STRUKTURA PEVNÝCH LÁTEK STRUKTURA PEVNÝCH LÁTEK



Podobné dokumenty
DEFORMACE PEVNÉHO TĚLESA DEFORMACE PRUŽNÁ (ELASTICKÁ) DEFORMACE TVÁRNÁ (PLASTICKÁ)

LOGO. Struktura a vlastnosti pevných látek

12. Struktura a vlastnosti pevných látek

pracovní list studenta Struktura a vlastnosti pevných látek Deformační křivka pevných látek, Hookův zákon

ORGANIZAČNÍ A STUDIJNÍ ZÁLEŽITOSTI

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK

Materiály charakteristiky potř ebné pro navrhování

Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

KONSTITUČNÍ VZTAHY. 1. Tahová zkouška

2 MECHANICKÉ VLASTNOSTI SKLA

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ. Prof. Ing. Jiří Adámek, CSc. Doc. Ing. Leonard Hobst, CSc. STAVEBNÍ LÁTKY MODUL BI01-M01

OVMT Mechanické zkoušky

Technologické procesy (Tváření)

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově. 06_4_ Struktura a vlastnosti pevných látek

3. Způsoby namáhání stavebních konstrukcí

Pracovní list: Hustota 1

PŘÍKLADY 1. P1.4 Určete hmotnostní a objemovou nasákavost lehkého kameniva z příkladu P1.2 21,3 %, 18,8 %

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově. 06_4_ Struktura a vlastnosti pevných látek

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 11 Název: Dynamická zkouška deformace látek v tlaku

STAVEBNÍ MATERIÁLY A KONSTRUKCE (STMK) BETON

Pružnost. Pružné deformace (pružiny, podložky) Tuhost systému (nežádoucí průhyb) Kmitání systému (vlastní frekvence)

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti

Lepené spoje. Přilnutí lepidla ke spojovaným součástem je způsobeno: Dřevo, plasty, keramika, sklo, kovy a různé kombinace těchto materiálů.

Beton. Be - ton je složkový (kompozitový) materiál

1 ZÁKLADNÍ VLASTNOSTI TECHNICKÝCH MATERIÁLŮ Vlastnosti kovů a jejich slitin jsou dány především jejich chemickým složením a strukturou.

10.1 Úvod Návrhové hodnoty vlastností materiálu. 10 Dřevo a jeho chování při požáru. Petr Kuklík

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK

2 Materiály, krytí výztuže betonem

Výztužné oceli a jejich spolupůsobení s betonem

Mechanika hornin. Přednáška 2. Technické vlastnosti hornin a laboratorní zkoušky

Termika. Nauka o teple se zabývá měřením teploty, tepla a tepelnými ději.

LEPENÉ SPOJE. 1, Podstata lepícího procesu

Ing. Jan BRANDA PRUŽNOST A PEVNOST

Řešené příklady INFASO + Obsah. Kotvení patní a kotevní deskou. Kloubový připoj. Šárka Bečková

9 Spřažené desky s profilovaným plechem v pozemních stavbách

Je-li poměr střední Ø pružiny k Ø drátu roven 5 10% od kroutícího momentu. Šroub zvedáku je při zvedání namáhán kombinací tlak, krut, případně vzpěr

Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3)

2 Kotvení stavebních konstrukcí

10 Navrhování na účinky požáru

Vlastnosti a zkoušení materiálů. Přednáška č.2 Poruchy krystalické mřížky

II. VNITŘNÍ ENERGIE, PRÁCE A TEPLO

Únosnosti stanovené níže jsou uvedeny na samostatné stránce pro každý profil.

