množství (mol) mol je takové množství látky, které obsahuje tolik částic, kolik je atomů ve 2
Fázová rozhraní a mezifázová energie
Fázová rozhraní a mezifázová energie druhy: l/g l/l }{{} mobilní 1/15 s/g s/l s/s povrch koule = 4πr 2 Pøíklad. Kolik % molekul vody je na povrchu kapièky mlhy o prùmìru a) 0.1 mm (hranice viditelnosti
p st plyny 1 čistétuhél.akap.
bak-08=1/1 R=8.314 = 8.314JK 1 mol 1 Reakce v ideální plynné fázi ( K=exp rg ) m = RT i a ν i i a i = { pi p st = y ip p st plyny 1 čistétuhél.akap. y i = n i n (g) n (g) = i {plyny} Pozn.:Součetpřesplynyjevč.inertů!Čistékapalinyatuhélátkymají
Exponenciální rozdìlení
Exponenciální rozdìlení Ing. Michael Rost, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích Katedra aplikované matematiky a informatiky Exponenciální rozdìlení Exp(A, λ) "Rozdìlení bez pamìti" Exponenciální
Nernstova rovnice srozumitelně
Nernstova rovnice srozumitelně Jan Obdržálek - 25. května 2003, v. 2003-05-23 Obsah 1 Úvodem: proč právě Nernstova rovnice? 2 2 Jak Nernstova rovnice zní a co říká 2 2.1 Buňka v rovnováze se svým okolím.................
Kapaliny Molekulové vdw síly, vodíkové můstky
Kapaliny Molekulové vdw síly, vodíkové můstky Metalické roztavené kovy, ionty + elektrony, elektrostatické síly Iontové roztavené soli, FLINAK (LiF + NaF + KF), volně pohyblivé anionty a kationty, iontová
FYZIKÁLNÍ CHEMIE I: 2. ČÁST
Univerzita J. E. Purkyně v Ústí nad Labem Přírodovědecká fakulta FYZIKÁLNÍ CHEMIE I: 2. ČÁST KCH/P401 Ivo Nezbeda Ústí nad Labem 2013 1 Obor: Klíčová slova: Anotace: Toxikologie a analýza škodlivin, Chemie
T0 Teplo a jeho měření
Teplo a jeho měření 1 Teplo 2 Kalorimetrie Kalorimetr 3 Tepelná kapacita 3.1 Měrná tepelná kapacita Měrná tepelná kapacita při stálém objemu a stálém tlaku Poměr měrných tepelných kapacit 3.2 Molární tepelná
Matematika II Funkce více promìnných
Matematika II Funkce více promìnných RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Euklidovský n-rozmìrný prostor Def. Euklidovským
Sbírka příkladů a úloh z fyzikální chemie
Univerzita Jana Evangelisty Purkyně Přírodovědecká fakulta Sbírka příkladů a úloh z fyzikální chemie Ludmila Boublíková Magda Škvorová Ivo Nezbeda Ústí nad Labem 2014 Název: Autoři: Recenzenti: Sbírka
Chemie - cvičení 2 - příklady
Cheie - cvičení 2 - příklady Stavové chování 2/1 Zásobník o objeu 50 obsahuje plynný propan C H 8 při teplotě 20 o C a přetlaku 0,5 MPa. Baroetrický tlak je 770 torr. Kolik kg propanu je v zásobníku? Jaká
Krystalizace, transformace, kongruence, frustrace a jak se to všechno spolu rýmuje
Krystalizace, transformace, kongruence, frustrace a jak se to všechno spolu rýmuje Pavel Svoboda, Silvie Mašková Univerzita Karlova v Praze, Matematicko-fyzikální fakulta, Katedra fyziky kondenzovaných
III. STRUKTURA A VLASTNOSTI PLYNŮ
III. STRUKTURA A VLASTNOSTI PLYNŮ 3.1 Ideální plyn a) ideální plyn model, předpoklady: 1. rozměry molekul malé (ve srovnání se střední vzdáleností molekul). molekuly na sebe navzálem silově nepůsobí (mimo
PROCESY V TECHNICE BUDOV 9
UNIVERZIA OMÁŠE BAI VE ZLÍNĚ FAKULA APLIKOVANÉ INFORMAIKY PROCESY V ECHNICE BUDOV 9 ermodynamika reálných plynů (2. část) Dagmar Janáčová, Hana Charvátová Zlín 2013 ento studijní materiál vznikl za finanční
Matematika II Extrémy funkcí více promìnných
Matematika II Extrémy funkcí více promìnných RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Parciální derivace vy¹¹ích øádù Def.
Podle skupenského stavu stýkajících se objemových fází: kapalina / plyn (l/g) - povrch kapalina / kapalina (l/l) tuhá látka / plyn (s/g) - povrch
Fáze I Fáze II FÁZOVÁ ROZHRANÍ a koloidy kolem nás z mikroskopického, molekulárního hlediska Fáze I Fáze II z makroskopického hlediska Podle skupenského stavu stýkajících se objemových fází: kapalina /
Metody separace. přírodních látek
Metody separace přírodních látek (5) Chromatografie; základní definice a klasifikace ruzných metod; kapalinová chromatografie, plynová chromatografie, přístrojová technika. Chromatografie «F(+)d» 1897
Bilan a ce c zák á l k ad a ní pojm j y m aplikace zákonů o zachování čehokoli 10.10.2008 3
Výpočtový seminář z Procesního inženýrství podzim 2008 Bilance Materiálové a látkové 10.10.2008 1 Tématické okruhy bilance - základní pojmy bilanční schéma způsoby vyjadřování koncentrací a přepočtové
Matematika I Posloupnosti
Matematika I Posloupnosti RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Posloupnost Def. Nekoneènou posloupností reálných èísel
Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace 22.z-3.tr ZS 2015/2016 2015 - Ing. Václav Rada, CSc. TEORIE ŘÍZENÍ druhá část tématu předmětu pokračuje. oblastí matematických pomůcek
J., HÁJEK B., VOTINSKÝ J.
Kontakty a materiály J. Šedlbauer e-mail: josef.sedlbauer@tul.cz tel.: 48-535-3375 informace a materiály k Obecné chemii: www.fp.tul.cz/kch/sedlbauer (odkaz na předmět) konzultace: úterý odpoledne nebo
1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu
[M2-P1] KAPITOLA 1: Diferenciální rovnice 1. řádu diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu G(x, y, y, y,..., y (n) ) = 0 y (n) = F (x, y, y,..., y (n 1) ) Příklad 1.1:
Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.
Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních