Bc. David Fenderl Západočeská univerzita v Plzni, Univerzitní 8, Plzeň Česká republika

Podobné dokumenty
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ DIPLOMOVÁ PRÁCE

CFD SIMULACE VE VOŠTINOVÉM KANÁLU CHLADIČE

Numerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky

PROUDĚNÍ REGULAČNÍ MEZISTĚNOU TURBÍNOVÉHO STUPNĚ PŘI ROTACI OBĚŽNÉHO LOPATKOVÁNÍ. Jaroslav Štěch

SVOČ FST Bc. Václav Sláma, Zahradní 861, Strakonice Česká republika

Martin Červenka, Západočeská univerzita v Plzni, Univerzitní 8, Plzeň Česká republika

Studentská tvůrčí činnost D modelování vírových struktur v rozváděcí turbínové lopatkové mříži. David Jícha

Numerická simulace sdílení tepla v kanálu mezikruhového průřezu

Studentská tvůrčí činnost 2009

Proudění vzduchu v chladícím kanálu ventilátoru lokomotivy

Numerická simulace přestupu tepla v segmentu výměníku tepla

κ ln 9, 793 ρ.u.y B = 1 κ ln f r, (2.2) B = 0 pro k s + < 2, 25, (2.3)

Výpočet stlačitelného proudění metodou konečných objemů

Modelování proudění vzdušiny v elektroodlučovači ELUIII

Numerická simulace proudění stupněm s vyrovnávacími štěrbinami

VLIV KMITÁNÍ TRUBKY NA PŘESTUP TEPLA V KANÁLU MEZIKRUHOVÉHO PRŮŘEZU

Ústav termomechaniky AV ČR. Témata diplomových prací (2007) Oddělení dynamiky tekutin Dolejšova 5 Praha 8 mail:

NUMERICKÉ MODELOVÁNÍ ÚČINKŮ ZATÍŽENÍ KONSTRUKCÍ

Příspěvek do konference STČ 2008: Numerické modelování obtékání profilu NACA 0012 dvěma nemísitelnými tekutinami

Hydromechanické procesy Obtékání těles

OPTIMALIZACE STŘEDOTLAKÉHO DIFUZORU PARNÍ TURBÍNY OPTIMIZATION OF IP DIFFUSER IN THE STEAM TURBINE

TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE

Numerické řešení 3D proudění lopatkovou mříží

Počítačová dynamika tekutin (CFD) Okrajové podmínky

VLIV OKRAJOVÝCH PODMÍNEK NA VÝSLEDEK ZKOUŠKY TEPELNÉHO VÝKONU SOLÁRNÍHO KOLEKTORU

Stacionární 2D výpočet účinnosti turbínového jeden a půl stupně

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

MODELOVÁNÍ PROUDĚNÍ VODY V OTEVŘENÝCH KORYTECH

Počítačová dynamika tekutin (CFD) - úvod -

FLUENT přednášky. Turbulentní proudění

NUMERICKÝ VÝPOČET RADIÁLNÍHO VENTILÁTORU V KLIMATIZAČNÍ JEDNOTCE

NUMERICKÁ SIMULACE PROUDĚNÍ DVOUFÁZOVÉ VLHKÉ PÁRY OHYBEM POTRUBÍ Numerical simulation of two phase wet steam flow in pipeline elbow

Zpráva ze stáže v IMP PAN Gdaňsk (Polsko) Martin Kožíšek

Cejchování kuželové pětiotvorové sondy pro vysokorychlostní aerodynamická měření

2. Syntetizovaný paprsek

38. VZNIK TLAKOVÉ ZTRÁTY PŘI PROUDĚNÍ TEKUTINY Jiří Škorpík

NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014

CFD simulace teplotně-hydraulické charakteristiky na modelu palivové tyči v oblasti distanční mřížky

MĚŘENÍ TURBÍNOVÝCH STUPŇŮ VE VZLÚ

parní turbína, nízkotlaký stupeň, nenávrhový stav, oběžná lopatka, incidence

3D CFD simulace proudění v turbinovém stupni

Stabilita torzně kmitajících lopatek v proudícím vzduchu

Posouzení vlivu vnitřních svalků na průchodnost přivaděče zhotoveného z polyetylénových trub.