Požadavky na technické materiály

STROJNÍ KOVÁNÍ Dělíme na volné a zápustkové.

koeficient délkové roztažnosti materiálu α Modul pružnosti E E.α (MPa)

Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí

Kovy a kovové výrobky pro stavebnictví

HALFEN STYKOVACÍ VÝZTUŽ HBT HBT 06 BETON. Typově zkoušeno podle DIN :

STAVEBNÍ LÁTKY. Definice ČSN EN Beton I. Ing. Lubomír Vítek. Ústav stavebního zkušebnictví Středisko radiační defektoskopie

6. Měření veličin v mechanice tuhých a poddajných látek

1 Krystalické a amorfní látky. 4 Deformace pevného tělesa 7. Základní stavební jednotkou krystalické látky jsou monokrystaly.

Epoxidové-lepidla. Rychlé Spolehlivé Úsporné.

Digitální učební materiál

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov

Dovolené napětí, bezpečnost Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Iva Procházková

Úloha I.E... tři šedé vlasy dědy Aleše

Integrovaná střední škola, Sokolnice 496

Struktura a vlastnosti pevných látek

ŠROUBOVÉ SPOJE VÝKLAD

Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti

Metodika stanovující technické požadavky pro přípravu novostaveb k provizornímu ukrytí

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta stavební Ústav betonových a zděných konstrukcí. Ing. Ladislav Čírtek, CSc.

Namáhání na tah, tlak

Zakázka: D Stavba: Sanace svahu Olešnice poškozeného přívalovými dešti v srpnu 2010 I. etapa Objekt: SO 201 Sanace svahu

TECHNOLOGIE VSTŘIKOVÁNÍ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ VÝZKUMNÁ ZPRÁVA STABILITA VYBRANÝCH KONFIGURACÍ KOLEJOVÉHO SVRŠKU

Prvky betonových konstrukcí BL01 1. přednáška

ZÁKLADNÍ POZNATKY MOLEKULOVÉ FYZIKY A TERMIKY. Mgr. Jan Ptáčník - GJVJ - 2. ročník - Molekulová fyzika a termika

Výukový materiál zpracován v rámci projektu EU peníze školám

Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191

V i s k o z i t a N e w t o n s k ý c h k a p a l i n

Sada Látky kolem nás Kat. číslo

VLIV STŘÍDAVÉHO MAGNETICKÉHO POLE NA PLASTICKOU DEFORMACI OCELI ZA STUDENA.

39 MECHANICKÉ VLASTNOSTI. Pevnost látek Deformace pevných látek Viskozita Kohézní síly - kapilární jevy

edmluva ÍRU KA PRO NAVRHOVÁNÍ prvk stavebních konstrukcí podle SN EN stavební konstrukce Stavebnictví, Technické lyceum

Materiálové vlastnosti: Poissonův součinitel ν = 0,3. Nominální mez kluzu (ocel S350GD + Z275): Rozměry průřezu:

CVIČENÍ 1 PRVKY KOVOVÝCH KONSTRUKCÍ

AdvAnch g Uživatelský manuál v. 1.0

7 Prostý beton. 7.1 Úvod. 7.2 Mezní stavy únosnosti. Prostý beton

Co by mohl (budoucí) lékař vědět o materiálech tkáňových výztuží či náhrad. 20. března 2012

Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test

Obr. 1 Stavební hřebík. Hřebíky se zarážejí do dřeva ručně nebo přenosnými pneumatickými hřebíkovačkami.

Plastická deformace a pevnost

Variace. Mechanika kapalin

Název materiálu: Vedení elektrického proudu v kapalinách

Kontrolní otázky k 1. přednášce z TM

Hliníkové konstrukce požární návrh

Přetváření a porušování materiálů

Vlastnosti a zkoušení materiálů. Přednáška č.3 Pevnost krystalických materiálů

České vysoké učení technické v Praze Fakulta stavební - zkušební laboratoř Thákurova 7, Praha 6 Pracoviště zkušební laboratoře:

Veličiny- základní N A. Látkové množství je dáno podílem N částic v systému a Avogadrovy konstanty NA

Plastická deformace a pevnost

9. MĚŘENÍ SÍLY TENZOMETRICKÝM MŮSTKEM

IDEÁLNÍ KRYSTALOVÁ MŘÍŽKA

Fyzikální praktikum 1

Změna objemu těles při zahřívání teplotní roztažnost

Termokamera ve výuce fyziky

Transkript:

Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 21. 4. 2013 Název zpracovaného celku: STRUKTURA PEVNÝCH LÁTEK STRUKTURA PEVNÝCH LÁTEK Pevné látky dělíme na látky: a) krystalické b) amorfní Krystalické látky (krystaly) patří mezi ně většina pevných látek nejvýraznější znak krystalu: má pravidelný geometrický tvar (sněhové vločky nebo ledové květy, které vytváří mráz na okenním skle) Zdroje obr.:http://www.sisinaaa.estranky.cz/fotoalbum/vsehochut/mraz/mraz-na-okne-1.html http://www.meteopress.sk/2013/03/ake-bude-ochladenie/ jejich částice (molekuly, atomy, ionty) jsou pravidelně uspořádané, tvoří krystalovou mřížku krystalické látky dělíme na monokrystaly a polykrystaly 1

Monokrystaly rozložení částic se periodicky opakuje v celém krystalu jde o uspořádání částic na velkou vzdálenost jejich znakem je anizotropie (některé fyzikální vlastnosti těchto látek závisí na směru vzhledem ke stavbě krystalu) monokrystaly nacházející se v přírodě: kamenná sůl NaCl křemen SiO2 (čirá odrůda křišťál) barevné odrůdy křemene, například ametyst, růženín diamant diamant chlorid sodný Zdroje obr.: http://www.ideje.cz/cz/clanky/diamanty http://www.komenskeho66.cz/materialy/chemie ametyst křišťál růženín Zdroje obr.: http://geologie.vsb.cz/loziska/loziska/nerudy/k%c5%99emen.html 2

monokrystaly uměle vyrobené: umělý drahokam rubín Zdroj obr.: http://upload.wikimedia.org/wikipedia/commons/c/c4/cut_ruby.jpg Polykrystaly většina krystalických látek se vyskytují jako polykrystaly mezi polykrystaly patří všechny kovy skládají se z velkého počtu drobných krystalků (tzv. zrn) uvnitř zrn jsou částice uspořádány pravidelně, poloha zrn je ale nahodilá jejich znakem je izotropie určitá vlastnost je ve všech směrech krystalu stejná Amorfní (beztvaré) látky částice nejsou pravidelně uspořádané (pravidelně uspořádané jsou jen do vzdálenosti asi 10-8 m a na větší vzdálenosti je pravidelnost uspořádání porušena) příkladem je sklo, vosk, asfalt, pryskyřice, jantar, saze, četné plasty z měkkých materiálů to jsou například masti a gely dřevěné uhlí a koks jsou v podstatě také amorfní látky jsou to látky izotropní jantar Zdroj obr.: http://www.klubjantar.net/zkamenelina_jantar.html 3

Úloha 1: Proč při chůzi v mrazivém počasí skřípe sníh pod nohama? ----------------------------------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------------------------------------------- Úloha 2: Vysvětlete pomocí struktury pevných látek, proč je možné štípat slídu na tenké plátky. ------------------------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------------------------ Úloha 3: Jaký je rozdíl mezi krystalickou a amorfní látkou?. ------------------------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------------------------ DEFORMACE PEVNÉHO TĚLESA Pevná tělesa působením vnějších sil mění svůj tvar. Rozlišujeme deformaci: 1) Pružnou (elastickou) těleso získá původní tvar, jakmile přestanou působit vnější síly deformace tělesa je jen dočasná příkladem je malé prodloužení ocelové pružiny 2) Tvárnou (plastickou) změna tvaru tělesa je trvalá příkladem je změna tvaru kovového tělesa při kování nebo zpracování modelářské či cihlářské hlíny Deformační síly mohou působit na těleso různým směrem. Rozlišujeme deformaci tahem, tlakem, ohybem, smykem nebo kroucením 4

