Časové řady, typy trendových funkcí a odhady trendů

Podobné dokumenty
Časové řady, typy trendových funkcí a odhady trendů

Úvod do analýzy časových řad

Modely stacionárních časových řad

Modely pro nestacionární časové řady

Periodicita v časové řadě, její popis a identifikace, exponenciální vyrovnáván

Modely pro nestacionární časové řady

Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel

Testování hypotéz o parametrech regresního modelu

5 Časové řady. Definice 16 Posloupnost náhodných veličin {X t, t T } nazveme slabě stacionární, pokud

Bodové a intervalové odhady parametrů v regresním modelu

Testování hypotéz o parametrech regresního modelu

Cvičení 9 dekompozice časových řad a ARMA procesy

Ekonometrie. Jiří Neubauer

Základy ekonometrie. XI. Vektorové autoregresní modely. Základy ekonometrie (ZAEK) XI. VAR modely Podzim / 28

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

REGRESNÍ ANALÝZA NESTACIONÁRNÍCH EKONOMICKÝCH ČASOVÝCH ŘAD

Statistika II. Jiří Neubauer

8 ANALÝZA ČASOVÝCH ŘAD SEZÓNNÍ SLOŽKA

Regresní analýza 1. Regresní analýza

Statistika II. Jiří Neubauer

KGG/STG Statistika pro geografy. Mgr. David Fiedor 4. května 2015

Kontingenční tabulky, korelační koeficienty

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Faktorová analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel

Přednáška 4. Lukáš Frýd

Lineární regrese. Komentované řešení pomocí MS Excel

Odhad parametrů N(µ, σ 2 )

Základy teorie odhadu parametrů bodový odhad

Měření závislosti statistických dat

Motivace příklad použití lokace radarového echa Význam korelace Popis náhodných signálů číselné charakteristiky

STATISTIKA I Metodický list č. 1 Název tématického celku:

4EK211 Základy ekonometrie

2011 (datový soubor life expectancy CR.txt). Budeme predikovat vývoj očekávané doby dožití pomocí

Analýza hlavních komponent

Statistická analýza jednorozměrných dat

4EK211 Základy ekonometrie

Výběrové charakteristiky a jejich rozdělení

Odhad parametrů N(µ, σ 2 )

Tomáš Karel LS 2012/2013

MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

Ilustrační příklad odhadu LRM v SW Gretl

AVDAT Geometrie metody nejmenších čtverců

Regrese. používáme tehdy, jestliže je vysvětlující proměnná kontinuální pokud je kategoriální, jde o ANOVA

odpovídá jedna a jen jedna hodnota jiných

Univerzita Karlova v Praze procesy II. Zuzana. funkce

Kontingenční tabulky, korelační koeficienty

Aplikovaná ekonometrie 7. Lukáš Frýd

AVDAT Nelineární regresní model

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,

Univerzita Palackého v Olomouci , Ostrava

PRAVDĚPODOBNOST A STATISTIKA

LINEÁRNÍ REGRESE. Lineární regresní model

Tématické okruhy pro státní závěrečné zkoušky. Navazující magisterské studium. studijní obor "Management jakosti"

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY

VEKTOROVÉ AUTOREGRESE. APLIKACE V PROGNÓZOVÁNÍ.

Chyba predikce při rezervování metodou Chain Ladder u korelovaných vývojových trojúhelníků

Fakulta elektrotechnická. Komponenta pro měření a predikci spotřeby elektrické energie

Tématické okruhy pro státní závěrečné zkoušky. Navazující magisterské studium. studijní obor "Management kvality"

STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ. J. Pruška, T. Parák

1. Přednáška. Ing. Miroslav Šulai, MBA

Inovace bakalářského studijního oboru Aplikovaná chemie

Funkce komplexní proměnné a integrální transformace

Univerzita Pardubice. Fakulta ekonomicko-správní Ústav systémového inženýrství a informatiky

AVDAT Náhodný vektor, mnohorozměrné rozdělení

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15

Úvod do zpracování signálů

13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách

Regresní a korelační analýza

Regresní a korelační analýza

4.1 Metoda horizontální a vertikální finanční analýzy

Náhodný vektor a jeho charakteristiky

Praktikum z ekonometrie Panelová data

4. Aplikace matematiky v ekonomii

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní

6. Lineární regresní modely

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie

AVDAT Klasický lineární model, metoda nejmenších

NÁHODNÝ VEKTOR. 4. cvičení

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

INDUKTIVNÍ STATISTIKA

Regresní a korelační analýza

POLYNOMICKÁ REGRESE. Jedná se o regresní model, který je lineární v parametrech, ale popisuje nelineární závislost mezi proměnnými.