Tvarová optimalizace v prostředí ANSYS Workbench

PROUDĚNÍ V KAVITĚ VYVOLANÉ SMYKOVÝM TOKEM PŘI VELKÝCH REYNOLDSOVÝCH ČÍSLECH Shear-driven cavity flow at high Reynolds numbers

Počítačová dynamika tekutin (CFD) Turbulence

CFD simulace obtékání studie studentské formule FS.03

CFD výpočtový model bazénu pro skladování použitého paliva na JE Temelín a jeho validace

EXPERIMENTÁLNÍ A NUMERICKÉ MODELOVÁNÍ ÚČINKŮ

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2010, ročník X, řada stavební článek č. 18

Řešení průtoku vazké stlačitelné tekutiny minikanálem

Systém větrání využívající Coanda efekt

Proudění Sborník článků z on-line pokračujícího zdroje Transformační technologie.

Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF

Tomáš Syka Komořanská 3118, Most Česká republika

Experimentální a numerické modelování nové řady stupňů radiálních kompresorů

Vysoká škola báňská - Technická univerzita Ostrava Fakulta strojní Katedra energetiky

Anemometrie - žhavené senzory

Vliv úhlu distální anastomózy femoropoplitálního bypassu na proudové charakteristiky v napojení

Colloquium FLUID DYNAMICS 2007 Institute of Thermomechanics AS CR, v. v. i., Prague, October 24-26, 2007 p.1

EXPERIMENTÁLNÍ A NUMERICKÝ VÝZKUM SPALOVACÍ KOMORY

Vliv vířivého proudění na přesnost měření průtoku v komínech

Numerický a empirický odhad tlakové ztráty v obtokovém kanále experimentální parní turbíny 10 MW

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ

Výpočtová studie 2D modelu stroje - Frotor

Počítačová dynamika tekutin (CFD) Základní rovnice. - laminární tok -

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký.

BAKALÁŘSKÁ PRÁCE ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ

Simulace letního a zimního provozu dvojité fasády

MODELOVÁNÍ OBTÉKÁNÍ DVOU PRAHŮ V KANÁLU S VOLNOU HLADINOU Modelling of flow over two transversal ribs in a channel with free surface

FLOW PARAMETERS MEASUREMENT IN THE CURVED DIFFUSER OF THE RECTANGULAR CROSS-SECTION

EXPERIMENTÁLNÍ STUDIUM TOKU MAZIVA V BODOVÉM KONTAKTU Kryštof Dočkal

Proudové pole ve vstupní části aerodynamického tunelu

THE MEASUREMENT OF FLOW PARAMETERS IN SQUARE CROSS SECTION BEND

WP13: Aerodynamika motorového prostoru a chlazení: AV/T/EV pro SVA priority [A] [F] Vedoucí konsorcia podílející se na pracovním balíčku

Příloha č. 4. Specifikace Aerodynamického tunelu

Měření teplotních a rychlostních polí za velkoplošnou vyústkou

Simulace proudění v ultrazvukových průtokoměrech - úvodní studie

CFD simulace vlivu proudění okolního prostředí na lokální odsávání

Měření axiálních rychlostních profilů v nádobách s centrální cirkulační trubkou pomocí LDA systému

Zařízení pro testování vyústek kabin dopravních prostředků a hodnocení charakteru proudění

Proudění stlačitelné tekutiny v úzkém kanále 2016 ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STROJNÍ BAKALÁŘSKÁ PRÁCE

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava řada stavební, ročník 15, číslo 2, rok 2015 článek č.

Centrum kompetence automobilového průmyslu Josefa Božka - AutoSympo a Kolokvium Božek 2. a , Roztoky -

Mechanika tekutin. Hydrostatika Hydrodynamika

Pavol Bukviš 1, Pavel Fiala 2

FUNKČNÍ VZOREK WILSONOVA MŘÍŽ PRO AERODYNAMICKÝ TUNEL

Průtoky. Q t Proteklé množství O (m 3 ) objem vody, který proteče průtočným profilem daným průtokem za delší čas (den, měsíc, rok)

LDA MEASUREMENT BEHIND GENERATOR OF ROTATION LDA MĚŘENÍ ZA GENERÁTOREM ROTACE

CFD. Společnost pro techniku prostředí ve spolupráci s ČVUT v Praze, Fakultou strojní, Ústavem techniky prostředí

POSTUPY SIMULACÍ SLOŽITÝCH ÚLOH AERODYNAMIKY KOLEJOVÝCH VOZIDEL

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

STANOVENÍ SOUČINITELŮ MÍSTNÍCH ZTRÁT S VYUŽITÍM CFD

Funkční vzorek chlazení výfukového potrubí kogenerační jednotky

NUMERICKÉ SIMULACE ZAŘÍZENÍ PRO ODLUČOVANÍ PEVNÉ FÁZE ZE VZDUŠINY

HODNOCENÍ ROZDÍLNÝCH REŽIMŮ PŘI PROCESU SPALOVÁNÍ

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 2, rok 2014, ročník XIV, řada stavební článek č.