Deformace tahem: Je způsobena stejně velkými silami opačného směru, které leží v jedné přímce a působí ven z tělesa. Tahem je deformováno například závěsné lano jeřábu nebo výtahu Zdroj obr: http://www.google.cz/search?hl=cs&site=imghp&tbm=isch&source=hp&biw=1241&bih=606&q=deformace+tahem Deformace tlakem: Je způsobena stejně velkými silami opačného směru, které leží v jedné přímce a působí dovnitř tělesa. Deformaci tlakem jsou namáhány například pilíře, nosníky, podpěry, stěny budov. Zdroj obr: http://www.google.cz/search?hl=cs&site=imghp&tbm=isch&source=hp&biw=1241&bih=606&q=deformace+tahem Deformace ohybem: Nastává například u nosníku podepřeného na obou koncích, působí-li na něj síla kolmá k jeho podélné ose souměrnosti. Nosník může být deformován i vlastní tíhou. Zdroj obr: http://fyzika.smoula.net/maturitni-temata-7 5

Deformace závisí na tvaru příčného řezu (profilu) tělesa. Profil nosníku může mít různý tvar (například L, U, I). Zdroj obr: http://fyzika.smoula.net/maturitni-temata-7 Deformace smykem: Deformující síly působí rovnoběžně s horní a dolní podstavou. Vrstvy tělesa se navzájem posouvají, ale jejich vzájemná vzdálenost se nemění. Zdroj obr: http://fyzika.smoula.net/maturitni-temata-7 Smykem jsou namáhány například nýty a šrouby. Deformace kroucením: Je způsobena dvěma silovými dvojicemi, které způsobují otáčení válce opačným směrem. Válec nemění svůj tvar, jen jedna podstava válce se oproti druhé pootočí. 6

Zdroj obr: http://fyzika.smoula.net/maturitni-temata-7 Kroucením jsou namáhány například hřídele, šroubováky, vrtáky. V praxi se častěji vyskytují deformace složené z několika jednoduchých deformací (tyč může být deformována současně tahem, kroucením nebo ohybem). Úloha: Proč je těleso z monokrystalické látky pevnější než těleso z polykrystalické látky? ----------------------------------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------------------------------------------- 7

PRUŽNÁ DEFORMACE TAHEM Působením deformačních sil F a F dochází ke zvětšování vzdáleností mezi částicemi tělesa ve směru namáhání ve vzájemném působení částic převládají síly pružnosti. Na plochu libovolného příčného řezu působí síly pružnosti Fp z obou stran. V rovnovážném stavu deformovaného tělesa (těleso se přestane prodlužovat) je Fp = F Zdroj obr: http://fyzika.smoula.net/maturitni-temata-7 V libovolném příčném řezu tělesa vzniká při deformaci stav napjatosti, který popisujeme pomocí = F p N normálového napětí σ, kde S F p tělesa. Jednotkou normálového napětí je Pascal. = F je síla pružnosti a S je obsah příčného řezu Z hodnot normálového napětí můžeme určit, kdy je deformace tahem nebo tlakem ještě pružná. Zavádíme veličinu mez pružnosti σ E - nejvyšší hodnota normálového napětí (určená experimentálně), při níž je deformace tahem (nebo tlakem) ještě pružná. Je-li normálové napětí větší než mez pružnosti těleso zůstane trvale deformováno. Mez pevnosti je nejvyšší hodnota normálového napětí, při kterém materiál ještě vydrží bez porušení celistvosti. Je-li překročena mez pevnosti (při deformaci v tahu) dojde k přetržení tělesa. Je-li normálové napětí větší než mez pevnosti dojde k porušení soudržnosti materiálu. V praxi požadujeme, aby mez pevnosti nebyla překročena zavádí se tzv. dovolené napětí. Je to maximální v praxi přípustná hodnota normálového napětí při deformaci tahem nebo tlakem. Jeho hodnota se volí mnohem menší než je mez pevnosti. Součinitel bezpečnosti k je podíl meze pevnosti a dovoleného napětí: σ k= σ p dov Hodnoty součinitele bezpečnosti některých materiálů: Kovy: 4 až 8 Dřevo a kámen: 10 Řemeny a provazy: 4 až 6 8

