EXPERIMENTÁLNÍ A NUMERICKÉ MODELOVÁNÍ ÚČINKŮ
|
|
- Oldřich Navrátil
- před 6 lety
- Počet zobrazení:
Transkript
1 EXPERIMENTÁLNÍ A NUMERICKÉ MODELOVÁNÍ ÚČINKŮ ZATÍŽENÍ KONSTRUKCÍ VĚTREM EXPERIMENTAL AND NUMERICAL MODELING WIND ACTION ON STRUCTURES Vladimíra Michalcová 1, Milada Kozubková 2 Abstract Atmospheric boundary layer numerical simulation is base for analysis of wind action on structures. The numerical solution is verificated either by measurements on real structures or by wind tunnel measurements. Paper is aimed on the suitable mathematical model selection. Modeled profiles are compared with experimental results in order to choice suitable model. The selected numerical model is used for building s pressure loading. The obtained results are compared with relevant wind tunnel data. 1 Úvod Numerické modelování mezní vrstvy atmosféry je základem pro řešení účinků zatížení konstrukcí větrem a rozptylu znečištění atmosféry. Řešení je verifikováno buď s výsledky měření v reálu, nebo v aerodynamickém tunelu. Práce se zaměřuje na výběr nejvhodnějšího matematického modelu turbulence, přičemž se porovnávají modelované a experimentálně získané profily střední hodnoty rychlostí a intenzity turbulence. Pomocí vybraného nejvhodnějšího numerického modelu je řešeno zatížení panelového domu od účinku větru a porovnáno s výsledky v aerodynamickém modelu. Úloha je řešena v nejnovější verzi CFD (Computational Fluid Dynamics) programového komplexu FLUENT 6.2. Život na Zemi, se všemi jeho aspekty, probíhá převážně v troposféře, přesněji v její spodní části. V analogii s Prandtlovou definicí je zaveden pojem Mezní vrstvy atmosféry (MVA). Pohyb vzduchu je ve volné atmosféře v horizontální rovině určen rovnováhou tlakových sil a síly Coriolisovy, která je důsledkem rotace Země, a rovnováhou tíhové síly, vertikálního tlakového gradientu a sil vztlakových (Archimedovských), které souvisejí s teplotním zvrstvením důsledkem teplotního zvrstvení atmosféry, ve směru vertikálním. Výskyt turbulence v blízkosti zemského povrchu je jedním z charakteristických vlastností, kterými se mezní vrstva odlišuje od zbytku atmosféry. V mezní vrstvě atmosféry je turbulence generována účinky zemského povrchu. Také tření proudícího vzduchu o zemský povrch a vznik úplavů při obtékání budov a terénních nerovností se významnou měrou podílí na generování turbulence. Jedním z přístupů vedoucích k poznání těchto složitých dějů je fyzikální modelování. To spočívá v tom, že okrajové podmínky, především zemský povrch včetně staveb, vegetace, vodních ploch apod., jsou simulovány vhodným geometricky podobným modelem a modelem pole proudění vzduchu nebo vody v aerodynamickém tunelu nebo vodním kanálu, ve kterém je umístěn model krajiny. Ve větrných tunelech s krátkými pracovními prostory se využívá iniciujícího zařízení, pomocí kterého lze dosáhnout 1 Ing. Vladimíra Michalcová, VŠB-TU, Fakulta stavební, Katedra stavební mechaniky, Ludvíka Podestě 1875, Ostrava-Poruba, vladimira.michalcova@vsb.cz 2 Doc. Milada Kozubková, RNDr.,CSc., VŠB-TU, Fakulta strojní, Katedra hydromechaniky a hydraulických zařízení, 17.listopadu 15/2172, Ostrava-Poruba, milada.kozubkova@vsb.cz 1
2 profilu střední rychlosti a intenzity turbulence, jenž by co nejpřesněji odpovídaly rovnovážným profilům pozorovaným dále v proudu. Obr.1 ukazuje jednu z nejčastěji používaných metod, která byla úspěšně testována, tj. Counihanův vírový generátor [2]. Obr. 1: Generace mezní vrstvy Counihanovým vírovým generátorem Odlišným přístupem je využití matematických modelů v součinnosti s výkonnou výpočetní technikou. Použití numerických metod vyžaduje použití aproximace a parametrizace některých jevů, hlavně turbulentního proudění. I když se zde používá zjednodušujících předpokladů, je problémem zejména stanovení počátečních a okrajových podmínek. Přes tyto nesnáze má numerické modelování nezastupitelný význam při modelování proudění v tunelech a je velice účinné pro kontrolu a rozšíření dat získaných fyzikálním experimentem. Experimentální a numerické modelování proudění jsou dva nástroje, které spolu úzce souvisejí a navzájem se doplňují. Ačkoli oba přístupy používají různé nástroje a prostředky, mají své přednosti i svá omezení, jejich společným cílem je co nejpřesnější