Molekulární modelování a simulace

Rozměr: px
Začít zobrazení ze stránky:

Download "Molekulární modelování a simulace"

Transkript

1 Molekulární modelování a simulace 1/23 Evropský sociální fond þpraha & EU: Investujeme do va¹í budoucnostiÿ Inovace pøedmìtu Poèítaèová chemie je podporována projektem CHEMnote (Inovace bakaláøského studijního programu Chemie { moderní vzdìlávání podpoøené pou¾itím notebookù { CZ.2.17/3.1.00/33248) v rámci Operaèního programu PRAHA { ADAPTABILITA.

2 Základní prvky modelování ve fyzice a chemii 2/23? elementární èástice + gravitace: þteorie v¹ehoÿ { temná hmota... (známé) elementární èástice: standardní model { atomová jádra... jádra + elektrony + fotony: QED { pøesná spektroskopie... jádra + elektrony: Schrödingerova rovnice { vlastnosti malých molekul, spektra, rovnováhy v plynné fázi, kinetika, fotochemie... atomy : klasické (nebo kvantové) atomistické modelování { biomolekuly, kapaliny, fázové rovnováhy... hrubozrnné (coarse-grained) modely: mezo/nanoskopická ¹kála (více atomù = 1 objekt) { surfaktanty, polymery... mikroskopická ¹kála: vìt¹í èástice { hromada písku, micely... materiál jako kontinuum: parciální diferenciální rovnice { tok tepla, difuze, statika, atomová bomba... gravitace: Einsteinovy rovnice { èerné díry, gravitaèní vlny... multiscale modeling: QM/MM { enzymy... pøíp. pomocná centra / vìt¹í skupiny (-CH 3 )

3 (Hyper)plocha potenciální energie [plot/rcoord.sh] 3/23 Jádra jsou mnohem tì¾¹í ne¾ elektrony elektronové pohyby jsou mnohem rychlej¹í (tzv. Bornova{Oppenheimerova aproximace) potential energy surface (PES) energie jako funkce souøadnic poloh v¹ech atomových jader Reakce probíhá cestou nejmen¹ího odporu = pøes sedlový bod (pøesnìji: v jeho blízkosti) = tranzitní stav E pot ( r 1, r 2,..., r N ) credits: ucecmst/publications.html,

4 Jak získám PES? z kvantových výpoètù (Schrödingerova rovnice: ab initio, DFT) { pro mnoho atomù velmi drahé aproximujeme vzorcem (þsilové poleÿ, þpotenciálÿ, þmodelÿ,... ) { levné kombinace { QM/MM metody (quantum mech./molec. mech.) silové pole: (force eld) E pot = souèet mnoha èlenù, èlen = funkèní tvar + parametry pro rùzné atomy/skupiny 4/23

5 PES a modelování v chemii 5/23 pou¾iju klasickou mechaniku: na statické výpoèty (minimum energie, potenciál v okolí aj.) na výpoèet vývoje systému v èase (molekulová dynamika, MD) na výpoèet termodynamických velièin vzorkováním (Monte Carlo, MC) pou¾iju kvantovou mechaniku (na jádra): metoda dráhového integrálu (PI MC, PI MD) pou¾iju klasickou mechaniku s kvantovými korekcemi kombinace silové pole + klasická mechanika = þmolekulová mechanikaÿ (MM); v u¾¹ím smyslu nezahrnuje MC a MD

6 Molekulová mechanika { statický pohled Pou¾íváme PES, zpravidla popsanou silovým polem Minimalizace energie (T = 0), þoptimalizace strukturyÿ Renement { zpøesnìní struktury (z rozptylových experimentù) 6/23 Biochemie: tvar molekul (klíè + zámek), síly (hydrolní/hydrofobní...) Deskriptory pro QSAR (Quantitative Structure{Activity Relationship)... ale co pohyb?

7 Co je to pohyb? þskuteènýÿ pohyb molekul v èase V¹echny mo¾né kongurace (molekul) zprùmìrované v èase: 7/23 Statistická termodynamika se zabývá výpoètem velièin (bod varu, anita ligandu k receptoru... ) na základì pøedstavy (makro)stavu systému jako þprùmìruÿ v¹ech mo¾ných kongurací

8 Molekulové simulace molekulová dynamika (MD) èasový vývoj systému slo¾eného z mnoha molekul pohyb ka¾dého atomu je urèen silami, které na nìj v ka¾dém okam¾iku pùsobí 8/23 metoda Monte Carlo (MC); pøesnìji Metropolisova metoda a varianty posloupnost kongurací systému generována pomocí náhodných èísel provedeme náhodný pohyb molekuly a rozhodneme se, zda jej pøijmeme { tak, aby pravdìpodobnosti výskytu kongurací molekul byly stejné jako v realitì kinetické Monte Carlo simulovaný dìj je rozdìlen na elementární události (napø. adsorpce atomu na rostoucím krystalu, reakce na katalyzátoru) událost, ke které dojde, vybíráme podle známé pravdìpodobnosti kvantové simulace { MD, MC metody Las Vegas { náhodná cesta k deterministickému výsledku

9 Co simulujeme Kapaliny: vliv struktury na vlastnosti (anomálie vody), roztoky fázové rovnováhy, rozpustnost povrchy a rozhraní, surfaktanty Pevné látky: struktura krystalù, materiály (poruchy) adsorpce (zeolity) Biochemie: proteiny, nukleové kyseliny, iontové kanály, lipidické membrány Nanoobjekty: micely, polymery, samoskladba (coarse-grained modely, møí¾ky) Podobnými metodami lze studovat: atd. sypké materiály, rùzné minimalizace (MC), ¹íøení epidemií 9/23

10 [uvodsim/blend.sh] 10/23 Optimalizace struktury (molekulová mechanika) chair ¾idlièka experiment: 28 kj/mol model: 26 kj/mol twist (skew) boat zkøí¾ená vanièka experiment: 45 kj/mol model: 53 kj/mol

11 Pøíklad { voda [water/liquidwater.sh] 11/ molekul 300 K periodické ve smìrech x,y adhezivní podlo¾ka neadhezivní poklièka

12 Pøíklad { elektrosprej Cytochromu C [uvodsim/cytox.sh] 12/23 Yi Mao, J. Woenckhaus, J. Kolafa, M.A. Ratner, M.F. Jarrold Elektrosprej: rozpra¹ování nabitých èástic Mìøí se úèinný prùøez

13 SIMOLANT Vlastnosti: Jevy: 2D þatomyÿ (potenciál Lennard-Jonesova typu) odpudivé/pøita¾livé stìny, gravitace MC i MD konstantní energie i termostat kondenzace plynu zmrznutí kapky poruchy krystalu kapilární deprese a elevace plyn v gravitaèním poli nukleace [cd uvodsim; simolant -g T.1] 13/23 Chcete si sami nainstalovat? Staèí Google SIMOLANT...