Hookův zákon: Pokud působí na těleso deformující síly tyč zvětší svou délku z původní hodnoty 1 na hodnotu l. l Zdroje obr: http://mog.wz.cz/fyzika/2rocnik/kap213.htm Veličina l = l l 1 prodloužení (závisí na počáteční délce tělesa). l V praxi používáme relativní (poměrné) prodloužení ε = Tato veličina nemá rozměr. l 1 Zvětšujeme-li postupně velikost sil, které deformují dané těleso můžeme experimentálně pozorovat, jak závisí normálové napětí na relativním prodloužení. Tuto závislost vyjadřuje Hookův zákon: Normálové napětí je přímo úměrné poměrnému prodloužení. σ = E ε N E je modul pružnosti v tahu, jednotkou je Pascal. Moduly pružnosti látek jsou uvedeny v MFCHT, například pro ocel je E = 220 GPa. Zákon platí pro pružnou deformaci. Velký význam v technice a ve stavebnictví. Poznámka: I pro pružnou deformaci tlakem platí matematické vyjádření Hookova zákona. l ε = relativní zkrácení l 1 E je modul pružnosti v tlaku 9

Křivka deformace: Zdroj obr.: http://mog.wz.cz/fyzika/2rocnik/kap213.htm je graf závislosti normálového napětí na relativním prodloužení křivku tvoří několik částí diagram má odlišný průběh pro tělesa (tyče, dráty, vlákna) z pružné látky, plastické látky a křehké látky na výše uvedeném diagramu jde o těleso z pružné látky část OA (grafem je úsečka - jde o přímou úměru) nastává pružná deformace prodloužení tělesa je přímo-úměrné velikosti působící síly napětí v bodě A se nazývá mez úměrnosti σ (nejvyšší napětí, při němž ještě platí Hookův zákon) pokud se dále zvětšuje velikost deformující síly, začne od určitého napětí σ E, které nazýváme mez pružnosti, probíhat plastická deformace mez pružnosti se většinou moc neliší od meze úměrnosti (někdy jsou dokonce stejné) křivka BC s rostoucím napětím roste relativní prodloužení drátu křivka CD materiál (drát) teče při konstantním napětí dochází k rychlému prodlužování drátu napětí σ se nazývá mez kluzu, nastává náhlé prodloužení materiálu k část DE zpevnění materiálu napětí v bodě E se nazývá mez pevnosti σ p - je nejvyšší napětí, které materiál vydrží bez porušení soudržnosti, při jeho překročení se drát přetrhne u 10

PRACOVNÍ LIST 1 DEFORMACE PEVNÉHO TĚLESA Úloha : Charakterizujte průběh deformace tělesa z křehké látky a z plastické látky na základě uvedeného diagramu. Zdroj obr: Fyzika I pro SŠ (Lepil, Bednařík, Hýblová) 11

PRACOVNÍ LIST 2 DEFORMACE PEVNÉHO TĚLESA Příklad 1: Ocelový drát má délku 6,4 m a příčný řez má obsah 0,50 mm 2. Určete velikost síly, která způsobí jeho prodloužení o 5,0 mm. Modul pružnosti v tahu pro ocel je 220 GPa. Příklad 2: Ocelová struna délky 1,5 m a průměru 0,85 mm se protáhla silou o velikosti 80 N o 1 mm. Určete modul pružnosti v tahu. 12

PRACOVNÍ LIST 3 DEFORMACE PEVNÉHO TĚLESA Příklad 3: Vypočítejte velikost síly potřebné k přetržení hliníkového drátu o průměru 1,2 mm. Mez pevnosti v tahu hliníku je 70 MPa. Příklad 4: Dřevěná tyč o obsahu příčného řezu 3 cm 2 se přetrhne při zatížení o velikosti 21 kn. Vypočítejte mez pevnosti dřeva. ---------------------------------- ------------------------------------------------------------------------- ---------------------------------- ------------------------------------------------------------------------- ---------------------------------- ------------------------------------------------------------------------- Příklad 5: Litinový sloup kruhového příčného řezu může být zatížen do 2 MN. Vypočítejte průměr kruhu, je-li mez pevnosti litiny v tlaku 700 MPa a součinitel bezpečnosti 5. 13

