Závěrečná zpráva projektu: Dynamika elektronických vaček



Podobné dokumenty
Zásady regulace - proudová, rychlostní, polohová smyčka

Přínosy účasti v programu Eureka z pohledu rozvoje VÚTS, a.s.

Snižování hlukové emise moderní automobilové převodovky

Metodika aplikací elektronických vaček v pohonech pracovních členů mechanismů výrobních strojů

Modelování polohových servomechanismů v prostředí Matlab / Simulink

POHON 4x4 JAKO ZDROJ VIBRACÍ OSOBNÍHO AUTOMOBILU

1. Regulace proudu kotvy DC motoru

Tuhost mechanických částí. Předepnuté a nepředepnuté spojení. Celková tuhosti kinematické vazby motor-šroub-suport.

Návrh a simulace zkušební stolice olejového čerpadla. Martin Krajíček

Řízení asynchronních motorů

Otočný stůl nové koncepce pro multifunkční obráběcí centrum

ZÁKLADY ROBOTIKY Pohony a věci s tím související

3. Mechanická převodná ústrojí

CENTRUM VZDĚLÁVÁNÍ PEDAGOGŮ ODBORNÝCH ŠKOL

Regulační pohony. Radomír MENDŘICKÝ. Regulační pohony

MODIFIKOVANÝ KLIKOVÝ MECHANISMUS

Základní uvedení do provozu frekvenčního měniče SD6/SI6 od firmy Stöber

Pohonné systémy OS. 1.Technické principy 2.Hlavní pohonný systém

Výukové texty. pro předmět. Měřící technika (KKS/MT) na téma. Tvorba grafické vizualizace principu měření otáček a úhlové rychlosti

i β i α ERP struktury s asynchronními motory

Dynamické chyby interpolace. Chyby při lineární a kruhové interpolaci.

VÚTS, a.s. Centrum rozvoje strojírenského výzkumu Liberec.

Příloha k průběžné zprávě za rok 2015

Konstrukční zásady návrhu polohových servopohonů

Příloha A návod pro cvičení 1. SESTAVENÍ MODELU V PROSTŘEDÍ MATLAB SIMULINK Zapojení motoru

Obrázek č. 7.0 a/ regulační smyčka s regulátorem, ovladačem, regulovaným systémem a měřicím členem b/ zjednodušené schéma regulace

Konfigurace řídicího systému technikou Hardware In The Loop

-V- novinka. Jednotky motoru MTR-DCI 2.2. motor s integrovaným ovladačem, převodovkou a řízením. kompaktní konstrukce

Motory. Motor typové řady 1FK7. Kompaktní synchronní motory pro řídící pohybové aplikace. Brožura - listopad Answers for industry.

Řízení servopohonů v dynamicky náročných aplikacích

CW01 - Teorie měření a regulace

Odpružená sedačka. Petr Školník, Michal Menkina. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií

Centrum kompetence automobilového průmyslu Josefa Božka - AutoSympo a Kolokvium Božek až , Roztoky -

Momentové motory. (vestavné provedení) TGQ Momentové (přímé) motory

Centrum kompetence automobilového průmyslu Josefa Božka - Kolokvium Božek 2012, Roztoky -

Proporcionální řízení: průvodce pro uživatele

Snižování hlukové emise moderní automobilové převodovky. Prezentace: Pojednání ke státní doktorské zkoušce Ing. Milan Klapka

REKONSTRUKCE REGULOVANÝCH POHONŮ VÁLCOVACÍ LINKY TANDEM NA VŠB-TU FMMI OSTRAVA

Vývojové práce v elektrických pohonech

Dynamické chyby interpolace. Chyby způsobené pasivními odpory. Princip jejich kompenzace.