Proudění vody v potrubí. Martin Šimek

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ

Transkript:

EXPERIMENTÁLNÍ OVĚŘENÍ VLASTNOSTÍ PROUDĚNÍ V LOPATKOVÉ KASKÁDĚ STŘEDORYCHLOSTNÍHO TUNELU A POTVRZENÍ VÝSLEDKŮ POMOCÍ CFD SIMULACÍ S OHLEDEM NA VLIV DRSNOSTI POVRCHŮ. SVOČ FST 2015 ABSTRAKT Bc. David Fenderl Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika Cílem práce bylo získat představu o nárůstu ztrát při expanzi media se zvyšující se drsností lopatky. Vznikající ztráta je úzce spjata s turbulencí. Proudění bylo zkoumáno na experimentální lopatkové mříži. Rovněž byla řešena úloha pomocí CFD. Pro získání okrajových podmínek bylo nutné experimentální ověření vstupní podmínky. Snažení se směřovalo k získání profilových a okrajových ztrát. Po získání dostatečných informací o proudovém poli bylo možné ovlivnit okrajovou ztrátu smykovou vrstvou u povrchu lopatky. ABSTRACT The aim of this article was to get an idea about the losses of increase blade roughness during the expansion. Emerging loss is closely associated with turbulence. The flow was examined on experimental blade cascade. Also, the task was solved using CFD. To obtain boundary conditions was necessary experimental verification of input conditions. Efforts are directed to obtain of profile losses and secondary losses. After obtaining sufficient information on the flow field we may be able to influence secondary losses of shear layer at the surface of the blade. KLÍČOVÁ SLOVA Lopatková mříž, lopatky VS33b a VS33T, drsnost povrchu, intenzita turbulence, rychlostní profil 1. ÚVOD Během provozu parní turbíny dochází k erozivnímu a korozivnímu rozrušování lopatek. Ty mají poté vliv na termodynamickou účinnost stupně, objektivně na celý díl parní turbíny a tedy na účinnost celého turbosoustrojí. Zda tento vliv je kladný nebo záporný záleží na typu lopatky a na okrajových podmínkách. Pro tento případ budou řešeny vysokotlaké lopatky založené na profilu VS33. Jedná se o rozváděcí lopatky, kde pracovní médium expanduje v subsonické oblasti. V této publikaci budou řešeny dva typy modelových lopatek s uvažováním nezbytných podobnostních čísel. Hlavní náplní je získat závislost ztrátového součinitele na zvyšující se drsnosti povrchu. Následně získat vstupní okrajovou podmínku na vstupu modelové mříže, a to experimentálně i pomocí CFD. Zde je sledován rychlostní profil, především oblast mezní vrstvy u stěny. Hlavním důvodem ztrát je vznik turbulentní mezní vrstvy na lopatce a sekundárních vírů od stěn lopatkové mříže, ty byly sledovány pomocí aparatury CTA anemometru. Snahou bylo rovněž porovnat experiment se CFD výpočty z pohledu turbulence a vzniku ztrát. K výpočtu byl použit i model rozšířený dvěma transportními rovnicemi pro přechod z laminární do turbulentní mezní vrstvy. V této publikaci se autor zaměří spíše na výsledky, potřebná teoretická část je uvedena ve stejnojmenné diplomové práci.[8] 2. VSTUPNÍ OKRAJOVÁ PODMÍNKA Okrajová podmínka na vstupu do lopatkové mříže byla zkoumána ze dvou hlavních důvodů. Prvním z nich bylo nutné ověřit vyrovnanost rychlostního profilu a získat informaci o ztrátě v mezní vrstvě u stěny. Druhým důvodem bylo získat okrajovou podmínku včetně chování turbulizujícího media pro namodelovíní v CFD.