TEPLOTNÍ ROZTAŽNOST PEVNÝCH LÁTEK Jev, při němž tělesa z pevné látky při změně teploty mění své rozměry. Teplotní délková roztažnost: Projevuje se u tělesa, u něhož převládá jeden rozměr (délka). Zdroj obr: http://kdf.mff.cuni.cz/vyuka/psp1/doku.php?id=t_55 Kovovou tyč zahříváme plamenem prodlužování tyče (přeneseno na pohyb ručičky přístroje). Upevníme současně do přístroje dvě tyče (např. ocelovou a hliníkovou) tyče z různých látek se při stejném přírůstku teploty prodlužují různě. Necháme tyče vychladnout dojde k jejich zkracování. S rostoucí teplotou se zvětšuje délka kovové tyče. Její prodloužení je přímo úměrné počáteční délce tyče, přírůstku teploty a závisí na materiálu tyče. Uvažujme tyč, která má počáteční délku l 1 a počáteční teplotu t 1. Zvýšíme teplotu na hodnotu t přírůstek teploty je t = t t 1 Prodloužení tyče l = l l 1 l = α l t 1 je přímo-úměrné počáteční délce a přírůstku teploty: α součinitel teplotní délkové roztažnosti K jednotkou je vyjadřuje prodloužení tyče dlouhé 1 m při zahřátí o 1 C hodnota součinitele je malá závisí na druhu látky, z níž je těleso zhotoveno, hodnoty součinitele jsou uvedeny v MFCHT například pro hliník má hodnotu: α 5 = 2,4 10 K hliníková tyč o délce 1 m se při zahřátí o 100 C prodlouží o 6 velmi malou roztažnost má například sklo ( α = 8 10 K ), 6 6 porcelán ( α = 4 10 K ) nebo dřevo ( α = 3,15 10 K 2,4mm 14

Konečná délka tyče: l = l 1 + l l = l1 + α l 1 t l = l 1+ α t 1 ( ) Délka tyče se mění s teplotou lineárně. Poznámka: Předpoklad: přírůstek teploty není příliš velký a okolní tlak zůstává konstantní. Teplotní objemová roztažnost: Při změně teploty můžeme pozorovat změnu objemu tělesa. V = V 1+ β t ( ) 1 V 1 je původní objem (při teplotě 1 V je objem při teplotě t t je změna teploty t ) β součinitel teplotní objemové roztažnosti K jednotkou je závisí na druhu látky, z níž je těleso zhotoveno závisí i na teplotě, ale pro malé teplotní rozdíly lze β považovat za konstantu β 3α Otvory a dutiny v tělesech také mění své objemy se změnou teploty. Teplotní roztažnost pevných látek v praxi: Změny délky kolejnic jsou způsobené změnami teplot a nejsou zanedbatelné při stavbě železniční tratě se nechávají mezi kolejnicemi mezery Zdroj obr: http://www.techmania.cz 15

Roztahování ocelových konstrukcí ocelové konstrukce se zahříváním roztahují mostní konstrukce nesmí být připevněna k pilířům (jen položena aspoň na jedné straně na ocelových válcích) mostní konstrukce se může při zkracování nebo prodlužování posunovat Zdroj obr: http://www.techmania.cz Dálkové potrubí do kovových potrubí, kterým prochází horká pára, se vkládají pružná kolena (vyrovnávají délku potrubí při různých teplotách) Zdroj obr: http://www.google.cz/search?q=dilata%c4%8dn%c3%ad+smy%c4%8dky+parovodu Kovové dráty a lana při jejích napínání v létě se musí počítat se zkrácením, k němuž dojde v zimě ponechává se dostatečný průvěs Zdroj o br: http://www.google.cz/search?q=dilata%c4%8dn%c3%ad+smy%c4%8dky+parovodu 16