5. Elektrické stroje točivé

Vypracovat přehled způsobů řízení paralelních kinematických struktur s nadbytečnými pohony

Opakování z předmětu TES

Aplikace měničů frekvence u malých větrných elektráren

TIA na dosah červen Novinky v servomotorech

VÝVOJ ŘÍDICÍCH ALGORITMŮ HYDRAULICKÝCH POHONŮ S VYUŽITÍM SIGNÁLOVÉHO PROCESORU DSPACE

Spojité regulátory Zhotoveno ve školním roce: 2011/2012. Spojité regulátory. Jednoduché regulátory

WP25: Pokročilé zkušební metody pro spalovací motory a hnací řetězec Vedoucí konsorcia podílející se na pracovním balíčku

Modelování elektromechanického systému

ŘÍZENÍ MODELU NEKÝVAVÉHO JEŘÁBU. Autor.: Lukáš Řápek Vedoucí.: Ing. Jan Zavřel, Ph.D.

simotion SIMOTION D435 a SINAMICS S120 praktická ukázka

Určení hlavních geometrických, hmotnostních a tuhostních parametrů železničního vozu, přejezd vozu přes klíny

SOUTĚŽNÍ PŘEHLÍDKA STUDENTSKÝCH PRACÍ FST 2007 KONSTRUKČNÍ ŘEŠENÍ KINEMATIKY VÝMĚNÍKU NÁSTROJŮ PRO VERTIKÁLNÍ OBRÁBĚCÍ CENTRO ŘADY MCV.

DIGITÁLNÍ SERVOZESILOVAČ TGA-24-9/20

Technická specifikace

Řízení modelu letadla pomocí PLC Mitsubishi

DIGITÁLNÍ SERVOZESILOVAČ TGA-24-9/20

Výukové texty. pro předmět. Automatické řízení výrobní techniky (KKS/ARVT) na téma

Krokové motory EMMS-ST

Návod k použití programu pro výpočet dynamické odezvy spojitého nosníku

Mechatronika ve strojírenství

CENTRUM ROZVOJE STROJÍRENSKÉHO VÝZKUMU VA KOVÉ P EVODOVKY VISION UNLIMITED

Ṡystémy a řízení. Helikoptéra Petr Česák

Vítejte. ve společnosti ZEN S.A.

Dynamika vázaných soustav těles

Výukové texty. pro předmět. Automatické řízení výrobní techniky (KKS/ARVT) na téma

Zaměření Pohony a výkonová elektronika. verze

Třícestné regulační ventily, vyvažování portů třícestných regulačních ventilů

5. POLOVODIČOVÉ MĚNIČE

Témata oborových projektů a bakalářských prací 2016/2017

VÝZKUM PROVOZNÍCH PARAMETRŮ DOPRAVNÍCH ZAŘÍZENÍ

Převodníky fyzikálních veličin (KKY/PFV)

TGA-24-9/20. Instrukční manuál DIGITÁLNÍ SERVOZESILOVAČ. Typy servozesilovačů

EXPERIMENTÁLNÍ STAND ŘÍZENÝ REAL TIME TOOLBOXEM NA TESTOVÁNÍ MEMBRÁN

Hlavní parametry mající zásadní vliv na přesnost řízení a kvalitu pohonu

Laboratorní úloha. MĚŘENÍ NA MECHATRONICKÉM SYSTÉMU S ASYNCHRONNÍM MOTOREM NAPÁJENÝM Z MĚNIČE KMITOČTU Zadání:

Stanovení kritických otáček vačkového hřídele Frotoru

Přípravek pro demonstraci řízení pohonu MAXON prostřednictvím

Vypracovat přehled paralelních kinematických struktur. Vytvořit model a provést analýzu zvolené PKS

1. Obecná struktura pohonu s napěťovým střídačem

A45. Příloha A: Simulace. Příloha A: Simulace

( LEVEL 2 něco málo o matematickém popisu, tvorbě simulačního modelu a práci s ním. )

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností

Metody řízení moderních soustav s

Modelování a simulace Lukáš Otte

Využití neuronové sítě pro identifikaci realného systému

Sledování technického stavu závěsu kola

Přímá regulace momentu

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE

43A111 Návrh řízení podvozku vozidla pomocí lineárního elektrického pohonu.

