4EK211 Základy ekonometre Specální případy použtí MNČ Cvčení 9 Zuzana Dlouhá
Specální případy použtí MNČ cvčení 1 8 = ekonometrcký model, který byl lneární v proměnných v parametrech MNČ můžeme použít, když je funkce a) nelneární v parametrech před použtím MNČ musíme funkc vhodně transformovat semlogartmcká nebo logartmcká transformace b) lneární v parametrech a nelneární v proměnných v těchto případech aplkujeme přímo MNČ nelneartu je možné jednoduše odstrant vhodnou substtucí, případně odlšnou defncí proměnných 2
Nelneární v parametrech semlogartmcký model specální forma logartmcké transformace, za předpokladu, že relatvní změna vysvětlované proměnné y závsí lneárně na absolutní změně vysvětlující proměnné/proměnných x logartmus je po transformac pouze na jedné straně rovnce a) logartmcko-lneární model (log-ln) ln y = β 0 + β 1 x + u odpovídá exponencálnímu modelu y e β0 β1 x u β 1 = o kolk procent se změní y, když se x změní o 1 měrnou jednotku aplkace: růstový model HDP / populace b) lneárně-logartmcký model (ln-log) y = β 0 + β 1 ln x + u β 1 = o kolk měrných jednotek se změní y, když se x změní o 1 % aplkace: Engelova křvka (ndvduální příjem vs spotřeba) 3
Nelneární v parametrech - log-log model logartmcká transformace regresního modelu nelneárního v parametrech, logartmování mocnnné produkční nebo poptávkové funkce logartmus je po transformac na obou stranách rovnce 1 2 y β x x u 0 β 1 β 2 ln y = ln β 0 + β 1 ln x 1 + β 2 ln x 2 + ln u β 1, β 2 = koefcenty relatvní pružnost, = o kolk procent se změní proměnná y, když se x 1 nebo x 2 změní o jedno procento aplkace: Cobb-Douglasova produkční funkce v EVews log znamená ln 4
Nelneární v proměnných hyperbola / nverzní model 1 y β0 β1 u transformace x po transformac x 1 x y β 0 β x 1 u aplkace: Phllpsova křvka (nflace vs nezaměstnanost) parabola / polynomcký model y β 0 β x 1 1 β x 2 2 2 u aplkace: nákladová funkce 5
Příklady na nterpretac 6
Příklady na nterpretac 7
Produkční funkce vztah = vstupní výrobní faktory / nputy vs výstup / output cíl = maxmalzace zsku + efektvní kombnace vstupů Cobb-Douglasova produkční funkce statcká: y = AK α L β e u dynamcká: y = AK α L β e rt e u s podmínkou L = φ(k) pro y = y konstantní defnuje křvku IZOKVANTA L Y 2 Y 1 K 8
Cobb-Douglasova produkční funkce α, β, r, A = parametry A = úrovňová konstanta, její hodnota závsí na zvolených měřících jednotkách, je určena efektvností výrobního procesu α, β = koefcenty relatvní pružnost (nterpretují se v %) YK KY z ntervalu <0,1> = ekonomcká verfkace y měla být funkce rostoucí a konkávní př. α = 0,4... vzroste-l K o 1% (L je pevné), potom vzroste y v průměru o 0,4% r = defnuje nezpředmětněný techncký pokrok (TP) = je mírou TP Y r t *100 př. r = 2%... objem produkce y roste ročně (čtvrtletně,...) o 2% (za předpokladu K a L pevné) 9
Cobb-Douglasova produkční funkce odhad parametrů CDPF je třeba provést logartmckou transformac: ln y = ln A + α ln K + β ln L + u ln y = ln A + α ln K + β ln L + rt + u v EVews: log (y) = log A + α log (K) + β log (L) + u log (y) = log A + α log (K) + β log (L) + rt + u odhadem MNČ získáme: log A (vyjde jako konstanta) α, β (ty vyjdou přímo) eventuelně r 10
Cobb-Douglasova produkční funkce Přírůstkové produktvty faktorů mezní produkt kaptálu mezní produkt práce Y Y K K Y Y L L převod na absolutní pružnost počítají se vždy pro konkrétní rok t nebo konkrétní pozorování Přírůstkové míry substtuce mezní míra substtuce pracovních sl kaptálem L R K mezní míra substtuce kaptálu pracovním slam počítají se vždy pro konkrétní rok t nebo konkrétní pozorování 1 R 11
Cobb-Douglasova produkční funkce Pružnost substtuce faktorů snadnost záměny K za L dána koefcenty pružnost substtuce δ = f(r) a leží v ntervalu (0, ) δ 0 rektangulární zokvanta (tj. tvar L) neexstuje substtuce δ zokvanta je přímka dokonalá substtuce δ 1 L = φ(k)... zokvanta CDPF 12
Cobb-Douglasova produkční funkce Efekt z rozsahu výroby α + β dohromady slouží k určení efektu z rozsahu výroby na vstupu K a L vzrostou λ-krát proces výroby na výstupu Y vzroste ρ-krát ρ= λ α + β, kde ρ je efekt z rozsahu výroby α + β = 1 ρ = λ... PF homogenní 1. stupně α + β > 1 ρ > λ... PF ntenzvního typu rostoucí výnosy z rozsahu α + β < 1 ρ < λ... PF extenzvního typu klesající výnosy z rozsahu 13
CDPF příklad Soubor: CV8_PR1.xls Data: y = objem produkce (ts. Kč) K = úroveň fxního kaptálu ve stálých cenách (ts. Kč) L = odpracované hodny (ts. hod) Zadání: Odhadněte statckou CDPF. Odhadněte dynamckou CDPF. Interpretujte pro rok 1979 (pro dynamckou CDPF): relatvní pružnost mezní produkt kaptálu a práce mezní míru substtuce pracovních sl kaptálem mezní míru substtuce kaptálu pracovním slam výnosy z rozsahu pro λ = 2 statcká CDPF: y = AK α L β e u EVews ls @log(y) c @log(k) @log(l) dynamcká CDPF: y = AK α L β e rt e u EVews ls @log(y) c @log(k) @log(l) @trend 14
CDPF příklad Soubor: CV8_PR2.xls Data: y = objem produkce (ts. Kč) K = úroveň fxního kaptálu ve stálých cenách (ts. Kč) L = odpracované hodny (ts. hod) Zadání: Odhadněte statckou CDPF. Odhadněte dynamckou CDPF. Interpretujte pro pozorování 18 (pro statckou CDPF): relatvní pružnost mezní produkt kaptálu a práce mezní míru substtuce pracovních sl kaptálem mezní míru substtuce kaptálu pracovním slam výnosy z rozsahu pro λ = 3 statcká CDPF: y = AK α L β e u EVews ls @log(y) c @log(k) @log(l) dynamcká CDPF: y = AK α L β e rt e u EVews ls @log(y) c @log(k) @log(l) @trend 15