14 Self-assembly (samoskladba) [show/janus.sh] 14/23 Supramolekulární chemie: skládání molekul pomocí (zpravidla) nekovalentních sil (van der Waals, vodíkové vazby) do strukturovaných celkù Ukázka: dvoufunkèní èástice v roztoku Janus particles Ukázka: + ètyøfunkèní èástice Janus Janus Iapetus credit: wikipedie, pages/cassini credit: Atwood et al., Science 309, 2037 (2005)

15 Jak dostat minimum energie [uvodsim/min.sh] 15/23 Na 10 Cl 10 rychlé chlazení pomalé chlazení

16 [uvodsim/salesman.sh 100] 16/23 Simulované ¾íhání (simulated annealing) Hledáme globální minimum funkce (þenergieÿ) s mnoha lokálními minimy Zaèneme nìjakou ¹patnou kongurací (napø. náhodnou) Navrhneme vhodné zmìny kongurace A i A j Aplikujeme Metropolisovu metodu za sni¾ující se þteplotyÿ T Pøíklad: Problém obchodního cestujícího (traveling salesman) 100 mìst náhodnì ve ètverci 1 1 Kongurace = poøadí mìst þenergieÿ = délka cesty Zmìna kongurace = zámìna 2 náhodnì zvolených mìst \greedy" (Metropolis T = 0) simulované ¾íhání genetický algoritmus

17 [../simul/rayleigh/show.sh] 17/23 (Plateauova-)Rayleighova nestabilita Èúrek vody se rozpadá na kapky. Nestabilita pro kr < 1 (pro poruchu sin(kz)), max. nestabilita pro kr = ln 2.

18 Nukleace pøi supersonické expanzi [show/supexp.sh] 18/23 Vodní pára o tlaku cca 5 bar se pou¹tí velmi úzkým otvorem pøes trysku do vakua a adiabaticky se ochlazuje pod bod mrazu. Lze tak studovat napø. chem. reakce ve stratosféøe. Otázka: Jaký je tvar, velikost a struktura klastrù ledu? credit: M. Fárník

19 Tání nanoèástic kroupa z 600 molekul vody (led Ih) ohøívání èas simulace = 5 ns tento model vody taje pøi 250 K nanoèástice taje pøi ni¾¹í teplotì [show/kroupa.sh] 19/23 nanokrystal s 489 atomy zlata ohøívání èas simulace 77 ps

20 [showvid /home/jiri/macsimus/ray/dogrun/dogrun.vid] 20/23 Síly mezi molekulami Londonovy (disperzní) síly pro vìt¹í vzdálenosti: model uktuující dipól{ {indukovaný dipól elst. pole E 1/r 3 indukovaný dipól µ ind E energie u(r) µe 1/r 6 (v¾dy záporná) Odpuzování na krat¹ích vzdálenostech: u(r) e const r Celkem: u(r) = Ae Br C/r 6 Aproximace odpudivých sil: Ae Br A /r 12 Lennard-Jonesùv potenciál: E / (kj mol -1 ) [ (σ ) 12 ( σ ) ] u(r) = 4ɛ r r r / nm 2 0 Ar...Ar Tyto síly jsou souèástí interakcí mezi v¹emi atomy a molekulami

21 Elektrické síly náboj{náboj (ionty) U = 1 4πɛ 0 q i q j r ij 21/23 parciální náboje: takové náboje na atomových jádrech, aby se to chovalo stejnì jako skuteèné nábojové rozlo¾ení dipólový moment µ = i q i r i polarizovatelnost (el. pole indukuje dipól) µ ind = α E

22 Silové pole 22/23 Molekulový model èi silové pole (force eld) je matematický zápis energie molekuly nebo souboru molekul jako funkce souøadnic atomù, r i, i = 1,..., N. malé: tuhá tìlesa { rotace (voda 25 C: vibruje 0.05 % molekul) velké: mnoho èlenù vazebné síly: vibrace vazeb (1{2): U = K(r r 0 ) 2 lze nahradit pevnou vazbou vibrace úhlù torze (1{4) a torzní potenciál: n K n cos(nφ) \improper torsion" (dr¾í >C=O v rovinì) nevazebné síly (èást. 1{4, 1{dále): Lennard-Jones, náboje A v¹echny pøíspìvky seèteme = aproximace párové aditivity Noo, ideálnì pøesná není, øeknìme na 90 % φ

23 Konstrukce silových polí geometrie: spektroskopie, difrakce, kvantové výpoèty vazebné síly: kvantové výpoèty, spektroskopie Lennard-Jones σ: experimentální hustota, struktura (difrakce) Lennard-Jones ɛ: výparná entalpie 23/23 parciální náboje: { dipólové momenty: spektroskopie, permitivita { kvantové výpoèty (Mulliken, CHELPG = CHarges from Electrostatic Potentials using a Grid based method) a/nebo: struktura klastrù (z kvantových výpoètù)

Úvodní info. Ústav fyzikální chemie VŠCHT Praha, budova A, místnost 325 (zadním vchodem)

Úvodní info. Ústav fyzikální chemie VŠCHT Praha, budova A, místnost 325 (zadním vchodem) Úvodní info [mozilla file:/home/jiri/www/fch/cz/talks/mgr.html] 1/20 Jiří Kolafa Ústav fyzikální chemie VŠCHT Praha, budova A, místnost 325 (zadním vchodem) http://www.mapy.cz/s/98vc jiri.kolafa@vscht.cz