Prostředky vnější regulace tkacího procesu

Servopohony. Servozesilovače AKD

Virtuální instrumentace I. Měřicí technika jako součást automatizační techniky. Virtuální instrumentace. LabVIEW. měření je zdrojem informací:

SEMI-AKTIVNĚ ŘÍZENÉ TLUMENÍ PODVOZKU VYSOKORYCHLOSTNÍHO VLAKU

Klasické pokročilé techniky automatického řízení

Simulační model a identifikace voice coil servopohonu

JEDNOTKY. E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze. Abstrakt

Úloha 5 Řízení teplovzdušného modelu TVM pomocí PC a mikropočítačové jednotky CTRL

Obecné cíle a řešené dílčí etapy

Laboratorní úloha č.8 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH CHARAKTERISTIK

Transkript:

Závěrečná zpráva projektu: Dynamika elektronických vaček Ing. Petr Jirásko, Ing. David Lindr. Úvodní část Technická praxe stále klade zvyšující se nároky na produktivitu, kvalitu, variabilitu a pružnou automatizaci výroby. To ve svém důsledku přináší požadavky na zvýšené výkony pracovních strojů (pracovní periody, resp. otáčky), dokonalé respektování polohových funkcí pracovních členů (dynamika mechanismů s poddajnými členy), víceúčelovost při malosériové výrobě (možnost ekonomicky výhodné změny pohybových funkcí) a konstrukční modularitu strojů (pružná automatizace). Jednou z možností při řešení konkrétních problémů pohonů pracovních členů mechanismů s definovanou technologickou pohybovou funkcí je realizace pracovního pohybu vačkovým mechanismem s klasickou nebo elektronickou vačkou. Zatímco aplikace klasických vaček v mechanismech strojů je obecně známá, elektronické vačky se v různé formě začínají prosazovat až v poslední době. Vyhovět požadavkům výroby v oblasti aplikací elektronických vaček znamená zabývat se jejich dynamikou. V naší práci jsme se v jednom směru zaměřili na dynamiku mechanismů s pružnými členy, kde budící pohybová funkce poddajného systému je generovaná elektronickou vačkou firmy Siemens. Tato pohybová funkce je navržena jako neperiodická s klidovým intervalem, na kterém se intenzivně projevují reziduální kmity vlivem poddajnosti hnané hřídele. Toto kmitání nepříznivě ovlivňuje technologické funkce a je rušivé. Snahou je reziduální kmity modelovat a potlačovat s využitím externího čidla, což je náplň prací tohoto směru na dynamickém standu podle obr.2.. V dalším směru prací na dynamickém standu je modelovat poddajnost elektromagnetické vazby stator/rotor včetně poddajnosti výstupní hřídele v konfiguraci elektronické vačky Yaskawa podle obr.3.. Zde jsme se zaměřili na modelování a minimalizaci reziduálních kmitů bez zpětné vazby. Tato minimalizace bez zpětné vazby využívá dynamických vlastností samotných zdvihových závislostí. Modelují se tzv. reziduální spektra, na jejichž základě se stanoví otáčky, úhel zdvihu nebo moment setrvačnosti zátěže, při kterých je reziduální kmitání minimální. Cílem prací je na výpočetních modelech a na stendu porovnat možnosti komerčních produktů těchto dvou významných světových výrobců elektronických vaček. 2. Dynamicky stand a modelování mechanismů s poddajnými členy systémem Siemens Ve VÚTS (výzkumný ústav textilních strojů v Liberci) byl vyroben dynamický stand pro výzkum dynamiky vačkových mechanismů podle obr.2., který je osazen v konfiguraci

2 podle obrázku elektronickou vačkou Siemens (Německo) a Yaskawa (Japonsko). Na tomto obrázku je pohybová funkce realizovaná servomotorem Siemens přes reduktor Spinea a poddajnou hřídel na pracovní setrvačnou hmotu se žlutě označenými pruhy (servomotor Yaskawa je na obrázku přímo zatížen setrvačnou hmotou na hřídeli). V této konfiguraci probíhaly práce s elektronickou vačkou Siemens podle následujícího popisu. Obr.2. Dynamický stand se servomotorem Siemens a poddajnou hřídelí Koncepce experimentů Částí pracoviště standu tvoří elektronika, tedy výkonové, řídící a ovládací prvky. Její blokové schéma včetně komunikačního rozhraní je znázorněno na obr.2.2. Vytvořené pracoviště standu umožňuje sestavit soustrojí s různými kombinacemi mechanických členů a testovat na nich navržené varianty elektronických vaček, které bude možno následně implementovat do výrobních strojů. Řídící jednotka pohonů SINAMICS nabízí možnost zasahovat přímo do řídících struktur pomocí tzv. BICO (Binector Connector) technologii. Dále díky nástroji DCC Chart, vytvářet vlastní řídící algoritmy. Ověření možností nástroje DCC Chart pro zvýšení polohové přesnosti a odstranění reziduálního kmitání je jedním z cílů projektu. V rámci prací byly na experimentálním pracovišti realizovány dva experimenty: ) Zátěž elektronické vačky je tvořena setrvačníkem (J=, kgm 2 ) pevně spojeným s hřídeli motoru. 2) Zátěž, kterou tvoří setrvačník, je v tomto experimentu spojena s motorem přes pružný člen a převodovku (:33).

