Viriálová stavová rovnice 1 + s.1
|
|
- Vendula Soukupová
- před 8 lety
- Počet zobrazení:
Transkript
1 Viriálová stavová rovnice 1 + s.1 (Mírnì nestandardní odvození Prùmìrná energie molekul okolo vybrané molekuly (β = 1/(k B T : 0 u(r e βu(r 4πr 2 dr Energie souboru N molekul: U = f 2 k B T + N 2 2V Tlak dostaneme z (z = pv/(nrt ( U V. trocha matematiky. T = T ( p T V 0 u(r e βu(r 4πr 2 dr p = Nk B T 2 V ( z T V
2 Viriálová stavová rovnice 2 s.2 z = pv m RT = 1 + B V m + C V 2 m +... druhý viriálový koecient B = N A 2π 0 f(rr2 dr f(r = e u(r/(k B T 1 rozmìr: [B] = m 3 mol E/E min 1 e 1 f r/r min r/r min r/r min Debyeova pesimistická poznámka: B diverguje pro plazma. Hückelùv optimistický dodatek: ale stejnì to spoèítáme!
3 Druhý viriálový koecient s.3 Boyleova teplota: B(T B = 0
4 Viriálová stavová rovnice 3 s.4 z = pv m RT = 1 + B V m + C V 2 m + B = dvojice molekul, C = trojice molekul... Abychom neøe¹ili kvadratickou (èi vy¹¹í rovnici, máme tlakový rozvoj: z = pv m RT = 1 + p RT kde B = B, C = (C B 2 /(RT,... ( B + C p + volíme ten jednodu¹¹í { stejnì máme chybu vy¹¹ího øádu Pou¾ití: nepøíli¹ stlaèené plyny, zlep¹uje se za vy¹¹ích teplot Vy¹¹í koecienty experimentálnì ¹patnì dostupné (výpoèet taky nic moc Pøíklad: Hustota plynného CO g dm 3. Vypoètìte B. za teploty 40 C a tlaku 100 kpa je 110 cm 3 mol 1
5 Van der Waalsova stavová rovnice s.5 kriticky bod Mezimolekulové síly: pøita¾livé odpudivé p nasycena kapalina kapalina + para v rovnovaze nasycena para (g pv m = RT ( p + a V 2 m (V m b = RT (l (l+(g 0 0 V
6 Van der Waalsova stavová rovnice a B s.6 p = RT V m b a Vm 2 z = pv m RT = V m V m b a/(rt V m = 1 a/(rt 1 b/v m V m 1 + b V m a V m RT B = b a RT (tím je zároveò ovìøeno, ¾e èlen s a musí být dìlen V 2 m
7 Stavová rovnice a rovnováha kapalina{pára [vdw/vdw.sh] s.7 µ (l = µ (g µ G m dg = SdT + V dp nevhodné, nemám V = V (p, T df = SdT p dv & G = F + pv Izoterma [T ]: F = V (g V (l Z p = p (l = p (g plyne: G = F + (pv! = 0 = V (g p dv V (l p dv + p(v (g V (l p (l V V c ~ (T T c β, β=0.325 (ne 0.5 stejne nestabilni izoterma metastabilni izoterma binodala (l+(g V (g stabilni izoterma spinodala plochy nad a pod køivkou jsou stejné ukázka vdw/vdw.sh: teplota se ovládá c/c
8 Kontinuita kapalného a plynného stavu s.8
9 Stavová rovnice a kritický bod [vdw/vdw.sh] s.9 ( p V m T = 0 ( 2 p Vm 2 T = 0 V mc = 3b T c = 8 27R a b p c = Opaèná úloha: výpoèet a, b z experimentálních dat. Volím p c, T c (V c se ¹patnì mìøí V mc vyjde (nepøesnì: a = 27 R 2 Tc 2 64 p c b = 1 RT c 8 z c = p cv mc RT c = 3 8 = Bì¾né plyny: z c 0.28, 0.3, voda 0.23 p c a 27b 2
10 Redlichova-Kwongova rovnice s.10 Podobnì: numericky: a = Kompresibilitní faktor: p = 1 9(2 1/3 1 RT V m b a = R2 Tc 5/2 p c a T 1/2 V m (V m + b R 2 Tc 5/2 b = 21/3 1 p c 3 b = RT c p c RT c p c z c = 1 3 lepší!