Více

Molekulární modelování a simulace

Molekulární modelování a simulace Molekulární modelování a simulace 1/35 Evropský sociální fond þpraha & EU: Investujeme do va¹í budoucnostiÿ Inovace pøedmìtu Poèítaèová chemie je podporována projektem CHEMnote (Inovace bakaláøského studijního

Více

Co je to pohyb? Molekulové simulace. Pøíklad { elektrosprej Cytochromu C. Co simulujeme. Pøíklad { voda SIMOLANT

Co je to pohyb? Molekulové simulace. Pøíklad { elektrosprej Cytochromu C. Co simulujeme. Pøíklad { voda SIMOLANT Molekulární modelování a simulace Evropský sociální fond þpraha & EU: Investujeme do va¹í budoucnostiÿ /35 Inovace pøedmìtu Poèítaèová chemie je podporována projektem CHEMnote (Inovace bakaláøského studijního

Více

Základní prvky modelování ve fyzice a chemii

Základní prvky modelování ve fyzice a chemii Základní prvky modelování ve fyzice a chemii 1/40? elementární èástice + gravitace: þteorie v¹ehoÿ { temná hmota... (známé) elementární èástice: standardní model { atomová jádra... jádra + elektrony +

Více

Molekulová mechanika { statický pohled. Základní prvky modelování. (Hyper)plocha potenciální energie. Co je to pohyb? Modelování v chemii: dìlba práce

Molekulová mechanika { statický pohled. Základní prvky modelování. (Hyper)plocha potenciální energie. Co je to pohyb? Modelování v chemii: dìlba práce Základní prvky modelování? elementární èástice + gravitace: þteorie v¹ehoÿ { temná hmota... (známé) elementární èástice: standardní model { atomová jádra... jádra + elektrony + fotony: QED { pøesná spektroskopie...

Více

Základní prvky modelování

Základní prvky modelování Základní prvky modelování? elementární èástice + gravitace: þteorie v¹ehoÿ { temná hmota... (známé) elementární èástice: standardní model { atomová jádra... jádra + elektrony + fotony: QED { pøesná spektroskopie...

Více

Základní prvky modelování

Základní prvky modelování Základní prvky modelování? elementární èástice + gravitace: þteorie v¹ehoÿ { temná hmota... (známé) elementární èástice: standardní model { atomová jádra... jádra + elektrony + fotony: QED { pøesná spektroskopie...

Více

Potenciální energie atom{atom

Potenciální energie atom{atom Potenciální energie atom{atom 1/16 Londonovy (disperzní) síly: na del¹ích vzdálenostech, v¾dy pøita¾livé Model uktuující dipól { uktuující dipól elst. pole E 1/r 3 indukovaný dipól µ ind E energie u(r)

Více

Základní prvky modelování. Pøed r (Hyper)plocha potenciální energie. Molekulová mechanika { statický pohled. Co je to pohyb? Jak získám PES?

Základní prvky modelování. Pøed r (Hyper)plocha potenciální energie. Molekulová mechanika { statický pohled. Co je to pohyb? Jak získám PES? Základní prvky modelování 1/44 Pøed r. 1930 5/44? elementární èástice + gravitace: þteorie v¹ehoÿ { temná hmota... (známé) elementární èástice: standardní model { atomová jádra... jádra + elektrony + fotony:

Více

Nekovalentní interakce

Nekovalentní interakce Nekovalentní interakce Jan Řezáč UOCHB AV ČR 31. října 2017 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 31. října 2017 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii 4 Výpočty

Více

Nekovalentní interakce

Nekovalentní interakce Nekovalentní interakce Jan Řezáč UOCHB AV ČR 3. listopadu 2016 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 3. listopadu 2016 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii

Více

Skupenské stavy. Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe

Skupenské stavy. Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe Skupenské stavy Plyn Zcela neuspořádané Hodně volného prostoru Zcela volný pohyb částic Částice daleko od sebe Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe

Více

Stanislav Labík. Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost

Stanislav Labík. Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost Stanislav Labík Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost 325 labik@vscht.cz 220 444 257 http://www.vscht.cz/fch/ Výuka Letní semestr N403032 Základy fyzikální chemie

Více

Cvièení { 2D Clausiova-Clapeyronova rovnice

Cvièení { 2D Clausiova-Clapeyronova rovnice Cvièení { 2D Clausiova-Clapeyronova rovnice 1/12 Evropský sociální fond þpraha & EU: Investujeme do va¹í budoucnostiÿ Inovace pøedmìtu Poèítaèová chemie je podporována projektem CHEMnote (Inovace bakaláøského

Více

Skupenské stavy látek. Mezimolekulární síly

Skupenské stavy látek. Mezimolekulární síly Skupenské stavy látek Mezimolekulární síly 1 Interakce iont-dipól Např. hydratační (solvatační) interakce mezi Na + (iont) a molekulou vody (dipól). Jde o nejsilnější mezimolekulární (nevazebnou) interakci.

Více

Studium enzymatické reakce metodami výpočetní chemie

Studium enzymatické reakce metodami výpočetní chemie Studium enzymatické reakce metodami výpočetní chemie 2. kolo Petr Kulhánek, Zora Střelcová kulhanek@chemi.muni.cz CEITEC - Středoevropský technologický institut Masarykova univerzita, Kamenice 5, 625 00

Více

Chemická vazba. John Dalton Amadeo Avogadro

Chemická vazba. John Dalton Amadeo Avogadro Chemická vazba John Dalton 1766-1844 Amadeo Avogadro 1776-1856 Výpočet molekuly 2, metoda valenční vazby Walter eitler 1904-1981 Fritz W. London 1900-1954 Teorie molekulových orbitalů Friedrich und 1896-1997

Více

Počítačová chemie. výpočetně náročné simulace chemických a biomolekulárních systémů. Zora Střelcová