3 SIMOTION C24 Ovládací panel DRIVE-CLiQ CU32 Senzor modul Usměrňovací modul Střídací modul Motor bez DRIVE-CLiQ rozhraní Obr.2.2 Blokové zapojení pracoviště pro ověřování elektronických vaček Pro potřeby experimentů byly navrženy ve VÚTS v Liberci vybrané zdvihové závislosti, které budou sloužit jako žádané polohové profily pro servopohon jenž kinematicky budí dynamický poddajný systém, kterým je ve skutečnosti každý pracovní mechanizmus výrobního stroje. Pro účely projektu byly vytvořeny tři typy zdvihových závislostí (viz obr.2.3), lišící se pouze ve funkcích, jenž definují jejich průběh (parabolická, harmonická a polynomická). Velikost zdvihu je u všech tří závislostí stejná. 9 8 7 6 5 4 3 2 5 5 2 25 3 35 4 9 8 7 6 5 4 3 2 5 5 2 25 3 35 4 9 8 7 6 5 4 3 2 5 5 2 25 3 35 4 2,5,5,8,6,4,2,8,6,4 2,5 2,5,5 -,5 5 5 2 25 3 35 4,2 5 5 2 25 3 35 4 -,2 5 5 2 25 3 35 4 -,5 5 4 3 2-5 5 2 25 3 35 4-2 -3-4 -5 4 3 2 5 5 2 25 3 35 4 - -2-3 -4 3 2 5 5 2 25 3 35 4 - -2-3 Obr.2.3 Zdvihové závislosti elektronických vaček (polynomická, harmonická, parabolická) Pro potřeby hledání vyhovujících řídicích struktur byl na TUL v Liberci sestaven tzv. D-Q model synchronního servopohonu v prostředí Matlab Simulink a na něm odzkoušeny

P olohová odc hylka s lave os y [ o ] 4 navržené varianty. Dalším cílem projektu je verifikace navržených matematických modelů na základě realizovaných experimentů. Experimentální část V prvním experimentu byl setrvačník připevněn přímo na hřídel motoru. Pro tuto zátěž byla použita k řízení klasická regulační struktura, s dopřednou regulací a filtry pro žádost proudu a rychlosti. Syntézou kaskádní regulační struktury a použitím technologie Siemens DSC se nám podařilo dosáhnout uspokojivých výsledků polohových přesnosti elektronických vaček. Na velikost polohové chyby má vliv nejen rostoucí rychlost řídící osy, od které je odvozená i velikost frekvence opakování vačky, ale i typ použité zdvihové závislosti. Tato varianta experimentu byla nejprve simulována na modelu vytvořeném v Matlab Simulink (viz obr.2.4). y w u Iq* w y Type Type M* u /km Omega Speed_PI regulatorm => Iq Field generating current Id Id Limitation Switch Load torque Omega Id_PI regulator Ud Id Mz Omega el Omega Omega mech Uq Iq 6/(2*pi) Omega => n 2*pi/6 Iq* Permanent magnet synchronous motor Speed limitation Gain n => Omega Add2 Iq limitation w u y Scope7 Iq_PI regulator diference Add Gain.5 Add To Workspace2 Integrator s du/dt Derivative From Workspace Tab_pokus3a Clock time To Workspace To Workspace vystup.3s+ Transfer Fcn Obr.2.4 Matematický model elektronické vačky s pevnou vazbou Výsledky modelování elektronické vačky s pevnou vazbou jsou pak průběhy polohové odchylky, které jsou porovnávány s naměřenými průběhy. Naměřená a vypočtená polohová odchylka pro polynomickou zdvihovou závislost a pro rychlost otáčení 36 deg/s je uvedena na obr.2.5.,25 P olynom - F ollowing error (6 c yklů z a minutu),2,5,,5 -,5 -, -,5 -,2 -,25 7 8 9 2 3 4 Cas [ms] Obr.2.5 Naměřená a vypočtená polohová odchylka pro polynomickou zdvihovou závislost