5EN306 Aplikované kvantitativní metody I

Markovské metody pro modelování pravděpodobnosti

Vlastnosti a modelování aditivního

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ

SEMESTRÁLNÍ PRÁCE. Leptání plasmou. Ing. Pavel Bouchalík

4ST432. Kamil Kladívko. 1 Cena a výnos aktiva, volatilita Odhad očekávaného výnosu, interval spolehlivosti, test hypotézy...

Tomáš Karel LS 2012/2013

Stavový model a Kalmanův filtr

4EK211 Základy ekonometrie

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

Modelování finančních časových řad pomocí vybraného stochastického modelu

Aplikovaná matematika I

Aplikovaná statistika v R - cvičení 3

Transkript:

Časové řady, typy trendových funkcí a odhady trendů Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Jiří Neubauer (Katedra ekonometrie UO Brno) Časové řady, typy trendových funkcí a odhady trendů 1 / 24

Stochastický proces Stochastický proces Posloupnost náhodných veličin {Y t, t = 0, ±1, ±2 } se nazývá stochastický proces Pomocí něho budeme modelovat pozorované časové řady Střední hodnota stochastického procesu {Y t} je funkce µ t daná vztahem Autokovarianční funkce je definována jako µ t = E(Y t), t = 0, ±1, ±2 γ t,s = C(Y t, Y s), t, s = 0, ±1, ±2, kde C(Y t, Y s) = E[(Y t µ t)(y s µ s)] = E[Y t, Y s] µ tµ s Autokorelační funkce je dána vztahem C(Yt, Ys) ρ t,s = = γt,s D(Yt)D(Y s) γt,tγ s,s Jiří Neubauer (Katedra ekonometrie UO Brno) Časové řady, typy trendových funkcí a odhady trendů 2 / 24

Stochastický proces Stacionarita Jedním z důležitých vlastností stochastických procesů je stacionarita, což znamená, že pravděpodobnostní rozdělení, které řídí chování stochastického procesu je v čase neměnné, proces je ve statistickém ekvilibriu O procesu {Y t} řekneme, že je striktně stacionární, jestliže simultánní rozdělení Y t1, Y t2,, Y tn je stejné jako simultánní rozdělení Y t1 k, Y t2 k,, Y tn k pro všechna t a všechna možná zpoždění k Jestliže funkce γ s,t závisí na svých argumentech pouze prostřednictvím jejich rozdílů k = s t, pak říkáme, že proces je kovariančně stacionární Autokovarianční funkcí takového procesu budeme rozumět funkci jedné proměnné γ k = γ s t = γ s,t Je-li navíc střední hodnota procesu µ t konstantní pro všechna t (µ t = µ), proces {Y t} označujeme za slabě stacionární V dalším budeme místo slabě stacionární proces psát jen krátce proces stacionární Jiří Neubauer (Katedra ekonometrie UO Brno) Časové řady, typy trendových funkcí a odhady trendů 3 / 24

Stochastický proces Stacionarita autokovarianční a autokorelační funkce Autokovarianční funkce γ k stacionárního stochastického procesu je definována jako γ k = C(Y t, Y t k ) = E[(Y t µ)(y t k µ)], a autokorelační funkce (ACF) ρ k je dána vztahem ρ k = C(Yt, Y t k) D(Yt)D(Y t k ) = γ k γ 0 Jiří Neubauer (Katedra ekonometrie UO Brno) Časové řady, typy trendových funkcí a odhady trendů 4 / 24

Stochastický proces Parciální autokorelační funkce Korelace mezi dvěma náhodnými veličinami je často způsobena tím, že obě veličiny jsou korelovány s veličinou třetí Parciální autokorelace podávají informaci o korelaci veličin Y t a Y t k očištěnou o vliv veličin ležících mezi nimi Parciální autokorelaci se zpožděním k stacionárního procesu {Y t} vyjadřuje parciální regresní koeficient φ kk v autoregresi k-tého řádu Y t = φ k1 Y t 1 + φ k2 Y t 2 + + φ kk Y t k + e t, kde e t je veličina nekorelovaná s Y t j, j 1 Je to funkce zpoždění k a nazývá se parciální autokorelační funkce (PACF) ρ kk Jiří Neubauer (Katedra ekonometrie UO Brno) Časové řady, typy trendových funkcí a odhady trendů 5 / 24