11 Benedictova-Webbova-Rubinova (BWR rovnice s.11 z = pv m RT = c RT 3 V 2 m ( B 0 A 0 RT C 0 RT 3 ( 1 + γ V 2 m exp 1 Osm konstant: A 0, B 0, C 0, a, b, c, α, γ ( V m + γ V 2 m ( b a RT 1 V 2 m + αa RT V 5 m
12 Srovnání stavových rovnic ideální plyn: do 100 kpa, hor¹í okolo teploty varu (kondenzace = vliv pøita¾livých sil viriálová: ni¾¹í tlaky (do max. 1 MPa van der Waals: nepøesná { didaktický a historický význam s.12 Redlich-Kwong: z dvoukonstantových jedna z nejlep¹ích (2{5 % pro plyn vícekonstantové: pøesnìj¹í, nìkdy i pro kapalinu (pokud jsou data
13 Teorém korespondujících stavù Dvoukonstantový: a, b p c, T c ; vdw rovnice: Dosadíme z = pv m RT = a = denujeme (NO=Nelson a Obert V m V m b R 2 T 2 c p c b = 1 8 a RT V m RT c p c s.13 a redukované velièiny a dostaneme V NO c = RT c p c T r = T T c p r = p p c V NO r z = p rvr NO = T r 8 8 1/V NO r = V m V NO c [ 1 T r V NO r V r = V m V c ]
14 Teorém korespondujících stavù (dvoukonstantový s.14 Mají-li dvì látky, a» u¾ v plynném nebo v kapalném stavu, stejnou redukovanou teplotu a redukovaný tlak, mají i stejný redukovaný objem (Vr NO nebo V r = V V c. Mají-li látky stejnou redukovanou teplotu a redukovaný tlak (nebo redukovanou teplotu a redukovaný objem, mají i stejný kompresibilitní faktor. Dobøe funguje jen pro pøíbuzné látky
15 Generalizovaný diagram Nelsona a Oberta s.15
16 Smìsi s.16 parciální tlak denujeme jako p i = x i p Daltonùv zákon (aditivita tlakù pøi [T, V ] p(t, V, n 1, n 2,... = p 1 (T, V, n 1 + p 2 (T, V, n Ale p i p i (T, V, n i Neplatí pøíli¹ pøesnì. Pro kapaliny nepou¾itelný. Amagatùv zákon (aditivita objemù pøi [T, p], ideální smìs V (T, p, n 1, n 2,... = V 1 (T, p, n 1 + V 2 (T, p, n Lep¹í aproximace ne¾ Daltonùv zákon. Pøibli¾nì i pro kapaliny. Dùsledek: z = k i=1 x i z i [T, p]
17 Viriálová rovnice pro smìsi s.17 B = ij x i x j B ij = B 11 x B 12x 1 x 2 + B 22 x 2 2 B 12 = N A 2π 0 f 12(rr 2 dr f 12 (r = e u 12(r/(k B T 1 Amagat (z tlakového rozvoje: i x i pv im RT = i x i 1 + i To je ekvivalentní B ij = (B i + B j /2 x i p RT B ii B = i x i B ii
18 Rovnice van der Waalsova typu pro smìsi s.18 Obecnì (smì¹ovací pravidla: a = a 11 x a 12x 1 x 2 + a 22 x 2 2 b = b 11 x b 12x 1 x 2 + b 22 x 2 2 Vylouèené objemy se sèítají, b 12 = (b 1 + b 2 /2 (kombinaèní pravidlo b = i x i b i Kohezní síly jsou párové, lep¹í je geometrický prùmìr, a 12 = (a 1 a 2 1/2 a = i x i a 1/2 i 2
19 Teorém korespondujících stavù pro smìsi Kay: s.19 T c = k i=1 x i T ci p c = k i=1 x i p ci (V NO mc = ( RTc p c = k i=1 ( RTci x i p ci T r = T T c p r = p p c V NO r = V (Vc NO
20 Smìsi z èistých látek { pøehled vypoèteme p i vypoèteme V i èistých slo¾ek a slo¾íme smìs (Dalton èistých slo¾ek a slo¾íme smìs (Amagat slo¾íme T c, p c, Vc NO smìsi a pou¾ijeme { diagram kompresibilitního faktoru { stavovou rovnici slo¾íme a, b (pøíp. dal¹í parametry a pou¾ijeme stavovou rovnici s.20
21 Stavové chování kapalin vícekonstantové stavové rovnice s.21 koecient izobarické rozta¾nosti: α p = (1/V m ( V m / T p koecient izotermické stlaèitelnosti: κ T = (1/V m ( V m / p T za bì¾ných podmínek α p = const, κ T = const Diferenciál objemu dv m = ( Vm T p dt + ( Vm p Zmìna tlaku pøi zvý¹ení teploty za [V ]: dv m = 0 β V = T dp = V m (α p dt κ T dp ( p T V = α p /κ T Hodnoty jsou øádovì α p 10 3 K 1, κ T 10 3 MPa 1, β V 1 MPa K 1