Počítačová chemie. výpočetně náročné simulace chemických a biomolekulárních systémů. Zora Střelcová Počítačová chemie výpočetně náročné simulace chemických a biomolekulárních systémů Zora Střelcová Národní centrum pro výzkum biomolekul, Masarykova univerzita, Kotlářská 2, 611 37 Brno, Česká Republika

Více

Monte Carlo, analýza výsledkù simulací

Monte Carlo, analýza výsledkù simulací Monte Carlo, analýza výsledkù simulací 1/26 Evropský sociální fond þpraha & EU: Investujeme do va¹í budoucnostiÿ Inovace pøedmìtu Poèítaèová chemie je podporována projektem CHEMnote (Inovace bakaláøského

Více

John Dalton Amadeo Avogadro

John Dalton Amadeo Avogadro Spojením atomů vznikají molekuly... John Dalton 1766 1844 Amadeo Avogadro 1776 1856 Výpočet molekuly 2, metoda valenční vazby Walter eitler 1904 1981 Fritz W. London 1900 1954 Teorie molekulových orbitalů

Více

Od kvantové mechaniky k chemii

Od kvantové mechaniky k chemii Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi

Více

Elementární reakce. stechiometrický zápis vystihuje mechanismus (Cl. + H 2 HCl + H. ) 2 NO 2 ; radioak-

Elementární reakce. stechiometrický zápis vystihuje mechanismus (Cl. + H 2 HCl + H. ) 2 NO 2 ; radioak- Elementární reakce 1/15 stechiometrický zápis vystihuje mechanismus (Cl. + H 2 HCl + H. ) 2 NO 2 ; radioak- reakce monomolekulární (rozpad molekuly: N 2 O 4 tivní rozpad; izomerizace) reakce bimolekulární

Více

Mezimolekulové interakce

Mezimolekulové interakce Mezimolekulové interakce Interakce molekul reaktivně vzniká či zaniká kovalentní vazba překryv elektronových oblaků, mění se vlastnosti nereaktivně vznikají molekulové komplexy slabá, nekovalentní, nechemická,

Více

Klasická termodynamika (aneb pøehled FCH I)

Klasická termodynamika (aneb pøehled FCH I) Klasická termodynamika (aneb pøehled FCH I) 1/16 0. zákon 1. zákon id. plyn: pv = nrt pv κ = konst (id., ad.) id. plyn: U = U(T) }{{} Carnotùv cyklus dq T = 0 2. zákon rg, K,... lim S = 0 T 0 S, ds = dq

Více

Molekulární dynamika vody a alkoholů

Molekulární dynamika vody a alkoholů Molekulární dynamika vody a alkoholů Pavel Petrus Katedra fyziky, Univerzita J. E. Purkyně, Ústí nad Labem 10. týden 22.4.2010 Modely vody SPC SPC/E TIP4P TIP5P Modely alkoholů OPLS TraPPE Radiální distribuční

Více

Cvièení { 2D Clausiova{Clapeyronova rovnice

Cvièení { 2D Clausiova{Clapeyronova rovnice Cvièení { 2D Clausiova{Clapeyronova rovnice 1/15 Evropský sociální fond þpraha & EU: Investujeme do va¹í budoucnostiÿ Inovace pøedmìtu Poèítaèová chemie je podporována projektem CHEMnote (Inovace bakaláøského

Více

Mezimolekulové interakce

Mezimolekulové interakce Mezimolekulové interakce, od teorie po interakce biomolekul s grafenem Pavel Banáš Mezimolekulové interakce slabé mezimolekulové interakce fyzikální původ mezimolekulárních interakcí poruchová teorie mezimolekulárních

Více

Viriálová stavová rovnice 1 + s.1

Viriálová stavová rovnice 1 + s.1 Viriálová stavová rovnice 1 + s.1 (Mírnì nestandardní odvození Prùmìrná energie molekul okolo vybrané molekuly (β = 1/(k B T : 0 u(r e βu(r 4πr 2 dr Energie souboru N molekul: U = f 2 k B T + N 2 2V Tlak

Více

Fyzika IV Dynamika jader v molekulách

Fyzika IV Dynamika jader v molekulách Dynamika jader v molekulách vibrace rotace Dynamika jader v molekulách rotační energetické hladiny (dvouatomová molekula) moment setrvačnosti kolem osy procházející těžištěm osa těžiště m2 m1 r2 r1 R moment

Více

Fázová rozhraní a mezifázová energie

Fázová rozhraní a mezifázová energie Fázová rozhraní a mezifázová energie druhy: l/g l/l }{{} mobilní s/g s/l s/s 1/14 Pøíklad. Kolik % molekul vody je na povrchu kapièky mlhy o prùmìru a) 0.1 mm (hranice viditelnosti okem) b) 200 nm (hranice

Více

17 Vlastnosti molekul

17 Vlastnosti molekul 17 Vlastnosti molekul Experimentálně molekuly charakterizujeme pomocí nejrůznějších vlastností: můžeme změřit třeba NMR posuny, elektrické či magnetické parametry či třeba jejich optickou otáčivost. Tyto

Více

Opakování

Opakování Slabé vazebné interakce Opakování Co je to atom? Opakování Opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího protony a neutrony

Více

Úvod do molekulové dynamiky simulace proteinů. Eva Fadrná evaf@chemi.muni.cz

Úvod do molekulové dynamiky simulace proteinů. Eva Fadrná evaf@chemi.muni.cz Úvod do molekulové dynamiky simulace proteinů Eva Fadrná evaf@chemi.muni.cz Molekulová mechanika = metoda silového pole = force field Energie vypočtená řešením Schrodingerovy rovnice Energie vypočtená

Více

Molekulární krystal vazebné poměry. Bohumil Kratochvíl

Molekulární krystal vazebné poměry. Bohumil Kratochvíl Molekulární krystal vazebné poměry Bohumil Kratochvíl Předmět: Chemie a fyzika pevných léčiv, 2017 Složení farmaceutických substancí - API Z celkového portfolia API tvoří asi 90 % organické sloučeniny,