Stochastický proces Parciální autokorelační funkce Předpokládejme, že stacionární proces {Y t} má nulovou střední hodnotu Po vynásobení obou stran předchozí rovnice veličinou Y t j má střední hodnota této rovnice tvar takže platí Pro j = 1, 2,, k potom dostáváme γ j = φ k1 γ j 1 + φ k2 γ j 2 + + φ kk γ j k, ρ j = φ k1 ρ j 1 + φ k2 ρ j 2 + + φ kk ρ j k ρ 1 = φ k1 ρ 0 + φ k2 ρ 1 + + φ kk ρ k 1 ρ 2 = φ k1 ρ 1 + φ k2 ρ 0 + + φ kk ρ k 2 ρ k = φ k1 ρ k 1 + φ k2 ρ k 2 + + φ kk ρ 0 Tyto rovnice se nazývají Yule-Walkerovy rovnice Jiří Neubauer (Katedra ekonometrie UO Brno) Časové řady, typy trendových funkcí a odhady trendů 6 / 24

Stochastický proces Parciální autokorelační funkce Řešením této soustavy (Cramerovým pravidlem) pro k = 1, 2, postupně dostáváme ρ 11 = φ 11 = ρ 1, ρ 22 = φ 22 = 1 ρ1 ρ 1 ρ 2 1 ρ1 ρ 1 1 = ρ2 ρ2 1 1 ρ 2 1, ρ kk = φ kk = 1 ρ 1 ρ 2 ρ k 2 ρ 1 ρ 1 1 ρ 1 ρ k 3 ρ 2 ρ k 1 ρ k 2 ρ k 3 ρ 1 ρ k 1 ρ 1 ρ 2 ρ k 2 ρ k 1 ρ 1 1 ρ 1 ρ k 3 ρ k 2 ρ k 1 ρ k 2 ρ k 3 ρ 1 1 Jiří Neubauer (Katedra ekonometrie UO Brno) Časové řady, typy trendových funkcí a odhady trendů 7 / 24

Stochastický proces Odhady Obecně jsou parametry µ, γ 0 a ρ k neznámé, za předpokladu stacionarity použijeme odhady µ = Y = 1 n Y t, γ 0 = 1 n (Y t Y ) 2 n n t=1 kde n je počet hodnot (délka) časové řady Odhad ρ k je dán výběrovou autokorelací n t=k+1 ρ k = (Yt Yt)(Y t k Y t) n t=1 (Yt Y, k = 1, 2,, n 1 )2 t=1 (V programu R lze spočítat pomocí funkce acf) Jiří Neubauer (Katedra ekonometrie UO Brno) Časové řady, typy trendových funkcí a odhady trendů 8 / 24

Stochastický proces Odhady Výběrovou parciální korelační funkci získáme nahrazením ρ i jejím odhadem ˆρ i v odpovídajícím vzorci Byl však odvozen rekurzivní vztah, který výpočet zjednoduší ρ 11 = ρ 1 ρ kk = ˆρ k k 1 j=1 ρ k 1,j ρ k j 1 k 1 j=1 ρ, k 1,j ρ j ρ kj = ρ k 1,j ρ kk ρ k 1,k j, j = 1, 2,, k 1 (V programu R lze spočítat pomocí funkce pacf) Jiří Neubauer (Katedra ekonometrie UO Brno) Časové řady, typy trendových funkcí a odhady trendů 9 / 24

Stochastický proces Proces bílého šumu white noise Důležitý stacionárním stochastickým procesem je tzv proces bílého šumu Jedná se o posloupnost nezávislých náhodných veličin se stejným rozdělením s nulovou střední hodnotou a konstantním rozptylem Pro bílý {ɛ t} platí { 1 k = 0 ρ k = 0 k 0 ρ kk = { 1 k = 0 0 k 0 Gaussovský bílý šum posloupnost nezávislých náhodných veličin s rozdělením N(0, σ 2 ɛ t ) Jiří Neubauer (Katedra ekonometrie UO Brno) Časové řady, typy trendových funkcí a odhady trendů 10 / 24