22 Nasycená kapalina Koecient rozta¾nosti podél køivky nasycení (= VLE = rovnováha l/g ( p T σ α σ = 1 V m ( Vm T σ ( p = α p κ T T σ získáme z Clausiovy-Clapeyronovy rovnice s.22 pøi nízkých teplotách a tlacích α σ α p
23 Objem a hustota nasycené kapaliny s.23 Guggengeimova rovnice ρ (l = ρ (l r = V mc ρ c V m (l = 1 + a (1 T r + b (1 T r β Kritický exponent β = (3 1/3 Jednoduché látky: a = 3/4, b = 7/4 Rackettova rovnice V m (l = M ρ (l = V mcz (1 T r 2/7 c = RT c z 1+(1 T r 2/7 c p c z c = p c V mc /(RT c (kompresibilitní faktor v kritickém bodì T r = T/T c
Opakování: Standardní stav þ ÿ
Opakování: Standardní stav þ ÿ s.1 12. øíjna 215 Standardní stav þ ÿ = èistá slo¾ka ve stavu ideálního plynu za teploty soustavy T a standardního tlaku = 1 kpa, døíve 11,325 kpa. Èistá látka: Pøibli¾nì:
Stavové chování kapalin a plynů II. 12. března 2010
Stavové chování kapalin a plynů II. 12. března 2010 Stavové rovnice - obecně Van der Waalsova rovnice V čem je ukryta síla van der Waalse... A b=4n A V mol. Van der Waalsova rovnice (r. 1873) - první úspěšná
Termochemie { práce. Práce: W = s F nebo W = F ds. Objemová práce (p vn = vnìj¹í tlak): W = p vn dv. Vratný dìj: p = p vn (ze stavové rovnice) W =
Termochemie { práce Práce: W = s F nebo W = Objemová práce (p vn = vnìj¹í tlak): W = V2 V 1 p vn dv s2 Vratný dìj: p = p vn (ze stavové rovnice) W = V2 V 1 p dv s 1 F ds s.1 Diferenciální tvar: dw = pdv
Stanislav Labík. Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost
Stanislav Labík Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost 325 labik@vscht.cz 220 444 257 http://www.vscht.cz/fch/ Výuka Letní semestr N403032 Základy fyzikální chemie
Rovnováha kapalina{pára u binárních systémù
Rovnováha kapalina{pára u binárních systémù 1 Pøedpoklad: 1 kapalná fáze Oznaèení: molární zlomky v kapalné fázi: x i molární zlomky v plynné fázi: y i Poèet stupòù volnosti: v = k f + 2 = 2 stav smìsi
Klasická termodynamika (aneb pøehled FCH I)
Klasická termodynamika (aneb pøehled FCH I) 1/16 0. zákon 1. zákon id. plyn: pv = nrt pv κ = konst (id., ad.) id. plyn: U = U(T) }{{} Carnotùv cyklus dq T = 0 2. zákon rg, K,... lim S = 0 T 0 S, ds = dq
Stavové rovnice. v = (zobecnìný) vylouèený objem. plyn + kapalina
Stavové rovnice Stavová rovnice je vztah mezi p, T, V a n (u smìsí slo¾ením n i ), alternativnì p, T, Vm = V/n (u smìsí je¹tì x i ) èi jinými ekvivalentními velièinami. plyn ideální plyn: pvm/rt = 1 viriálová
6. Stavy hmoty - Plyny
skupenství plynné plyn x pára (pod kritickou teplotou) stavové chování Ideální plyn Reálné plyny Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti skupenství plynné reálný plyn ve stavu
Fázová rozhraní a mezifázová energie
Fázová rozhraní a mezifázová energie druhy: l/g l/l }{{} mobilní s/g s/l s/s 1/14 Pøíklad. Kolik % molekul vody je na povrchu kapièky mlhy o prùmìru a) 0.1 mm (hranice viditelnosti okem) b) 200 nm (hranice
Do známky zkoušky rovnocenným podílem započítávají získané body ze zápočtového testu.