Nejprve byl rychlostní profil proměřen pomocí Pitotovy sondy traverzované do poloviny šířky kanálu. Střední hodnoty rychlostí byly proloženy regresní funkcí. Pro přesnější výsledky u stěny byla aplikována korekční funkce u stěny. Vlivem přiblížení Pitotovy sondy ke stěně dochází k ovlivnění proudového pole a odklonu proudnic od stěny. Následkem tohoto efektu je zkreslení rychlostního profilu. Vše je patrné na Obr. 1, kde je vidět i energetická tloušťka mezní vrstvy. Obr. 1 Rychlostní profil na vstupu od stěny Pitototva sonda Následně byl ten samý rychlostní profil proměřen pomocí měřící aparatury CTA anemometru. Pomocí tohoto zařízení se vzhledem k citlivosti zařízení zjistila určitá nevyrovnanost rychlostního profilu. Hlavním důvodem využití této metody bylo zjištění intenzity turbulence na vstupu. Vše je patrné na Obr. 2. Střední hodnota intenzity turbulence činí 1,856%. Obr. 2 Rychlostní profil od stěny CTA aparatura Pro měření byla použita drátková sonda, viz Obr. 3, pro kterou byla sestavena citlivá traverzovací aparatura. Rovněž bylo nutné vyztužit vstupní kanál a snížit vlastní frekvenci stěn. Obr. 3 Drátková sonda CTA anemometru

Rovněž byla sledována rychlostní mezní pomocí CFD výpočtu odpovídající experimentu. Při dikretizování výpočtové oblasti byla především sledována jemnost buněk u stěny pro sledování mezní vrstvy, viz Obr. 4. Obr. 4 Výpočtová oblast pro sledování rychlostního profilu Po nastavení okrajových podmínek odpovídajících experimentu byl proveden výpočet s užitím dvourovnicového turbulentního modelu k-ω SST. Pro tento model byla rovněž využita intenzita turbulence na vstupu získaná experimentálně. Stupeň turbulence, který je při izotropním proudění roven intenzitě turbulence, je uveden v rovnici (1). Tuto rovnici bylo nutné vložit do programu Fluent jako externí funkci. Fluent využívá pro výpočet intenzity turbulence sofistikovanějšího vztahu, který v mém modelu neodpovídal realitě. (1) Pole izočar stupně turbulence s definovaným rozsahem je vykreslen na Obr. 5. Výstupní okrajová podmínka je náběžnou hranou lopatek, která byla laděna podle rychlostního profilu ve sledované oblasti proměřovaného rychlostního profilu. Obr. 5 Stupeň turbulence definovaný rozsah

Na Obr. 6 je vykreslený rychlostní profil v oblasti Pitotovy a CTA sondy odpovídající experimentu (modře). Červeně je vykreslen vývoj rychlostního profilu u náběžné hrany lopatky, tato ztráta v mezní vzroste na 2,23%. V následující tabulce, Tab. 1, jsou uvedeny ztráty v mezní vrstvě vycházející z energetické tloušťky mezní vrstvy. Obr. 6 Rychlostní profil na vstupu CFD Tloušťky mezních vrstev [mm] Způsob měření Pitotova sonda CTA aparatura CFD Pošinovací tloušťka mezní vrstvy 0.311504 0.593986 0.593944 Impulsní tloušťka mezní vrstvy 0.157629 0.272658 0.310075 Energetická tloušťka mezní vrstvy 0.280058 0.499441 0.522714 Ztráta v mezní vrstvě [%] 0.373411 0.665922 0.696952 Tab. 1 Tloušťky mezních vrstev 3. INTENZITA TURBULENCE V DEFINOVANÉ ROVINĚ ZA ODTOKOVÝMI HRANAMI LOPATEK Po vyhodnocení vstupní oblasti lopatkové mříže byly zkoumány dva typy lopatek. Jedná se o lopatky VS33b a VS33T, které jsou specifikovány v [8]. Intenzita turbulence byla zkoumána ve vdálenosti 20% délky tětivy lopatkového profilu za rovinou odtokových hran lopatek. Na následujích dvou grafech, Obr. 7 a Obr. 8, jsou vykreslena intenzita turbulence po rozteči lopatkové mříže s lopatkami VS33T. V prvním grafu je vykreslena intenzita v polovině výšky lopatky a ve druhém 20 mm od stěny, v oblasti maximálních ztrát v sekundárním víru. Obr. 7 VS33T Intenzita turbulence ve vzdálenost l/2 Obr. 8 VS33T Intenzita turbulence ve vzdálenosti 20 mm od stěny