Více

PLOCHA POTENCIÁLNÍ ENERGIE

PLOCHA POTENCIÁLNÍ ENERGIE PLOCHA POTENCIÁLNÍ ENERGIE Zero point energy - Energie nulového bodu Molekula o určitou část své energie nikdy nemůže přijít Tzv. Zbytková energie (ZPE) vnitřní energie molekuly, která je přítomna vždy

Více

Termochemie { práce. Práce: W = s F nebo W = F ds. Objemová práce (p vn = vnìj¹í tlak): W = p vn dv. Vratný dìj: p = p vn (ze stavové rovnice) W =

Termochemie { práce. Práce: W = s F nebo W = F ds. Objemová práce (p vn = vnìj¹í tlak): W = p vn dv. Vratný dìj: p = p vn (ze stavové rovnice) W = Termochemie { práce Práce: W = s F nebo W = Objemová práce (p vn = vnìj¹í tlak): W = V2 V 1 p vn dv s2 Vratný dìj: p = p vn (ze stavové rovnice) W = V2 V 1 p dv s 1 F ds s.1 Diferenciální tvar: dw = pdv

Více

Struktura atomů a molekul

Struktura atomů a molekul Struktura atomů a molekul Obrazová příloha Michal Otyepka tento text byl vysázen systémem L A TEX2 ε ii Úvod Dokument obsahuje všechny obrázky tak, jak jsou uvedeny ve druhém vydání skript Struktura atomů

Více

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e =

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e = Atom vodíku Nejjednodušší soustava: p + e Řešitelná exaktně Kulová symetrie Potenciální energie mezi p + e V 2 e = 4πε r 0 1 Polární souřadnice využití kulové symetrie atomu Ψ(x,y,z) Ψ(r,θ, φ) x =? y=?

Více

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013 Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná

Více

Základní charakteristika výzkumné činnosti Ústavu fyzikální chemie

Základní charakteristika výzkumné činnosti Ústavu fyzikální chemie Základní charakteristika výzkumné činnosti Ústavu fyzikální chemie Základním předmětem výzkumu prováděného ústavem je chemická termodynamika a její aplikace pro popis vybraných vlastností chemických systémů

Více

Vazby v pevných látkách

Vazby v pevných látkách Vazby v pevných látkách Hlavní body 1. Tvorba pevných látek 2. Van der Waalsova vazba elektrostatická interakce indukovaných dipólů 3. Iontová vazba elektrostatická interakce iontů 4. Kovalentní vazba

Více

Fyzikální chemie. ochrana životního prostředí analytická chemie chemická technologie denní. Platnost: od 1. 9. 2009 do 31. 8. 2013

Fyzikální chemie. ochrana životního prostředí analytická chemie chemická technologie denní. Platnost: od 1. 9. 2009 do 31. 8. 2013 Učební osnova předmětu Fyzikální chemie Studijní obor: Aplikovaná chemie Zaměření: Forma vzdělávání: Celkový počet vyučovacích hodin za studium: Analytická chemie Chemická technologie Ochrana životního

Více

Opakování: Standardní stav þ ÿ

Opakování: Standardní stav þ ÿ Opakování: Standardní stav þ ÿ s.1 12. øíjna 215 Standardní stav þ ÿ = èistá slo¾ka ve stavu ideálního plynu za teploty soustavy T a standardního tlaku = 1 kpa, døíve 11,325 kpa. Èistá látka: Pøibli¾nì:

Více

Okruhy k maturitní zkoušce z fyziky

Okruhy k maturitní zkoušce z fyziky Okruhy k maturitní zkoušce z fyziky 1. Fyzikální obraz světa - metody zkoumaní fyzikální reality, pojem vztažné soustavy ve fyzice, soustava jednotek SI, skalární a vektorové fyzikální veličiny, fyzikální

Více

POŽADAVKY KE STÁTNÍ ZÁVĚREČNÉ ZKOUŠCE MAGISTERSKÉ STUDIUM POČÍTAČOVÉ MODELOVÁNÍ VE VĚDĚ A TECHNICE (NAVAZUJÍCÍ STUDIUM I DOBÍHAJÍCÍ 5-LETÉ STUDIUM)

POŽADAVKY KE STÁTNÍ ZÁVĚREČNÉ ZKOUŠCE MAGISTERSKÉ STUDIUM POČÍTAČOVÉ MODELOVÁNÍ VE VĚDĚ A TECHNICE (NAVAZUJÍCÍ STUDIUM I DOBÍHAJÍCÍ 5-LETÉ STUDIUM) POŽADAVKY KE STÁTNÍ ZÁVĚREČNÉ ZKOUŠCE MAGISTERSKÉ STUDIUM POČÍTAČOVÉ MODELOVÁNÍ VE VĚDĚ A TECHNICE (NAVAZUJÍCÍ STUDIUM I DOBÍHAJÍCÍ 5-LETÉ STUDIUM) Organizace zkoušky Zkouška je ústní a má čtyři části:

Více

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

3. Stavba hmoty Nadmolekulární uspořádání

3. Stavba hmoty Nadmolekulární uspořádání mezimolekulové interakce supramolekulární chemie sebeskladba molekulární zařízení Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti mezimolekulové interakce (nekovalentní) seskupování

Více

Rovnováha kapalina{pára u binárních systémù

Rovnováha kapalina{pára u binárních systémù Rovnováha kapalina{pára u binárních systémù 1 Pøedpoklad: 1 kapalná fáze Oznaèení: molární zlomky v kapalné fázi: x i molární zlomky v plynné fázi: y i Poèet stupòù volnosti: v = k f + 2 = 2 stav smìsi

Více

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním zkouškám DOKTORSKÉ STUDIUM

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním zkouškám DOKTORSKÉ STUDIUM OKRUHY ke státním zkouškám DOKTORSKÉ STUDIUM Obor: Zaměření: Studijní program: Fyzikální inženýrství Inženýrství pevných látek Aplikace přírodních věd Předmět SDZk Aplikace přírodních věd doktorské studium

Více

02 Nevazebné interakce

02 Nevazebné interakce 02 Nevazebné interakce Nevazebné interakce Druh chemické vazby Určují 3D konfiguraci makromolekul, účastní se mnoha biologických procesů, zodpovědné za uspořádání molekul v krystalu Síla nevazebných interakcí

Více

Otázky ke zkoušce z obecné chemie (Prof. RNDr. Karel Procházka, DrSc.)