5 Druhý experiment byl proveden v konfiguraci, kde byl setrvačník připojen přes pružnou hřídel a bezvůlovou převodovkou Spinea (/33) k hřídeli motoru. Pružné spojení mechanické zátěže s motorem má nepříznivé důsledky na funkci celého mechanizmu. Má-li moment motoru M H nebo zátěže M Z periodickou střídavou složku o kmitočtu rovném nebo blízkém kmitočtu soustavy, je tato střídavá složka momentu složkou budicí, a soustava se na tomto kmitočtu rozkmitá s velkou amplitudou. V tomto případě můžeme použít pouze malou hodnotu proporcionálního zesílení rychlostního regulátoru. Systém potom může dosáhnout pouze nízké přesnosti regulace. Poznamenejme, že klasické metody řízení elektrických pohonů většinou neumožňují splnit požadavky kladené na moderní mechatronické systémy (například elektronické vačky nebo robotické aplikace). V současné době je publikována řada pokročilých algoritmů řízení umožňujících splnit i vysoké požadavky kladené na tyto mechatronické systémy. Cílem tohoto projektu bylo navrhnout jednoduchý řídicí algoritmus, který bude možno snadno implementovat do řídicího systémy Siemens a který zajistí požadovanou přesnost elektronické vačky a bude eliminovat i nežádoucí reziduální kmity. Rovněž i varianta elektronické vačky s pružnou vazbou byla nejprve simulována na modelu (viz. obr.2.6). time Clock To Workspace y w u Field generating Id Limitation Id_PI regulator current Id Ud Id Iq* Mz Omega el Scope4 Omega Omega mech Scope5 Type Type Omega Uq Iq Omega => n Speed limitation n => Omega w M* y u Omega Speed_PI regulator /km M => Iq Switch Iq* Iq limitation w u y Iq_PI regulator Permanent magnet synchronous motor Scope 88 prevodovka3 Add4 Scope2 Scope8 prevodovka2 Load torque Scope3 km vystup To Workspace Integrator 33 Iq => M s Add2 Scope6 prevodovka prevodovka5 33.33 Scope7 Tab_pokus3b From Workspace Gain Scope prevodovka.4 Add5 Transfer Fcn2.2s+ Add s Transfer Fcn Add3.5s Transfer Fcn 33 s Integrator Iq => M Scope2 vystup To Workspace2 Obr.2.6 Matematický model elektronické vačky s pružnou vazbou Pro porovnání jsou uvedeny na obr.2.7 výsledky simulace se zapojenou kompenzační vazbou a bez zapojené kompenzace reziduálních kmitů pomocí externího čidla.

6 Obr.2.7 Výsledky simulace se zapojenou kompenzační vazbou a bez zapojené kompenzace Klasická řídicí struktura systému Siemens byla pro tuto variantu doplněna o speciální regulační strukturu jenž využívá signál ze snímače polohy na hřídeli motoru a signál z externího čidla polohy koncového členu soustrojí. V řídícím systému SINAMICS je potom tato regulační struktura realizována pomocí nástroje DCC Chart. Navržené zapojení, umožňující korigovat nežádoucí kmitání zátěže, je uvedeno na obr.4. Naměřené průběhy zdvihové křivky (polynomická zdvihová závislost) při použití kompenzace pomocí externího enkodéru a bez kompenzace při rychlosti otáčení 36 deg/s jsou uvedeny na obr.2.8. Obr.2.8 Naměřené zdvihové křivky se zapojenou kompenzační vazbou a bez zapojené kompenzace Závěr Výsledky získané z experimentů ukazují, že použití nástroje DCC Chart firmy Siemens umožňuje vytvářet a realizovat i vlastní řídicí algoritmy, které jsou nutné, jsou-li požadovány nadstandardní parametry elektronických vaček a umožní tím realizovat elektronické vačky se zvýšenými požadavky na přesnost a také umožní eliminovat nežádoucí reziduální kmity. Předpokládáme, že vyvinuté metody naleznou uplatnění při návrhu dynamicky náročných pohonů polohovacích os.