Podmínky pro získání zápočtu a zkoušky z předmětu Chemicko-inženýrská termodynamika pro zpracování ropy Zápočet je udělen, pokud student splní zápočtový test alespoň na 50 %. Zápočtový test obsahuje 3
Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2
Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn
Chemická kinetika. Reakce 1. řádu rychlost přímo úměrná koncentraci složky
Chemická kinetika Chemická kinetika Reakce 0. řádu reakční rychlost nezávisí na čase a probíhá konstantní rychlostí v = k (rychlost se rovná rychlostní konstantě) velmi pomalé reakce (prakticky se nemění
Fázová rozhraní a mezifázová energie
Fázová rozhraní a mezifázová energie druhy: l/g l/l }{{} mobilní 1/15 s/g s/l s/s povrch koule = 4πr 2 Pøíklad. Kolik % molekul vody je na povrchu kapièky mlhy o prùmìru a) 0.1 mm (hranice viditelnosti
Stavové chování plynů a kapalin
Stavové chování plynů a kapalin Ing. Martin Keppert Ph.D. Katedra materiálového inženýrství a chemie keppert@fsv.cvut.cz A 329 Stav a velikost systému stav systému je definován intenzivními veličinami:
Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013
Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná
Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
MAGISTERSKÝ VÝBĚR úloh ze sbírek
MAGISTERSKÝ VÝBĚR úloh ze sbírek Příklady a úlohy z fyzikální chemie I a II (VŠCHT Praha 2000 a VŠCHT Praha 2002) (http://www.vscht.cz/fch/cz/pomucky/sbfchold.html) k nimž je doplněno zanedbatelné množství
Tepelná vodivost. střední rychlost. T 1 > T 2 z. teplo přenesené za čas dt: T 1 T 2. tepelný tok střední volná dráha. součinitel tepelné vodivosti
Tepelná vodivost teplo přenesené za čas dt: T 1 > T z T 1 S tepelný tok střední volná dráha T součinitel tepelné vodivosti střední rychlost Tepelná vodivost součinitel tepelné vodivosti při T = 300 K součinitel
Plyn. 11 plynných prvků. Vzácné plyny He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2
Plyny Plyn T v, K 11 plynných prvků Vzácné plyny He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 H 2 20 He 4.4 Ne 27 Ar 87 Kr 120 Xe 165 Rn 211 N 2 77 O 2 90 F 2 85 Cl 2 238 1 Plyn
PROCESY V TECHNICE BUDOV 8
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 8 Dagmar Janáčová, Hana Charvátová Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního
Úvodní info. Studium
[mozilla le:/home/jiri/www/fch/cz/pomucky/kolafa/n4316.html] 1/16 Úvodní info Jiøí Kolafa Ústav fyzikální chemie V CHT Praha budova A, místnost 325 (zadním vchodem) jiri.kolafa@vscht.cz 2244 4257 Web pøedmìtu:
Potenciální energie atom{atom
Potenciální energie atom{atom 1/16 Londonovy (disperzní) síly: na del¹ích vzdálenostech, v¾dy pøita¾livé Model uktuující dipól { uktuující dipól elst. pole E 1/r 3 indukovaný dipól µ ind E energie u(r)
2.4 Stavové chování směsí plynů Ideální směs Ideální směs reálných plynů Stavové rovnice pro plynné směsi
1. ZÁKLADNÍ POJMY 1.1 Systém a okolí 1.2 Vlastnosti systému 1.3 Vybrané základní veličiny 1.3.1 Množství 1.3.2 Délka 1.3.2 Délka 1.4 Vybrané odvozené veličiny 1.4.1 Objem 1.4.2 Hustota 1.4.3 Tlak 1.4.4
Aplikovaná fyzikální chemie. Magda Škvorová KFCH CN463 tel. 3302
Aplikovaná fyzikální chemie Aplikovaná fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 1. září 2014 Aplikovaná fyzikální chemie Bylo nebylo... Bylo nebylo... Nejvzácnějšímu
Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2
Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn
Stavové chování kapalin a plynů. 4. března 2010
Stavové chování kapalin a plynů 4. března 2010 Studium plynů Plyn JE tekutina Studium plynů Studium plynů Létání v balónu aneb... Jak se vzepřít gravitaci? Studium plynů Studium plynů Létání v balónu aneb...
9. Struktura a vlastnosti plynů
9. Struktura a vlastnosti plynů Osnova: 1. Základní pojmy 2. Střední kvadratická rychlost 3. Střední kinetická energie molekuly plynu 4. Stavová rovnice ideálního plynu 5. Jednoduché děje v plynech a)
Neideální plyny. Z e dr dr dr. Integrace přes hybnosti. Neideální chování
eideální plyny b H Q(, V, T )... e dp 3... dpdr... dr! h Integrace přes hybnosti QVT (,, ) pmkt! h 3 / e dr dr dr /... U kt... eideální chování p kt r B ( T) r B ( T) r 3 3 Vyšší koeficinety velice složité
Statistická termodynamika (mechanika)
Statistická termodynamika (mechanika) 1/16 Makroskopické velièiny jsou výsledkem zprùmìrovaného chování mnoha èástic Tlak ideálního plynu z kinetické teorie 1 [tchem/simplyn.sh] 2/16 Molekula = hmotný
Mol. fyz. a termodynamika
Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli
Matematika II Urèitý integrál
Matematika II Urèitý integrál RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Motivace Je dána funkce f(x) = 2 + x2 x 4. Urèete co
Statistická termodynamika (mechanika)
Statistická termodynamika (mechanika) 1/18 Makroskopické velièiny jsou výsledkem zprùmìrovaného chování mnoha èástic Tlak ideálního plynu z kinetické teorie 1 [simolant -I0] 2/18 Molekula = hmotný bod
Cvičení z termodynamiky a statistické fyziky
Cvičení termodynamiky a statistické fyiky 1Nechť F(x, y=xe y Spočtěte F/ x, F/, 2 F/ x 2, 2 F/ x, 2 F/ x, 2 F/ x 2 2 Bud dω = A(x, ydx+b(x, ydy libovolná diferenciální forma(pfaffián Ukažte, ževpřípadě,žedωjeúplnýdiferenciál(existujefunkce
5.7 Vlhkost vzduchu 5.7.5 Absolutní vlhkost 5.7.6 Poměrná vlhkost 5.7.7 Rosný bod 5.7.8 Složení vzduchu 5.7.9 Měření vlhkosti vzduchu
Fázové přechody 5.6.5 Fáze Fázové rozhraní 5.6.6 Gibbsovo pravidlo fází 5.6.7 Fázový přechod Fázový přechod prvního druhu Fázový přechod druhého druhu 5.6.7.1 Clausiova-Clapeyronova rovnice 5.6.8 Skupenství
Kapaliny Molekulové vdw síly, vodíkové můstky
Kapaliny Molekulové vdw síly, vodíkové můstky Metalické roztavené kovy, ionty + elektrony, elektrostatické síly Iontové roztavené soli, FLINAK (LiF + NaF + KF), volně pohyblivé anionty a kationty, iontová
Matematika I Ètvercové matice - determinanty
Matematika I Ètvercové matice - determinanty RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Co u¾ známe? vektory - základní operace
Skupenské stavy látek
Skupenské stavy Skupenské stavy látek Všechny látky jsou tvořeny atomy, molekulami nebo ionty, které jsou v neustálém pohybu a které na sebe působí soudržnými silami, závislými na vnějších podmínkách.