Otázky ke zkoušce z obecné chemie (Prof. RNDr. Karel Procházka, DrSc.) Otázky ke zkoušce z obecné chemie (Prof. RNDr. Karel Procházka, DrSc.) Na ústní zkoušku se může přihlásit student, který má zápočet ze cvičení a úspěšně složenou zkouškovou písemku. Na ústní zkoušku se

Více

Chemická vazba. Příčinou nestability atomů a jejich ochoty tvořit vazbu je jejich elektronový obal.

Chemická vazba. Příčinou nestability atomů a jejich ochoty tvořit vazbu je jejich elektronový obal. Chemická vazba Volné atomy v přírodě jen zcela výjimečně (vzácné plyny). Atomy prvků mají snahu se navzájem slučovat a vytvářet molekuly prvků nebo sloučenin. Atomy jsou v molekulách k sobě poutány chemickou

Více

Lekce 4 Statistická termodynamika

Lekce 4 Statistická termodynamika Lekce 4 Statistická termodynamika Osnova 1. Co je statistická termodynamika 2. Mikrostav, makrostav a Gibbsův soubor 3. Příklady Gibbsových souborů 4. Souborové střední hodnoty 5. Časové střední hodnoty

Více

Metoda Monte Carlo, simulované žíhání

Metoda Monte Carlo, simulované žíhání co byste měli umět po dnešní lekci: integrovat pomocí metody Monte Carlo modelovat jednoduché mnočásticové systémy (Brownův pohyb,...) nalézt globální minimum pomocí simulovaného žíhání Určení čísla metodou

Více

Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny

Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny Hustota toku Zatím jsme studovali pouze soustavy, které byly v rovnovážném stavu není-li soustava v silovém poli, je hustota částic stejná

Více

Mol. fyz. a termodynamika

Mol. fyz. a termodynamika Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli

Více

na stabilitu adsorbovaného komplexu

na stabilitu adsorbovaného komplexu Vliv velikosti částic aktivního kovu na stabilitu adsorbovaného komplexu Jiří Švrček Ing. Petr Kačer, Ph.D. Ing. David Karhánek Ústav organické technologie VŠCHT Praha Hydrogenace Základní proces chemického

Více

Látkové množství n poznámky 6.A GVN

Látkové množství n poznámky 6.A GVN Látkové množství n poznámky 6.A GVN 10. září 2007 charakterizuje látky z hlediska počtu částic (molekul, atomů, iontů), které tato látka obsahuje je-li v tělese z homogenní látky N částic, pak látkové

Více

Seznam otázek pro zkoušku z biofyziky oboru lékařství pro školní rok

Seznam otázek pro zkoušku z biofyziky oboru lékařství pro školní rok Seznam otázek pro zkoušku z biofyziky oboru lékařství pro školní rok 2014-15 Stavba hmoty Elementární částice; Kvantové jevy, vlnové vlastnosti částic; Ionizace, excitace; Struktura el. obalu atomu; Spektrum

Více

Aproximace funkcí. Chceme þvzoreèekÿ. Známe: celý prùbìh funkce

Aproximace funkcí. Chceme þvzoreèekÿ. Známe: celý prùbìh funkce Aproximace funkcí 1/13 Známe: celý prùbìh funkce Chceme þvzoreèekÿ hodnoty ve vybraných bodech, pøíp. i derivace Kvalita údajù: známe pøesnì (máme algoritmus) známe pøibli¾nì (experiment èi simulace) {

Více

Kapaliny Molekulové vdw síly, vodíkové můstky

Kapaliny Molekulové vdw síly, vodíkové můstky Kapaliny Molekulové vdw síly, vodíkové můstky Metalické roztavené kovy, ionty + elektrony, elektrostatické síly Iontové roztavené soli, FLINAK (LiF + NaF + KF), volně pohyblivé anionty a kationty, iontová

Více

Vojtěch Hrubý: Esej pro předmět Seminář EVF

Vojtěch Hrubý: Esej pro předmět Seminář EVF Vojtěch Hrubý: Esej pro předmět Seminář EVF Plazma Pod pojmem plazma většinou myslíme plynné prostředí, které se skládá z neutrálních částic, iontů a elektronů. Poměr množství neutrálních a nabitých částic

Více

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu Úvod do moderní fyziky lekce 3 stavba a struktura atomu Vývoj představ o stavbě atomu 1904 J. J. Thomson pudinkový model atomu 1909 H. Geiger, E. Marsden experiment s ozařováním zlaté fólie alfa částicemi

Více

Typy molekul, látek a jejich vazeb v organismech

Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Organismy se skládají z molekul rozličných látek Jednotlivé látky si organismus vytváří sám z jiných látek,

Více

Fázová rozhraní a mezifázová energie

Fázová rozhraní a mezifázová energie Fázová rozhraní a mezifázová energie druhy: l/g l/l }{{} mobilní 1/15 s/g s/l s/s povrch koule = 4πr 2 Pøíklad. Kolik % molekul vody je na povrchu kapièky mlhy o prùmìru a) 0.1 mm (hranice viditelnosti

Více

10A1_IR spektroskopie

10A1_IR spektroskopie C6200-Biochemické metody 10A1_IR spektroskopie Petr Zbořil IR spektroskopie Excitace vibračních a rotačních přechodů Valenční vibrace n Deformační vibrace d IR spektroskopie N atomů = 3N stupňů volnosti

Více

ANALÝZA FRAGMENTAČNÍCH KANÁLŮ IONIZOVANÝCH KLASTRŮ Rg N ; N>4, rozvoj programu Mdisreader

ANALÝZA FRAGMENTAČNÍCH KANÁLŮ IONIZOVANÝCH KLASTRŮ Rg N ; N>4, rozvoj programu Mdisreader ANALÝZA FRAGMENTAČNÍCH KANÁLŮ IONIZOVANÝCH KLASTRŮ Rg N ; N>4, rozvoj programu Mdisreader Autor: Pavel Naar Vedoucí práce: Doc. Ing. Ivan Janeček, CSc. Práce vznikla v rámci projektu SGS17/PřF/2012 Obsah