Bimetalové proužky (pásky) pevně spojené proužky dvou kovů s různými teplotními součiniteli délkové roztažnosti bimetalový proužek je při nízké teplotě rovný, s rostoucí teplotou se ohýbá Zdroj obr: http://www.3zscheb.unas.cz/e-learning/fyzika%20web/teplotavyklad.htm využívá se k měření teploty v bimetalových teploměrech Zdroj obr: http://cs.wikipedia.org/wiki/teplom%c4%9br jsou součástí termostatů v elektrických spotřebičích (žehličce, chladničce za účelem regulace teploty), při dosažení nastavené teploty proužek přeruší elektrický obvod Zdroj obr: http://fyzweb.cz/clanky/index.php?id=45 17

Zdroj obr: http://kutil.elektrika.cz/jaky-material/zehlicka-1 Spojování různorodých materiálů mají-li se pevně spojit dva materiály a má-li toto spojení odolávat teplotním změnám nutné spojovat jen takové materiály, které mají součinitel teplotní délkové roztažnosti přibližně stejný (beton betonářská ocel, lepidla a tmely ) stejná teplotní roztažnost oceli a betonu zajišťuje pevnost a stálost ocelobetonových konstrukcí Skleněné varné nádoby vyrábí se z křemenného skla (teplotní součinitel délkové roztažnosti je mnohem menší než u obyčejného skla) nádoby se dělají tenkostěnné při zahřívání se rovnoměrně prohřívají, rovnoměrně roztahují neprasknou 18

PRACOVNÍ LIST 1 TEPLOTNÍ ROZTAŽNOST Úloha 1: Na čem závisí prodloužení tyče při zvýšení teploty? Úloha 2: Proč se při montáži elektrického vedení musejí dráty ponechat prověšené? Úloha 3: Proč jsou nádoby z laboratorního varného skla tenkostěnné? Úloha 4: Proč baňka svítící žárovky praskne, jestliže na ni kápne voda? 19

PRACOVNÍ LIST 2 TEPLOTNÍ ROZTAŽNOST Příklad 1: S jakým prodloužením je třeba počítat u kolejnice, která má při nejnižší teplotě délku 20 m, jestliže se 5 teploty pohybují od -30 C do 50 C? ( α = 1,2 10 K ) Příklad 2: Ocelový drát ( 45 C. α 6 = 11,5 10 K ) má při teplotě -15 C délku 100 metrů. Určete jeho délku při teplotě Příklad 3: α 6 = 12 10 K Ocelovým drátem ( ), který má při teplotě 0 C délku 30 dm, prochází elektrický proud. Drát se proudem rozžhaví a prodlouží o 18,5 mm. Určete jeho teplotu. 20

PRACOVNÍ LIST 3 TEPLOTNÍ ROZTAŽNOST Příklad 4: 5 Mostní konstrukce je z oceli ( α = 1,2 10 K ). Určete, o kolik procent se změní délkové rozměry při zvýšení teploty z - 25 C na 45 C. Příklad 5: Betonový sloup má při teplotě 30 C objem 250 dm 3. Určete, při jaké změně teploty se zmenší objem sloupu o 0,45 dm 3. Součinitel teplotní délkové roztažnosti betonu je 1,2.10-5 K -1. Příklad 6: 5 5 Dvě tyče, železná ( α = 1,2 10 K ) a zinková ( α = 2,9 10 K ) mají při teplotě 0 C stejnou délku. Pokud zvýšíme jejich teplotu o 100 C, bude rozdíl jejich délek 1 cm. Určete délky tyčí při teplotě 0 C. 21