Jméno: P íjmení: Datum: 17. ledna 2018 Nechci zápo et p i hodnocení niº²ím neº (nezávazné): vadí mi vystavení mého hodnocení na internetu.
Jméno: P íjmení: Datum: 7. ledna 28 Nechci zápo et p i hodnocení niº²ím neº (nezávazné): vadí mi vystavení mého hodnocení na internetu. Rotující nádoba Otev ená válcová nádoba napln ná do poloviny vý²ky
Osnova pro předmět Fyzikální chemie II magisterský kurz
Osnova pro předmět Fyzikální chemie II magisterský kurz Časový a obsahový program přednášek Týden Obsahová náplň přednášky Pozn. Stavové chování tekutin 1,2a 1, 2a Molekulární přístup kinetická teorie
Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
Cvièení { 2D Clausiova-Clapeyronova rovnice
Cvièení { 2D Clausiova-Clapeyronova rovnice 1/12 Evropský sociální fond þpraha & EU: Investujeme do va¹í budoucnostiÿ Inovace pøedmìtu Poèítaèová chemie je podporována projektem CHEMnote (Inovace bakaláøského
Popis stavového chování plynů
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA PEDAGOGICKÁ KATEDRA CHEMIE Popis stavového chování plynů BAKALÁŘSKÁ PRÁCE Martin Řehák Studijní obor: Chemie se zaměřením na vzdělávání Vedoucí práce: Mgr. Jitka
Kapaliny Molekulové vdw síly, vodíkové můstky
Kapaliny Molekulové vdw síly, vodíkové můstky Metalické roztavené kovy, ionty + elektrony, elektrostatické síly Iontové roztavené soli, FLINAK (LiF + NaF + KF), volně pohyblivé anionty a kationty, iontová
Aproximace funkcí. Chceme þvzoreèekÿ. Známe: celý prùbìh funkce
Aproximace funkcí 1/13 Známe: celý prùbìh funkce Chceme þvzoreèekÿ hodnoty ve vybraných bodech, pøíp. i derivace Kvalita údajù: známe pøesnì (máme algoritmus) známe pøibli¾nì (experiment èi simulace) {
Nultá věta termodynamická
TERMODYNAMIKA Nultá věta termodynamická 2 Práce 3 Práce - příklady 4 1. věta termodynamická 5 Entalpie 6 Tepelné kapacity 7 Vnitřní energie a entalpie ideálního plynu 8 Výpočet tepla a práce 9 Adiabatický
Termodynamika 2. UJOP Hostivař 2014
Termodynamika 2 UJOP Hostivař 2014 Skupenské teplo tání/tuhnutí je (celkové) teplo, které přijme pevná látka při přechodu na kapalinu během tání nebo naopak Značka Veličina Lt J Nedochází při něm ke změně
Kapaliny Molekulové vdw síly, vodíkové můstky
Kapaliny Molekulové vdw síly, vodíkové můstky Metalické roztavené kovy, ionty + elektrony, elektrostatické síly Iontové roztavené soli, FLINAK (LiF + NaF + KF), volně pohyblivé anionty a kationty, iontová
Pravdìpodobnostní popis
Pravdìpodobnostní popis 1/19 klasická mechanika { stav = { r 1,..., r N, p 1,..., p N } stavù je { hustota pravdìpodobnosti stavù ρ( r 1,..., r N, p 1,..., p N ) kvantové mechaniky { stav = stavù je koneènì
Brownovská (stochastická) dynamika, disipativní èásticová dynamika = MD + náhodné síly. i = 1,..., N. r i. U = i<j. u(r ij ) du(r ji ) r ji
Molekulová dynamika Síly: tuhé koule ap. { nárazy þklasickáÿ MD { integrace pohybových rovnic 1/20 Brownovská (stochastická) dynamika, disipativní èásticová dynamika = MD + náhodné síly Pøíklad: f i =
Adsorpce. molekulární adsorpce: (g) (s), (l) (s)/(l),... iontová adsorpce Paneth{Fajans výmìnná iontová adsorpce, protionty v aluminosilikátech