Více

Statistická termodynamika (mechanika)

Statistická termodynamika (mechanika) Statistická termodynamika (mechanika) 1/16 Makroskopické velièiny jsou výsledkem zprùmìrovaného chování mnoha èástic Tlak ideálního plynu z kinetické teorie 1 [tchem/simplyn.sh] 2/16 Molekula = hmotný

Více

Vibrace atomů v mřížce, tepelná kapacita pevných látek

Vibrace atomů v mřížce, tepelná kapacita pevných látek Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární

Více

Fyzikální chemie Úvod do studia, základní pojmy

Fyzikální chemie Úvod do studia, základní pojmy Fyzikální chemie Úvod do studia, základní pojmy HMOTA A JEJÍ VLASTNOSTI POSTAVENÍ FYZIKÁLNÍ CHEMIE V PŘÍRODNÍCH VĚDÁCH HISTORIE FYZIKÁLNÍ CHEMIE ZÁKLADNÍ POJMY DEFINICE FORMY HMOTY Formy a nositelé hmoty

Více

FYZIKÁLNÍ CHEMIE I: 1. ČÁST KCH/P401

FYZIKÁLNÍ CHEMIE I: 1. ČÁST KCH/P401 Univerzita J. E. Purkyně v Ústí nad Labem Přírodovědecká fakulta FYZIKÁLNÍ CHEMIE I: 1. ČÁST KCH/P401 Magda Škvorová Ústí nad Labem 2013 Obor: Toxikologie a analýza škodlivin, Chemie (dvouoborová) Klíčová

Více

Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 78-42-M/01 Technické lyceum STROJNICTVÍ

Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 78-42-M/01 Technické lyceum STROJNICTVÍ Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 78-42-M/01 Technické lyceum STROJNICTVÍ 1. Mechanické vlastnosti materiálů 2. Technologické vlastnosti materiálů 3. Zjišťování

Více

Tepelná vodivost. střední rychlost. T 1 > T 2 z. teplo přenesené za čas dt: T 1 T 2. tepelný tok střední volná dráha. součinitel tepelné vodivosti

Tepelná vodivost. střední rychlost. T 1 > T 2 z. teplo přenesené za čas dt: T 1 T 2. tepelný tok střední volná dráha. součinitel tepelné vodivosti Tepelná vodivost teplo přenesené za čas dt: T 1 > T z T 1 S tepelný tok střední volná dráha T součinitel tepelné vodivosti střední rychlost Tepelná vodivost součinitel tepelné vodivosti při T = 300 K součinitel

Více

Úvodní info. Studium

Úvodní info.   Studium [mozilla le:/home/jiri/www/fch/cz/pomucky/kolafa/n4316.html] 1/16 Úvodní info Jiøí Kolafa Ústav fyzikální chemie V CHT Praha budova A, místnost 325 (zadním vchodem) jiri.kolafa@vscht.cz 2244 4257 Web pøedmìtu:

Více

Mgr. Jakub Janíček VY_32_INOVACE_Ch1r0118

Mgr. Jakub Janíček VY_32_INOVACE_Ch1r0118 Chemická vazba Mgr. Jakub Janíček VY_32_INOVACE_Ch1r0118 Chemická vazba Většina atomů má tendenci se spojovat do větších celků (molekul), v nichž jsou vzájemně vázané chemickou vazbou. Chemická vazba je

Více

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček: Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie

Více

KAM SE UBIRA POČÍTAČOVÁ CHEMIE - ZAOSTŘENO NA MODELOVÁNÍ VĚTŠÍCH MOLEKUL

KAM SE UBIRA POČÍTAČOVÁ CHEMIE - ZAOSTŘENO NA MODELOVÁNÍ VĚTŠÍCH MOLEKUL Chem. Listy 92, 101-113 (1998) KAM SE UBIRA POČÍTAČOVÁ CHEMIE - ZAOSTŘENO NA MODELOVÁNÍ VĚTŠÍCH MOLEKUL JAROSLAV KOCA Katedra organické chemie a Laboratoř struktury a dynamiky biomolekul, Přírodovědecká

Více

Lekce 9 Metoda Molekulární dynamiky III. Technologie

Lekce 9 Metoda Molekulární dynamiky III. Technologie Lekce 9 Metoda molekulární dynamiky III Technologie Osnova 1. Výpočet sil. Výpočet termodynamických parametrů 3. Ekvilibrizační a simulační část MD simulace Výpočet sil Pohybové rovnice ɺɺ W mk rk = FK,

Více

Brownovská (stochastická) dynamika, disipativní èásticová dynamika = MD + náhodné síly. i = 1,..., N. r i. U = i<j. u(r ij ) du(r ji ) r ji

Brownovská (stochastická) dynamika, disipativní èásticová dynamika = MD + náhodné síly. i = 1,..., N. r i. U = i<j. u(r ij ) du(r ji ) r ji Molekulová dynamika Síly: tuhé koule ap. { nárazy þklasickáÿ MD { integrace pohybových rovnic 1/20 Brownovská (stochastická) dynamika, disipativní èásticová dynamika = MD + náhodné síly Pøíklad: f i =

Více

Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 78-42-M/01 Technické lyceum ANGLICKÝ JAZYK

Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 78-42-M/01 Technické lyceum ANGLICKÝ JAZYK Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 78-42-M/01 Technické lyceum ANGLICKÝ JAZYK 1. Characteristics 2. The Czech Republic 3. Great Britain 4. London 5. The USA

Více

Test vlastnosti látek a periodická tabulka

Test vlastnosti látek a periodická tabulka DUM Základy přírodních věd DUM III/2-T3-2-08 Téma: Test vlastnosti látek a periodická tabulka Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý Mgr. Josef Kormaník TEST Test vlastnosti

Více

Kapaliny Molekulové vdw síly, vodíkové můstky

Kapaliny Molekulové vdw síly, vodíkové můstky Kapaliny Molekulové vdw síly, vodíkové můstky Metalické roztavené kovy, ionty + elektrony, elektrostatické síly Iontové roztavené soli, FLINAK (LiF + NaF + KF), volně pohyblivé anionty a kationty, iontová