7 3. Dynamicky stand a modelování mechanismů s poddajnými členy systémem Yaskawa Na obr.3. je dynamický stand v konfiguraci s elektronickou vačkou Yaskawa. Na základě konfigurace standu se sestaví diskrétní výpočetní model podle obr.3.2. Obr.3. Stand elektronické vačky Yaskawa Elektronická vačka Kontroler Servomotor Mechanická část I M (=) I S (=) I m I I c c Π M Hm p M H k, k ii k q q 2 q 3 q 4 q 5 (φ) (β) (γ) Obr.3.2 Diskrétní model elektronické vačky Yaskawa

8 Tento model se popíše Lagrangeovými rovnicemi 2. druhu a soustava rovnic se numericky řeší. Do numerického řešení je zahrnut vliv integračního členu v rychlostním regulátoru. Podrobný popis numerického řešení je v disertační práci. Nebudeme dále popisovat regulace servopohonů, pouze konstatujeme, že většina servopohonů má kaskádní regulační strukturu s momentovou, rychlostní a polohovou zpětnou vazbou. Regulátory jsou zpravidla proporcionální (P) a proporcionálně integrační (PI). Námi používaný systém elektronické vačky Yaskawa má možnost přepínání P/PI regulátoru v rychlostní smyčce výstupním bitem OBxx3. Jde nám tedy o takový zásah do numerického řešení pohybových rovnic, aby charakteristická veličina PERR jako polohová odchylka servomotoru (rozdíl skutečné polohy na hřídeli serva od teoretické) odpovídala co nejvíce skutečnosti režimů P/PI. PERR je kritériem přesnosti daného modelu a její průběh je porovnán se dvěma nezávislými zdroji. Jedním je měření a druhým je virtuální model řízeného mechanického systému vytvořeného v programových systémech MSC.ADAMS a MSC.EASY5. Hodnoty ekvivalentních parametrů skutečné regulace servopohonu samozřejmě neodpovídají uvedenému modelu. Skutečná regulace pracuje v jiných časových režimech (frekvence proudové, rychlostní a polohové vazby) a na základě jiných algoritmů. Fyzikální podstata je však stejná a tou je regulace (řízení) momentu působícího na rotor servomotoru. Nelze tedy na modelu popsaného Lagrangeovými rovnicemi predikovat a modelovat velikosti skutečných parametrů regulátorů pohonu (to je naopak účelem expertních systémů MSC.ADAMS/EASY5), ale je možné sledovat vliv hmot, poddajností, tuhostí, otáček, zdvihových závislostí a dalších parametrů na konkrétních aplikacích velice levně a efektivně. To bude ukázáno na problematice reziduálního kmitání pracovních členů mechanismů buzených neperiodickými (krokovými) zdvihovými závislostmi. Obr.3.3 Simulace a měření v režimu regulace P (z.z. podle VDI 243)

9 Po verifikaci parametrů jsou na obr.3.3 a obr.3.4 výsledky měření a obou metod virtuální simulace pro regulaci P a PI. Verifikace byla provedena se zdvihovou závislostí podle podle německé normy VDI 243, jedná se o dynamicky náročnou zdvihovou závislost, zde více nespecifikovanou. Obr.3.4 Simulace a měření v režimu regulace PI (z.z. podle VDI 243) Reziduální spektra neperiodických zdvihových závislost elektronických vaček Neperiodické zdvihové závislosti se také nazývají krokové. Jde o technicky významné pohyby, které se hojně uplatňují v řadě pracovních a manipulačních pohybů. Tyto pracovní pohyby jsou často realizovány unifikovanými konstrukčními uzly v podobě krokových převodovek a otočných stolů s klasickými (radiální, axiální a globoidní) a elektronickými vačkami. V tomto odstavci budou demonstrovány tři charakteristické neperiodické zdvihové závislosti (polynomická, harmonická a parabolická) a jejich realizace na standu podle obr.3. v podobě reziduálních spekter. Charakteristickým znakem těchto zdvihových závislostí jsou průběhy druhých derivací. Přesnost konečné polohy v klidovém intervalu pohybové funkce je posouzena podle extrémní hodnoty zrychlení pracovního členu, neboť členy vačkového mechanismu jsou v dynamických modelech uvažovány poddajné. Kritériem polohové přesnosti je pak tzv. reziduální spektrum druhé derivace odezvy na kinematické buzení poddajného systému zdvihovou závislostí.