Trend Deterministický trend Např proces Y t = Y 0 + at, t = 1, n obsahuje deterministický lineární trend Y 0 označuje počáteční hodnotu Pro n = 100, Y 0 = 0, a = 1 proces zobrazený v grafu Jiří Neubauer (Katedra ekonometrie UO Brno) Časové řady, typy trendových funkcí a odhady trendů 11 / 24

Trend Stochastický trend Např proces ( náhodná procházka nebo random walk ) Y t = Y t 1 + ɛ t, t = 1, n, kde ɛ t WN(0, σ 2 ) lze psát ve tvaru Y t = Y t 1 + ɛ t = (Y t 2 + ɛ t 1) + ɛ t = = (Y t 3 + ɛ t 2) + ɛ t 1 + ɛ t = = t = Y 0 + ɛ 1 + + ɛ t = Y 0 + i=1 Y 0 značí počáteční hodnotu Dvě z možných realizací procesu (simulací) pro n = 100, Y 0 = 0, ɛ t WN(0, 1) jsou zobrazeny v grafech ɛ i Jiří Neubauer (Katedra ekonometrie UO Brno) Časové řady, typy trendových funkcí a odhady trendů 12 / 24

Trend Stochastický trend Např proces ( náhodná procházka s driftem) Y t = Y t 1 + a + ɛ t, t = 1, n, kde ɛ t WN(0, σ 2 ) lze psát ve tvaru Y t = Y t 1 + a + ɛ t = (Y t 2 + a + ɛ t 1) + a + ɛ t = (Y t 3 + a + ɛ t 2) + 2a + ɛ t 1 + ɛ t = = t = Y 0 + at + i=1 ɛ i Y 0 značí počáteční hodnotu Jedna z možných realizací procesu (simulace) pro n = 100, Y 0 = 0, ɛ t WN(0, 1) je zobrazena v grafu Jiří Neubauer (Katedra ekonometrie UO Brno) Časové řady, typy trendových funkcí a odhady trendů 13 / 24

Klouzavé průměry Základem klasické analýzy časové řady Y t je její rozklad na trend T t, sezónní složku S t a složku reziduální (zbytkovou, náhodnou) e t V aditivním modelu má dekompozice tvar v multiplikativním modelu potom tvar Y t = T t + S t + e t, Y t = T t S t e t Obvyklou metodou, jak získat trend je využití lineárních filtrů T t = i= λ iy t+i Jiří Neubauer (Katedra ekonometrie UO Brno) Časové řady, typy trendových funkcí a odhady trendů 14 / 24

Klouzavé průměry Klouzavé průměry Jednoduchým příkladem lineárních filtrů jsou klouzavé průměry délky 2m + 1 s konstantními váhami 1 m ˆT t = Y t+i 2m + 1 i= m Vyrovnanou hodnotu časové řady v čase t získáme jako průměr hodnot Y t m,, Y t 1, Y t, Y t+1, Y t+m Například pro m = 1 dostáváme klouzavý průměr délky 3 ˆT t = 1 (Yt 1 + Yt + Yt+1) 3 V programu R lze klouzavé průměry určit pomocí funkce filter nebo funkce ma z balíčku forecast Jiří Neubauer (Katedra ekonometrie UO Brno) Časové řady, typy trendových funkcí a odhady trendů 15 / 24

Klouzavé průměry Klouzavé průměry Graf zobrazuje obsahuje měsíční produkci piva v Austrálii od ledna 1956 do srpna 1995 Jiří Neubauer (Katedra ekonometrie UO Brno) Časové řady, typy trendových funkcí a odhady trendů 16 / 24

Klouzavé průměry Klouzavé průměry Grafy zobrazují klouzavé průměry délky 5 (a = 2), 25 (a = 12), 81 (a = 20) Jiří Neubauer (Katedra ekonometrie UO Brno) Časové řady, typy trendových funkcí a odhady trendů 17 / 24