Více

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská. Příloha formuláře C OKRUHY

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská. Příloha formuláře C OKRUHY Příloha formuláře C OKRUHY ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM Obor: Studijní program: Aplikace přírodních věd Základy fyziky kondenzovaných látek 1. Vazebné síly v kondenzovaných látkách

Více

Vazby v pevných látkách

Vazby v pevných látkách Vazby v pevných látkách Proč to drží pohromadě? Iontová vazba Kovalentní vazba Kovová vazba Van der Waalsova interakce Vodíková interakce Na chemické vazbě se podílí tzv. valenční elektrony, t.j. elektrony,

Více

6. Stavy hmoty - Plyny

6. Stavy hmoty - Plyny skupenství plynné plyn x pára (pod kritickou teplotou) stavové chování Ideální plyn Reálné plyny Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti skupenství plynné reálný plyn ve stavu

Více

Nultá věta termodynamická

Nultá věta termodynamická TERMODYNAMIKA Nultá věta termodynamická 2 Práce 3 Práce - příklady 4 1. věta termodynamická 5 Entalpie 6 Tepelné kapacity 7 Vnitřní energie a entalpie ideálního plynu 8 Výpočet tepla a práce 9 Adiabatický

Více

Neideální plyny. Z e dr dr dr. Integrace přes hybnosti. Neideální chování

Neideální plyny. Z e dr dr dr. Integrace přes hybnosti. Neideální chování eideální plyny b H Q(, V, T )... e dp 3... dpdr... dr! h Integrace přes hybnosti QVT (,, ) pmkt! h 3 / e dr dr dr /... U kt... eideální chování p kt r B ( T) r B ( T) r 3 3 Vyšší koeficinety velice složité

Více

Kapitoly z fyzikální chemie KFC/KFCH. I. Základní pojmy FCH a kinetická teorie plynů

Kapitoly z fyzikální chemie KFC/KFCH. I. Základní pojmy FCH a kinetická teorie plynů Kapitoly z fyzikální chemie KFC/KFCH I. Základní pojmy FCH a kinetická teorie plynů RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci Zkouška a doporučená literatura Ústní kolokvium Doporučená literatura

Více

L A S E R. Krize klasické fyziky na přelomu 19. a 20. století, vznik kvantových představ o interakci optického záření s látkami.

L A S E R. Krize klasické fyziky na přelomu 19. a 20. století, vznik kvantových představ o interakci optického záření s látkami. L A S E R Krize klasické fyziky na přelomu 19. a 20. století, vznik kvantových představ o interakci optického záření s látkami Stimulovaná emise Princip laseru Specifické vlastnosti laseru jako zdroje

Více

Molekuly 1 12/4/2011. Molekula definice IUPAC. Molekuly. Proč existují molekuly? Kosselův model. Představy o molekulách

Molekuly 1 12/4/2011. Molekula definice IUPAC. Molekuly. Proč existují molekuly? Kosselův model. Představy o molekulách 1/4/011 Molekuly 1 Molekula definice IUPC elektricky neutrální entita sestávající z více nežli jednoho atomu. Přesně, molekula, v níž je počet atomů větší nežli jedna, musí odpovídat snížení na ploše potenciální

Více

Matematika II Limita a spojitost funkce, derivace

Matematika II Limita a spojitost funkce, derivace Matematika II Limita a spojitost funkce, derivace RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Prstencové a kruhové okolí bodu

Více

Elektrochemie. Pøedmìt elektrochemie: disociace (roztoky elektrolytù, taveniny solí) vodivost jevy na rozhraní s/l (elektrolýza, èlánky)

Elektrochemie. Pøedmìt elektrochemie: disociace (roztoky elektrolytù, taveniny solí) vodivost jevy na rozhraní s/l (elektrolýza, èlánky) Elektrochemie 1 Pøedmìt elektrochemie: disociace (roztoky elektrolytù, taveniny solí) vodivost jevy na rozhraní s/l (elektrolýza, èlánky) Vodièe: I. tøídy { vodivost zpùsobena pohybem elektronù uvnitø

Více

VÝPOČETNÍ CHEMIE V ANALÝZE STRUKTURY

VÝPOČETNÍ CHEMIE V ANALÝZE STRUKTURY VÝPOČETNÍ CHEMIE V ANALÝZE STRUKTURY A VLASTNOSTÍ MOLEKUL Michal Čajan Katedra anorganické chemie PřF UP v Olomouci MOLEKULOVÉ MODELOVÁNÍ V CHEMII MOLEKULOVÉ MODELOVÁNÍ aplikace zobrazení a analýza strukturních

Více

Chemická vazba. Molekula vodíku. Elektronová teorie. Oktetové pravidlo (Kossel, Lewis, 1916) Pevnost vazby vazebná energie.

Chemická vazba. Molekula vodíku. Elektronová teorie. Oktetové pravidlo (Kossel, Lewis, 1916) Pevnost vazby vazebná energie. Elektronová teorie ktetové pravidlo (Kossel, Lewis, 1916) Chemická vazba sdílení 2 valenčních e - opačného spinu 2 atomy za vzniku stabilní elektronové konfigurace vzácného plynu Spojení atomů prvků v

Více

Maturitní otázky z předmětu FYZIKA

Maturitní otázky z předmětu FYZIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu FYZIKA 1. Pohyby z hlediska kinematiky a jejich zákony Klasifikace pohybů z hlediska trajektorie a závislosti rychlosti

Více

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn

Více

Kapitoly z fyzikální chemie KFC/KFCH. VII. Spektroskopie a fotochemie

Kapitoly z fyzikální chemie KFC/KFCH. VII. Spektroskopie a fotochemie Kapitoly z fyzikální chemie KFC/KFCH VII. Spektroskopie a fotochemie Karel Berka Univerzita Palackého v Olomouci Katedra Fyzikální chemie karel.berka@upol.cz Spektroskopie Analýza světla Excitované Absorbované

Více