Rovněž byl sledován vliv délky časového záznamu dat na střední hodnotu intenzity turbulence. Jako nejvhodnější se ukázala hodnota 1 sekundy při vzorkovací frekvenci 64 khz. V Tab. 2 jsou pak uvedeny střední hodnoty turbulence. Střední hodnota intenzity turbulence [%] Vzdálenost l/2 Vzdálenost 20 mm od stěny 2.3139 2.8500 Tab. 2 Střední hodnota intenzity turbulence 4. ZTRÁTA PŘI EXPANZI VE SLEDOVANÉ ROVINĚNA VÝSTUPU Z LOPATKOVÉ MŘÍŽE EXPERIMENT Dalším úkolem bylo sledování ztrát, které by bylo možné následně porovnat s výpočty ze CFD. V následujích dvou tabulkách je uvedeno rozložení ztrátového součinitele při Re 2is = 8,8x10 5 a M 2is = 0,24 pro oba typy lopatek. Profilové ztráty jsou patrné z prostředního grafu. Úhrnný výstupní úhel proudu z lopatkové mříže. Tab. 3 VS33b Rozložení ztrát v rovině 0.2b, ztráty po rozteči v polovině výšky lopatky, ztráty po rozteči ve vzdálenosti od stěny Tab. 4 VS33T - Rozložení ztrát v rovině 0.2b, ztráty po rozteči v polovině výšky lopatky, ztráty po rozteči ve vzdálenosti od stěny 5. ZTRÁTA PŘI EXPANZI VE SLEDOVANÉ ROVINĚ NA VÝSTUPU Z LOPATKOVÉ MŘÍŽE CFD Následně byly vytvořeny výpočtové oblasti odpovídající experimentálním lopatkovým mřížím obou lopatek. Kvalita diskretizované oblasti v polovině výšky lopatky je patrná na Chyba! Nenalezen zdroj odkazů.. V polovině výšky lopatky jsou u obou lopatek mříže schodné, proto byly vyhodnoceny současně. Na Obr. 10 je vykreslen stupeň turbulence dle vztahu (1).

Obr. 9 Pohled na síť v okolí profilu v polovině výšky lopatky Obr. 10 Stupeň turbulence v polovině výšky lopatky Dále byla výpočtová oblast řešena pomocí RANS matenatického modelu s využitím modelu turbulence k-ω SST a rovněž tohoto modelu rozšířeného o gama-re přechodu do turbulence. Na následujících dvou konturách turbulentní kinetické energie, Obr. 11 a Obr. 12, je patrný rozdíl přechodu z laminární do turbulentní mezní vrstvy na podtlakové straně. Proto při vyhodnocení intenzity turbulence a ztrát na celkovém tlaku je vyhodnocení provedeno pro oba modely. Obr. 11 Pole izočar turbulentní kinetické energie K, model K-ω SST Obr. 12 Pole izočar turbulentní kinetické energie K, model K-ω SST včetně γ-re přechodu Pole izočar ztrátového součinitele pro jeden mezilopatkový kanál obou lopatkových mříží je vykreslen na Obr. 13 a Obr. 14. Zde je vidět kromě rozložení ztrát i přechod do oblasti malých záporných ztrát, tento fakt způsobený numerikou je třeba brát na vědomí. Obr. 13 VS33b - izočáry místního ztrátového součinitele celkového tlaku Obr. 14 VS33T - izočáry místního ztrátového součinitele celkového tlaku Z výsledků by rád autor ještě uvedl rozložení stupně turbulence po rozteči s užitím obou turbulentních modelů, Obr. 15 a Obr. 16, které jsou porovnatelné z experimentálními daty. Stupeň turbulence získaný numericky je na nižších hodnotách než intenzita získaná experimentálně.