PŘÍKLADY NA PROCVIČENÍ 1) Rámová vlákna sítě pavouka křižáka mají mez pevnosti asi 10 GPa a průměr asi 1 μm. Jaká maximální síla (nosnost) je může napínat, aniž se přetrhnou? 2) Jak se změní prodloužení hliníkového drátu, je-li tahová síla 4 krát větší a průměr drátu 3 krát větší? 3) Měděný drát délky 39 m a průměru 0,4 cm byl zatížen silou o velikosti 60 N. Určete prodloužení drátu. Modul pružnosti v tahu mědi je 120 GPa. 6 4) Hliníkový drát ( = 24 10 K ) 100 C? α má při teplotě 15 C délku 3 m. Jakou délku bude mít při teplotě 6 5) Ocelovým drátem ( α = 12 10 K ), jehož délka při teplotě 0 C byla 3 m, procházel elektrický proud. Drát se proudem rozžhavil a prodloužil o 18,5 mm. Vypočítejte jeho teplotu. 6) Vypočtěte normálové napětí v ocelovém drátu s průřezem o obsahu 2,5 mm 2, je-li deformován tahem silami o velikosti 0,5 kn. 7) Určete prodloužení měděného drátu, který má počáteční délku 12 m, je-li normálové napětí 0,2 GPa. Modul pružnosti v tahu pro měď je 120 GPa. 8) Ocelový drát má délku 6 m a průřez o obsahu 3 mm 2. Modul pružnosti v tahu pro ocel je 0,2 TPa. Určete sílu, která způsobí jeho prodloužení o 5 mm. 9) Ocelové lano tvoří 20 drátů, z nichž každý má průměr 2 mm. Jakou silou se lano přetrhne, je-li mez pevnosti v tahu oceli pro lana 1 GPa? 10) Jaký je rozdíl délky hliníkového elektrického vedení mezi dvěma stožáry vzdálenými od sebe 200 metrů při teplotách -30 C a 35 C? 11) Ocelové pásmo má při teplotě 18 C délku 25 metrů. Jaká je jeho délka při teplotě 30 C? Součinitel teplotní délkové roztažnosti je 1,2.10-5 K -1. 6 12) Most ocelové konstrukce ( α = 12 10 K ) je při teplotě C změní jeho délka, jestliže se teplota změní z 6 13) Koule z měkké oceli ( = 12 10 K ) bodu mrazu. 0 dlouhý 250 metrů. O kolik se 20 C na 40 C? α má při teplotě 25 C poloměr 1,5 cm. Určete její objem při 14) Hliníková nádoba má při teplotě 30 C objem 2000 ml. Určete zvětšení nádoby při zvýšení teploty 5 α = 2,4 10 K na 80 C. ( ) 15) Hliníková nádoba má při teplotě 20 C objem 750 ml. Jak se změní její objem, zvýší-li se teplota o 5 α = 2,4 10 K 55 C? ( ) Seznam použité literatury 1. E. SVOBODA, F. BARTÁK, M. ŠIROKÁ: Fyzika pro technické obory. SPN, 1989. 22

2. O. LEPIL, M. BEDNAŘÍK, R. HÝBLOVÁ R: Fyzika I pro SŠ. Prometheus 1993. 3. K. BARTŮŠKA K: Sbírka řešených úloh z fyziky II. Prometheus 1997. 4. M. BEDNAŘÍK, E. SVOBODA, V. KUNZOVÁ: Fyzika II pro studijní obory SOU, SPN, 1988 5. K. BARTUŠKA K, E. SVOBODA: Molekulová fyzika a termika. Fyzika pro gymnázia. Prometheus 2004 6. V. KOHOUT: Fyzika zásobník úloh pro SŠ. Scientia, spol.s r.o., 2006 http://www.sisinaaa.estranky.cz http://www.meteopress.sk http://www.ideje.cz http://www.komenskeho66.cz http:/geologie.vsb.cz http://upload.wikimedia.org/wikipedia http://www.klubjantar.net http://www.google.cz http://fyzika.smoula.net http://mog.wz.cz http://kdf.mff.cuni.cz http://www.techmania.cz http://www.3zscheb.unas.cz http://fyzweb.cz http://kutil.elektrika.cz 23