Adsorpce molekulární adsorpce: (g) (s), (l) (s)/(l),... iontová adsorpce Paneth{Fajans výmìnná iontová adsorpce, protionty v aluminosilikátech 1/16 Ar na gratu adsorpce: na povrch/rozhraní absorpce: dovnitø
Fluktuace termodynamických veličin
Kvantová a statistická fyzika (Termodynamika a statistická fyzika Fluktuace termodynamických veličin Fluktuace jsou odchylky hodnot fyzikálních veličin od svých středních (rovnovážných hodnot. Mají původ
Statistická termodynamika (mechanika) Makroskopické velièiny jsou výsledkem zprùmìrovaného chování mnoha èástic
Statistická termodynamika (mechanika) 1/23 Makroskopické velièiny jsou výsledkem zprùmìrovaného chování mnoha èástic Tlak ideálního plynu z kinetické teorie 1 [simolant -I0] 2/23 Molekula = hmotný bod
Fázové rovnováhy I. Phase change cooling vest $ with Free Shipping. PCM phase change materials
Fázové rovnováhy I PCM phase change materials akumulace tepla pomocí fázové změny (tání-tuhnutí) parafin, mastné kyseliny tání endotermní tuhnutí - exotermní Phase change cooling vest $149.95 with Free
Termodynamika. Vnitøní energie. Malá zmìna této velièiny je
Termodynamika 1/19 Vnitøní energie U = ψ E(ψ)π(ψ) Malá zmìna této velièiny je du = ψ π(ψ) de(ψ) + ψ dπ(ψ) E(ψ) de(ψ): zmìnila se energetická hladina dπ(ψ): zmìnila se pravdìpodobnost výskytu stavu ψ Termodynamika:
III. STRUKTURA A VLASTNOSTI PLYNŮ
III. STRUKTURA A VLASTNOSTI PLYNŮ 3.1 Ideální plyn a) ideální plyn model, předpoklady: 1. rozměry molekul malé (ve srovnání se střední vzdáleností molekul). molekuly na sebe navzálem silově nepůsobí (mimo
Úvodní info. Studium
[mozilla le:///home/jiri/www/fh/z/pomuky/kolafa/n4341.html] 1/16 Úvodní info Jiøí Kolafa Ústav fyzikální hemie V CHT Praha budova A, místnost 325 (zadním vhodem) jiri.kolafa@vsht.z 2244 4257 Web pøedmìtu:
Cvičení z NOFY / Termodynamika. 1 Cvičení Totální diferenciál. 1.1 Totální diferenciál Teplota a tlak pro ideální plyn
Cvičení z NOFY031 2009/2010 1 Termodynamika 1 Cvičení 1.10.2008 Totální diferenciál 1.1 Totální diferenciál 1. Jsou zadány dva výrazy: df 1 (x, y) = 6xy 3 dx + 9x 2 y 2 dy, df 2 (x, y) = 6xy 2 dx + 9x
Zákony ideálního plynu
5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8
Elektrické jevy na membránách
Elektrické jevy na membránách Polopropustná (semipermeabilní) membrána; frita, diafragma propou¹tí ionty, vzniká el. napìtí rùzné koncentrace iontù na obou stranách rùzná propustnost/difuzivita pro rùzné
Fáze a fázové přechody
Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Fáze a fázové přechody Pojem fáze je zobecněním pojmu skupenství, označuje homogenní část makroskopického tělesa. Jednotlivé fáze v
Motivace: Poissonova rovnice
Motivace: Poissonova rovnice Zachovává se poèet el. indukèních èar: Q = D d s, S D = ε E Integrál spoèítáme pøes povrch krychlièky dx dy dz: dq = dvρ = D d s = dydz[d x (x + dx) D x (x)] = dxdydz S ( Dx
Numerické řešení 2D stlačitelného proudění s kondenzací. Michal Seifert
Numerické řešení 2D stlačitelného proudění s kondenzací Michal Seifert Úkoly diplomové práce Popsat matematické modely proudící tekutiny Popis numerických metod založených na metodě konečných objemů Porovnání
Tento dokument je doplňkem opory pro studenty Přírodovědecké fakulty Univerzity Jana Evangelisty Purkyně.