Obr. 15 VS33T - stupeň turbulence Tu na rozteči - model K-ω SST Obr. 16 VS33T - stupeň turbulence Tu na rozteči - model K-ω SST včetně γ-re přechodu 6. VLIV DRSNOSTI POVRCHU LOPATKY NA PROFILOVÉ A OKRAJOVÉ ZTRÁTY Zvýšení drsnosti povrchu lopatky bylo uskutečněno pomocí brusiva nanášeného na povrch lopatky pomocí barvy ředitelné nitridovým rozpouštědlem. Pro samotné měření bylo vybráno pět drsností charakteristické velikostí zrna brusiva, viz Tab. 5. Jedna z použitých drsností je patrná na Obr. 17. Střední aritmetické odchylky drsnosti povrchu byla proměřena drsnoměrem. Lopatky bez zdrsnění mají ~Ra 0,4. Obr. 17 Nanesená drsnost Norma FEPA Velikost zrna[μm] ~Ra[μm] F320 45-32 13 F180 90-75 20 F100 150-125 30 F70 250-212 36 F40 500-425 40 Tab. 5 Úrovně zdrsnění lopatky Celkový ztrátový součinitel v rovině 0,2b byl proměřen pro všechny výše uvedené úrovně zdrsnění. Na následujících dvou grafech, Obr. 18 a Obr. 19, je vykreslen celkový ztrátový součinitel vážený hmotnostním tokem. Jsou zde vidět profilové ztráty (červeně) a tyto ztráty společné s okrajovými (modře).

Celkový ztrátový součinitel ζm vážený hmotnostním tokem v rovině 0,2b Celkový ztrátový součinitel ζm vážený hmotnostním tokem v rovině 0,2b 18,00 17,00 16,00 15,00 14,00 13,50 13,00 12,00 11,10 11,50 11,00 10,00 10,10 10,00 9,00 7,92 8,31 8,78 8,00 6,95 7,00 6,26 6,33 6,00 4,41 5,00 4,00 3,00 2,00 1,00 0,00 0 5 10 15 20 25 30 35 40 45 VS33T cela_oblast po_rozteci Ra[μm] Obr. 18 VS33b - celkový ztrátový součinitel ζ M C vážený hmotnostním tokem v rovině 0,2b 18,00 17,00 16,00 15,00 14,00 13,00 12,00 11,00 10,00 9,00 8,00 7,00 6,00 5,00 4,00 3,00 2,00 1,00 0,00 7,21 4,47 16,20 13,10 13,40 12,70 10,80 10,80 9,59 8,73 8,51 6,30 0 5 10 15 20 25 30 35 40 45 VS33b cela_oblast po_rozteci Ra[μm] Obr. 19 VS33T - celkový ztrátový součinitel ζ M C vážený hmotnostním tokem v rovině 0,2b

7. ZÁVĚR Bylo ověřeno proudové pole experimentální lopatkové mříže VS33b a VS33T včetně vstupní okrajové podmínky a mezních vrstev. Získala se závislost profilových a okrajových ztrát na úrovni zdrsnění povrchu lopatky. Rovněž byly výsledky porovnány s výpočty ze CFD se sledováním turbulence a následných ztrát. V stejnojmenné diplomové práci bude rovněž uvedena závislost profilových a okrajových ztrát na úrovni zdrsnění lopatky užitím turbulentního modelu s gama-re modelem přechodu. Dále pak ovlivnění a případné snížení okrajových ztrát smykovou vrstvou na povrchu lopatky. PODĚKOVÁNÍ Zvláštní poděkování patří společnosti DOOSAN ŠKODA POWER s.r.o., ve které byla tato úloha řešena. LITERATURA [1] ANSYS, Fluent Theory Guide, 2011. [2] M. Hoznedl, J. Mach a J. Matas, Protokol o zkoušce drsnosti. [3] K. Sedlák, Vyhodnocení ztrátových součinitelů přímých lopatkových mříží, měřených na středorychlostním tunelu ŠKODA, 2012. [4] G. L. Morrison, M. T. Schobeiri a K. Pappu, Five-hole pressure probe analysis technice. Flow Measurement and Instrumentation 9 (1998) 153 158, 1998. [5] F. R. Menter, Two-Equation Eddy-Viscozity Turbulence Models for Engineering Applications, AIAA Journal, 1994. [6] J. Linhart, Mechanika tekutin 2, stručné učební texty, Západočeská univerzita v Plzni, 2009. [7] J. Amecke a P. Šafařík, Data reduction of wake flow measurements with injection of an other gas., 1995. [8] D. Fenderl, Experimentální ověření vlastností proudění v lopatkové kaskádě středorychlostního tunelu a potvrzení výsledků pomocí CFD simulací s ohledem na vliv drsnosti povrchů. 2015