Reziduální spektrum, specifické pro danou zdvihovou závislost, bude využito pro stanovení parametrů (otáčky, úhel zdvihu nebo vlastní frekvence, resp. tuhost nebo moment setrvačnosti), při kterých je kmitání minimální. Prezentované výsledky v práci jsou výsledkem čistě numerického řešení na základě datového souboru zdvihové závislosti (její.,, a 2. derivace) a parametrů modelů s poddajnými členy. Numerické řešení je jednoduché. V cyklu for/next relativní vlastní frekvence (ny) probíhá numerické řešení, jehož každým průchodem cyklu je výsledné maximální zrychlení v oblasti klidu pohybové funkce. Grafické vyjádření těchto hodnot v závislosti na ny jsou hledaná reziduální spektra zdvihových závislostí podle obr.3.5. Obr.3.5 Reziduální spektra zdvihových závislostí Polynomická (5.stupně) červená Harmonická zelená Parabolická modrá Závěr Na základě reziduálních spekter zdvihových závislostí, které jsou výsledkem numerického řešení modelů podle obr.3.2, je možné stanovit otáčky, úhel zdvihu nebo moment setrvačnosti tak, aby reziduální kmitání v oblasti klidu pohybových funkcí bylo minimální. Tyto závěry byly na dynamickém standu podle obr.3. ověřeny. Shoda polohové odchylky PERR servomotoru zjištěná měřením a simulacemi je vynikající a na základě této shody lze studovat vliv regulace na dynamiku systému. Na standu podle obr.3. je použita převodovka SPINEA s převodovým poměrem 33 do pomala. Do budoucna je třeba práce rozšířit s použitím jiných (menších) převodových poměrů, protože vliv regulace servopohonu

se pak projeví na výsledném kmitání výrazněji. Vhodný převod je však z technického hlediska náročný, neboť pro účely aplikací elektronických vaček potřebujeme bezvůlový převod. Závěrem lze konstatovat, že popis klasického vačkového mechanismu a elektronické vačky Lagrangeovými rovnicemi 2. druhu vyhovuje a výsledky splňují očekávání, neboť jsou prakticky využitelné. Jedním ze zajímavých výsledků je, že s parabolickou zdvihovou závislostí se nejlépe kompenzují reziduální kmity, i když odezva systému na tuto zdvihovou závislost je nejsilnější díky svému nespojitému průběhu 2. derivace. Návrh zdvihové závislosti libovolnými metodami, její datový přenos do modelů a následné testování, je tak snadnou záležitostí. Společný závěr Obě disertační práce mají vzájemně se doplňující problematiku a společný cíl. Na základě komerčně dostupných HW a SW prostředků zvýšit dynamiku aplikací elektronických vaček v pohonech pracovních členů mechanismů. V tomto krátkém přehledu nebylo možné více popsat vzájemné souvislosti, např. mezi aplikacemi klasických a elektronických vaček. Toto společné téma bude podrobně zpracováno v našich disertačních pracích. Na dokončení intenzivně pracujeme a v současné době máme zpracovanou většinu plánovaných úkolů a experimentů. Na závěr děkujeme a vážíme si podpory, která nám byla poskytnuta nadací CZECH TECHNICAL UNIVERSITY MEDIA LABORATORY Praha a budeme se snažit jméno nadace aktivně zviditelňovat při případných veřejných prezentacích výsledků našich disertačních prací. Rovněž děkujeme Doc. Ing. Pavlu Rydlovi, Ph.D., který působí nejenom jako náš školitel, ale aktivně pracuje v našem společném týmu řešitelů problematiky dynamiky elektronických vaček v rámci probíhajícího projektu MPO TANDEM, jehož hlavním nositelem je VÚTS Liberec. V Liberci, 26. 5. 29 Ing. Petr Jirásko Ing. David Lindr