Statistická fyzika - cvičení RNDr. Filip Moučka, Ph.D., filip.moucka@ujep.cz Tento dokument je doplňkem opory pro studenty Přírodovědecké fakulty Univerzity Jana Evangelisty Purkyně. Cílem tohoto textu
Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:
Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie
FyzChem_kap1_3. (inovovaný prozatímní učební text, srpen 2012)
FyzChem_kap1_3 (inovovaný prozatímní učební text, srpen 2012) PŘEDMLUVA Tato Sbírka příkladů a úloh z fyzikální chemie přináší výpočetní materiál ke kurzu fyzikální chemie, jak se přednáší na přírodovědných
Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické
Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=
h nadmořská výška [m]
Katedra prostředí staveb a TZB KLIMATIZACE, VĚTRÁNÍ Cvičení pro navazující magisterské studium studijního oboru Prostředí staveb Cvičení č. 1 Zpracoval: Ing. Zdeněk GALDA Nové výukové moduly vznikly za
Rovnováha Tepelná - T všude stejná
Fázové heterogenní rovnováhy Fáze = homogenní část soustavy, oddělná fyzickým rozhraním, na rozhraní se vlastnosti mění skokem Rovnováha Tepelná - T všude stejná Mechanická - p všude stejný Chemická -
Adsorpce. molekulární adsorpce: (g) (s), (l) (s)/(l),... iontová adsorpce Paneth Fajans. výměnná iontová adsorpce, protionty v aluminosilikátech
Adsorpce 1/15 molekulární adsorpce: (g) (s), (l) (s)/(l),... iontová adsorpce Paneth Fajans výměnná iontová adsorpce, protionty v aluminosilikátech Ar na grafitu adsorpce: na povrch/rozhraní absorpce:
FYZIKÁLNÍ CHEMIE I: 1. ČÁST KCH/P401
Univerzita J. E. Purkyně v Ústí nad Labem Přírodovědecká fakulta FYZIKÁLNÍ CHEMIE I: 1. ČÁST KCH/P401 Magda Škvorová Ústí nad Labem 2013 Obor: Toxikologie a analýza škodlivin, Chemie (dvouoborová) Klíčová
Kontrolní otázky k 1. přednášce z TM
Kontrolní otázky k 1. přednášce z TM 1. Jak závisí hodnota izobarického součinitele objemové roztažnosti ideálního plynu na teplotě a jak na tlaku? Odvoďte. 2. Jak závisí hodnota izochorického součinitele
Jednosložkové soustavy
Jednosložkové soustavy Fázové rovnováhy Prezentace je určena pro výuku. roč. studjního oboru Nanotechnologí a není dovoleno její šíření bez vědomí garanta předmětu. K jejímu vytvoření bylo použto materálů
Matematika II Aplikace derivací
Matematika II Aplikace derivací RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Derivace slo¾ené funkce Vìta o derivaci slo¾ené funkce.
VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 12
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 2 Termodynamika reálných plynů část 2 Hana Charvátová, Dagmar Janáčová Zlín 203 Tento studijní
Chemie - cvičení 2 - příklady
Cheie - cvičení 2 - příklady Stavové chování 2/1 Zásobník o objeu 50 obsahuje plynný propan C H 8 při teplotě 20 o C a přetlaku 0,5 MPa. Baroetrický tlak je 770 torr. Kolik kg propanu je v zásobníku? Jaká
PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník
PLYNNÉ LÁTKY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Ideální plyn Po molekulách ideálního plynu požadujeme: 1.Rozměry molekul ideálního plynu jsou ve srovnání se střední vzdáleností molekul
Fázové rozhraní - plocha,na které se vlastnosti systému mění skokem ; fáze o určité tloušťce
Fázové rozhraní Fázové rozhraní - plocha,na které se vlastnosti systému mění skokem ; fáze o určité tloušťce Homogenní - kapalina/plyn - povrch;kapalina/kapalina Nehomogenní - tuhá látka/plyn - povrch;
d T FP = fázový přechod (tání, tuhnutí, vypařování, kapalnění, sublimace)
Fázové rovnováhy jednoložkový ytém Gibbův fázový zákon k f C Popi záviloti tlaku naycených par na teploě Clapeyronova rovnice: d p F P m n e b o F P d l np F P m F P z FP fázový přechod (tání, tuhnutí,
Fázová rozhraní a mezifázová energie
Fázová rozhraní a mezifázová energie druhy: l/g l/l }{{} mobilní s/g s/l s/s 1/21 povrch koule = 4πr 2 Pøíklad. Kolik % molekul vody je na povrchu kapièky mlhy o prùmìru a) 0.1 mm (hranice viditelnosti
Skupenské stavy. Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe
Skupenské stavy Plyn Zcela neuspořádané Hodně volného prostoru Zcela volný pohyb částic Částice daleko od sebe Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe
Matematika II Extrémy funkcí více promìnných
Matematika II Extrémy funkcí více promìnných RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Parciální derivace vy¹¹ích øádù Def.