Klouzavé průměry Klouzavé průměry Délka filtru ovlivňuje stupeň vyhlazení Čím větší je délka klouzavého průměru, tím větší je vyhlazení časové řady Délku klouzavého průměru obvykle volíme tak, aby odpovídala periodě sezónních nebo cyklických fluktuací Při zpracování ekonomických časových řad se často zpracováváme čtvrtletní případně měsíční údaje, jež často obsahují sezónní složku opakující po sudém počtu pozorování (po čtyřech příp dvanácti hodnotách) Pro tyto případy lze použít tzv centrované klouzavé průměry Pro případ čtvrtletních měření určíme vyrovnanou hodnotu ze vztahu ˆT t = 1 [ 1 2 4 (Yt 2 + Yt 1 + Yt + Yt+1) + 1 ] (Yt 1 + Yt + Yt+1 + Yt+2) = 4 = 1 (Yt 2 + 2Yt 1 + 2Yt + 2Yt+1 + Yt+2) 8 Jedná je o klouzavý průměr délky 5 s váhami 1, 1, 1, 1, 1 Analogicky pro měsíční 8 4 4 4 8 použijeme klouzavé průměry délky 13 typu ˆT t = 1 (Yt 6 + 2Yt 5 + + 2Yt+5 + Yt+6) 24 Jiří Neubauer (Katedra ekonometrie UO Brno) Časové řady, typy trendových funkcí a odhady trendů 18 / 24

Klouzavé průměry Klouzavé průměry (v R je možné je počítat pomocí funkce filter) jsou základem klasické dekompozice, kterou v programu R provádí funkce decompose Poněkud sofistikovanější metodu dekompozice nabízí funkce stl Dekompozici časové řady lze také provádět pomocí lineární regrese (funkce lm viz regresní analýza) Mimo trendu (lineárního, kvadratického atd) je často vhodné do regresního modelu přidat buď sezónní složky, nebo periodické funkce s vhodnými periodami Jiří Neubauer (Katedra ekonometrie UO Brno) Časové řady, typy trendových funkcí a odhady trendů 19 / 24

Regrese Použití regresní analýzy Na obrázku je znázorněn vývoj hrubé měsíční mzdy v ČR v období 2000 2012, jedná se o čtvrtletní data Jiří Neubauer (Katedra ekonometrie UO Brno) Časové řady, typy trendových funkcí a odhady trendů 20 / 24

Regrese Použití regresní analýzy Trend odhadneme pomocí přímkové regrese, pro numerickou stabilitu výpočtu provedeme transformaci časové proměnné t = rok 1999, takže t = 1, 13 Odhad Sm chyba t-test p-hodnota konstanta 11875,9388 286,5841 41,44 0,0000 t 1051,1374 34,6343 30,35 0,0000 Jiří Neubauer (Katedra ekonometrie UO Brno) Časové řady, typy trendových funkcí a odhady trendů 21 / 24

Regrese Použití regresní analýzy Periodickou složku odhadneme pomocí dummy proměnných q 1, q 2, q 3, q 4 Trend potom pomocí polynomu 3 stupně konstantu do modelu nezahrneme, vznikne vlastně součtem dummy proměnných q 1, q 2, q 3, q 4 q 1 = (1, 0, 0, 0, 1, 0, 0, 0,, 1, 0, 0, 0) q 2 = (0, 1, 0, 0, 0, 1, 0, 0,, 0, 1, 0, 0) q 3 = (0, 0, 1, 0, 0, 0, 1, 0,, 0, 0, 1, 0) q 4 = (0, 0, 0, 1, 0, 0, 0, 1,, 0, 0, 0, 1) Odhad Sm chyba t-test p-hodnota t 484,4349 152,8450 3,17 0,0027 t 2 111,4610 23,3280 4,78 0,0000 t 3-5,7907 1,0430-5,55 0,0000 q 1 11684,2530 282,8990 41,30 0,0000 q 2 12457,0559 287,3388 43,35 0,0000 q 3 12138,0542 291,5674 41,63 0,0000 q 4 13921,6368 295,6681 47,09 0,0000 Jiří Neubauer (Katedra ekonometrie UO Brno) Časové řady, typy trendových funkcí a odhady trendů 22 / 24

Regrese Použití regresní analýzy Jiří Neubauer (Katedra ekonometrie UO Brno) Časové řady, typy trendových funkcí a odhady trendů 23 / 24

Regrese Použití regresní analýzy Vyjdeme-li z uvedeného regresního modelu, dostaneme predikce da rok 2013 spolu s 95% intervaly spolehlivosti predikce dolní horní 2013, 1čtvrtletí 24423,14 24008,05 24838,23 2013, 2čtvrtletí 25237,73 24777,01 25698,44 2013, 3čtvrtletí 24943,50 24431,21 25455,79 2013, 4čtvrtletí 26734,30 26164,51 27304,09 Jiří Neubauer (Katedra ekonometrie UO Brno) Časové řady, typy trendových funkcí a odhady trendů 24 / 24