Teplota a její měření
Teplota a její měření Teplota a její měření Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_03_01 Teplota, Celsiova a Kelvinova teplotní stupnice, převodní vztahy, příklady. Tepelná výměna, měrná
Mezimolekulové interakce
Mezimolekulové interakce Interakce molekul reaktivně vzniká či zaniká kovalentní vazba překryv elektronových oblaků, mění se vlastnosti nereaktivně vznikají molekulové komplexy slabá, nekovalentní, nechemická,
Sbírka příkladů a úloh z fyzikální chemie
Univerzita Jana Evangelisty Purkyně Přírodovědecká fakulta Sbírka příkladů a úloh z fyzikální chemie Ludmila Boublíková Magda Škvorová Ivo Nezbeda Ústí nad Labem 2014 Název: Autoři: Recenzenti: Sbírka
Příloha-výpočet motoru
Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ
Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory
Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední
Autor by chtìl podìkovat všem svým spolupracovníkùm a kolegùm, kteøí mu pomohli s pøípravou textu. K vydání knihy pøispìla firma Newport Electronics s
Pavel Nevøiva ANALÝZA SIGNÁLÙ A SOUSTAV Praha 2000 Autor by chtìl podìkovat všem svým spolupracovníkùm a kolegùm, kteøí mu pomohli s pøípravou textu. K vydání knihy pøispìla firma Newport Electronics spol.
Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Molekulová fyzika, termika 2. ročník, sexta 2 hodiny týdně Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky
Transportní jevy. J = konst F
Transportní jevy 1/23 Transportní (kinetické) jevy: difuze, elektrická vodivost, viskozita (vnitøní tøení), vedení tepla... Tok (ux) (té¾ zobecnìný tok) hmoty, náboje, hybnosti, tepla... : J = mno¾ství
č ň ň Ž Í č Í Ů Ó č Š Č č ň Š Ť Ó ň ň Ó Ť ť ň ď ň ň Ť Ť Ú č č č č ň Ť ň ň č ň ň č č ň č č č ň Ý ť ň č č ň ť Ž Č č ň ň ť Č ň ť č Ž č ň ň ň Ž Ť ň Š č č č Í č Ž ň ň ď ň ť č ť č č ň Ž Č ť Ó č ň ň ň Í č Ť č
Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
a) Jaká je hodnota polytropického exponentu? ( 1,5257 )
Ponorka se potopí do 50 m. Na dně ponorky je výstupní tunel o průměru 70 cm a délce, m. Tunel je napojen na uzavřenou komoru o objemu 4 m. Po otevření vnějšího poklopu vnikne z části voda tunelem do komory.
IV. Fázové rovnováhy. 4. Fázové rovnováhy Ústav procesní a zpracovatelské techniky FS ČVUT v Praze
IV. Fázové rovnováhy 1 4. Fázové rovnováhy 4.1 Základní pojmy 4.2 Fázové rovnováhy jednosložkové soustavy 4.3 Fázové rovnováhy dvousložkových soustav 4.3.1 Soustava tuhá složka tuhá složka 4.3.2 Soustava
III. STRUKTURA A VLASTNOSTI PLYNŮ
III. STRUKTURA A VLASTNOSTI PLYNŮ 3.1 Ideální plyn a) ideální plyn model, předpoklady: 1. rozměry molekul malé (ve srovnání se střední vzdáleností molekul). molekuly na sebe navzálem silově nepůsobí (mimo
5 Základy termodynamiky
5 Základy termodynamiky Teplo, teplota, tepelná kapacita, metody jejich měření. Termodynamická soustava a její rovnováha. Hlavní věty termodynamiky. Ideální plyn. Stavová rovnice, Carnotův cyklus. Reálné
V xv x V V E x. V nv n V nv x. S x S x S R x x x x S E x. ln ln
Souhrn 6. přednášky: 1) Terodynaka sěsí a) Ideální sěs: adtvta objeů a entalpí, Aagatův zákon b) Reálná sěs: pops poocí dodatkových velčn E Def. Y Y Y, d Aplkace: - př. obje reálné dvousložkové sěs V xv
Sbírka příkladů a úloh z fyzikální chemie
Univerzita Jana Evangelisty Purkyně Přírodovědecká fakulta Sbírka příkladů a úloh z fyzikální chemie Ludmila Boublíková Magda Škvorová Ivo Nezbeda Ústí nad Labem 2014 Název: Autoři: Recenzenti: Sbírka
Přijímací zkouška na navazující magisterské studium 2017 Studijní program: Fyzika Studijní obory: FFUM
Přijímací zkouška na navazující magisterské studium 207 Studijní program: Fyzika Studijní obory: FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Nechť (a) Spočtěte lim n x n. (b)
VLASTNOSTI KAPALIN. Část 2. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA
HYDROMECHANIKA LASTNOSTI KAPALIN Část 2 Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA lastnosti kapalin: Molekulární stavba hmoty Příklad