modelování zkoumaných fyzikálních jevů. Fyzikální experiment poskytuje základní informace pro pochopení fyzikální podstaty daného jevu, přitom klade menší finanční nároky ve srovnání s měřením ve skutečné situaci. Výsledky měření mohou být využity k sestavení a upřesnění matematického popisu zkoumaného děje s cílem dosáhnout co největší shody se skutečností, k definici okrajových podmínek a verifikaci výsledků. Fyzikální experiment tak umožňuje jakousi kalibraci numerické simulace. Pokud je matematický model ověřen s uspokojivým výsledkem, může být numerické modelování využito k získání dat v širší oblasti, k detailnímu vyšetření proudového pole v místech, kde je měření obtížně realizovatelné, ke zkoumání vlivu modifikací řešené úlohy při nižších časových i finančních nárocích ve srovnání s fyzikálním experimentem. Integrace těchto dvou přístupů, vzájemné využívání výhod obou metod, však bude vyžadovat ještě další úsilí a užší spolupráci ze strany fyzikálních i numerických experimentátorů. 2 Fyzikální modelování Neutrálně stratifikovanou MVA je možné za předpokladu respektování kritérií hydrodynamické podobnosti reprezentovat mezní vrstvou v tunelu generovanou na vstupu spirami a drsným povrchem. Tento experiment (obr.2) byl realizován ve VZLÚ Praha [2]. Proudění v tomto tunelu bylo simulováno drsným polem v délce 12,5m a šíři 1,78m vytvořeným hydroizol. folií se 7mm kuželovitými výčnělky doplněného obdélníkovou bariérou výšky 140mm o šířce drsného pole, která byla umístěna těsně před začátkem drsného pole. V oblasti vstupu do měřicí sekce dlouhé 3m byl žárovým anemometrem změřen rychlostní profil a intenzita turbulence. 2
3 Pracovní část 1,8 x 1,5 m x 18,3 m příkon 0 55 kw 0,5 20 m/s tloušťka mezní vrstvy Obr. 2: Schéma tunelu s měřicí sekcí a detail vstupu se spirami a drsností V aerodynamickém tunelu byly měřeny potřebné turbulentní veličiny v prázdné oblasti za účelem možnosti vytvoření proudového pole při numerické simulaci. Následně bylo v měřící sekci zkoumáno zatížení panelového domu od účinku větru včetně zavíření kolem objektu. Fyzikální experiment byl řešen jako 2D úloha, hodnoty byly měřeny v příčném řezu v polovině délky domu. 3 Matematické modelování 3.1 Testovací úloha a její výsledky Cílem matematického modelování testovací úlohy bylo vytvoření stratifikovaného proudění v celé měřicí oblasti, což představuje reálné chování MVA ve zjednodušeném ustáleném stavu. Rovnice definující matematický model jsou aplikovanými fyzikálními zákony zachování hmotnosti a podmínky rovnováhy sil při proudění skutečné tekutiny. Potřebné okrajové podmínky uvedené v tabulce č.1 bylo nutné definovat ze změřených veličin fyzikálního experimentu střední rychlosti a intenzity turbulence znázorněných na obr.3. Jelikož proklad měřených hodnot střední rychlosti větru jednou logaritmickou regresí je značně nepřesný (tenká logaritmická závislost), byl rychlostní profil proložen dvěmi regresními křivkami s odpovídajícími logaritmickými závislostmi. Hraniční bod mezi dvěmi funkcemi byl zvolen 0,3metrů nad terénem z důvodu zajištění shody rychlostních profilů při fyzikálním i numerickém modelování. Tím jsme vytvořili 2 vstupní okrajové podmínky. Spodní prezentovaná indexem 1 a horní indexem intenzita turbulence Profl střední rychlosti Iu y = Ln(x) rychlost [m/s] y = Ln(x) y = Ln(x) Výška nad terénem [m] Výška nad terénem [m] Obr. 3: Měřené a regresními křivkami proložené rychlostní profily (vlevo) a intenzity turbulence (vpravo) 3
4 Pro modelování MVA se jeví jako vhodné následující turbulentní modely, které byly v této úloze novou verzí Fluentu 6.2 testovány: Spalart-Allmaras Model k-ε modely DES Model simulace velkých vírů (LES), který je ve FLuentu 6.2 rozšířen o možnost definovat na vstupu (inletu) profily turbulentní kinetické energie a disipace. Ve Fluentu 6.1 bylo možno definovat pouze konstantní hodnotu intenzity turbulence, což neumožnilo definovat turbulentní pole odpovídající MVA. V literatuře lze nalézt přístup, kdy turbulence v MVA byla generována obtékáním zdrsňujících překážek (šachovitě rozmístěné pravoúhlé šestistěny) v přední části spodní stěny výpočtové oblasti. logaritmický rychlostní profil aerodynamická drsnost u 0 1 = 0,9068.ln( z + z ) + 6,1574 u 0 2 = 1, 7417.ln( z + z ) + 7,112 empirická konstanta-definuje typ terénu intenzita turbulence Iu = ln( z) turbulentní kinetická energie k = ( u. ) ,2 1,2 Iu rychlost disipace modifikovaná turbulentní viskozita ε = C ,2 µ k ,2 z 0.25 ν t 1,2 = Cµ k1,2. z Tab. 1: Vertikální vstupní profily rychlosti a turbulentních veličin Bohužel je faktem, že žádný model turbulence není univerzálně použitelný jako nejlepší pro všechny druhy úloh. Výběr turbulentního modelu závisí na úvaze řešitele stejně jako na fyzikálních charakteristikách proudění, na úrovni požadované přesnosti řešení, na dostupných prostředcích pro výpočet a na množství času dostupného pro řešení dané simulace [4]. Testování bylo provedeno ve 3D úloze na výše uvedených výpočetních modelech. Řez výpočtovou oblastí odpovídal aerodynamickému tunelu do výšky 1,4m a délky 4m. Z důvodu jednoduché geometrie byla mřížka strukturovaná, tvořena různě velkými šestistěny. Model DES a tím i Spalart-Almaras podhodnocuje turbulentní kinetickou energii a tím i intenzitu, stejně jako k-ε modely. LES model díky novým okrajovým podmínkám, kdy je možno zadat profily rychlosti i turbulence na inletu, a prostorovému středování je velmi vhodným přístupem pro modelování mezní vrstvy atmosféry s výraznou turbulencí. Nové modely ve Fluentu 6.2 umožní řešení MVA s případným obtékáním budov nebo rozptylem emisí z bodového zdroje. Pro názornost jsou znázorněny výsledky numerického testování LES modelu formou profilů střední rychlosti a intenzity turbulence v příčném řezu v polovině výpočtové oblasti (2m od počátku-černý průběh) a na konci oblasti (4m od počátku-červený průběh) na obr.4. 4
5 Obr. 4: Profily střední rychlosti (vlevo) a intenzity turbulence (vpravo) 3.2 Modelování účinků zatížení konstrukcí větrem Pro modelování účinku větru na stavební konstrukci je řešena již zmíněna úloha ve spolupráci s VZLÚ Praha, kde byl zkoumán účinek větru na panelový dům v předměstské zástavbě [2]. Schéma fyzikálního modelu panelového domu s odběrovými místy viz obr.5. Proudění kolem panelového domu bylo numericky testováno ve 3D nestacionární úloze LES modelem, který v testovací úloze dosáhl nejlepších výsledků. Z důvodu jednoduché geometrie byla mřížka rovněž strukturovaná, tvořena různě velkými 87 tisíci šestistěny. Vyhodnocení zatížení objektu od účinku větru je uvedeno lokálními hodnotami aerodynamického součinitele tlaku větru, který nezávisí na referenční rychlosti větru a je objektivní pro vyhodnocování experimentů [3], [5]. Jeho průběh po obvodu domu v příčném řezu uprostřed délky je u obou přístupů zřetelný z obr.5. Pro názornost je na obr.6 znázorněna vířivost proudění v okolí obtékaného objektu u obou přístupů. cp 1.00 Porovnání výsledků experimentů návětrná střecha závětrná Numerický experiment Fyzikální experiment mm Obr. 5: Schéma fyzikálního modelu panelového domu s odběrovými místy a průběh tlakového součinitele po obvodu objektu 4 Závěr Testování stratifikovaného proudění je základem pro modelování mezní vrstvy atmosféry a následně účinků proudění větru na budovy a rozptylu znečištění ovzduší. Nové modely ve Fluentu 6.2 umožní řešení proudění v MVA. Numerické modelování dějů v mezní vrstvě atmosféry je významným nástrojem poznání a aplikace obecných CFD kódů k tomuto účelu je možná. Přesnost numerického modelování je ovšem podmíněna nejen vhodným výběrem matematického modelu, ale 5
6 také přesností vstupních dat. Vypočtené hodnoty je nutné zatím vždy srovnávat s hodnotami skutečnými, nebo jiným přístupem k problematice. Proto je nutná spolupráce s pracovišti zaměřenými na fyzikální modelování v aerodynamickém tunelu. Přestože hodnoty tlakového součinitele vykazují uspokojivé výsledky, je potřeba vyhodnotit výsledky celého proudového pole a zkoumat možnosti modifikace této úlohy. Obr. 5: Vířivost pole kolem objektu z fyzikálního experimentu (nahoře) a dvou způsobů LES modelu (dole) Literatura [1] Plate, E. J. ENGINEERING METEOROLOGY, CH.13: WIND TUNNEL MODELLING OF WIND EFFECTS IN ENGINEERING: ESPC AMSTERDAM, 1998 [2] Jirsák, M., Zachoval, D., Matěcha, J., Novotný, J. FLOW FIELD A 2D BUILDING AND ITS PRESSURE RESPONSE: EACWE4 PRAHA, 2005 [3] Pirner, M., Fischer, O. ZATÍŽENÍ STAVEB VĚTREM, ČKTAIT Praha, 2003 [4] Fluent. USERS GUIDE, FLUENT 6.2, LEBANON, FLUENT INCORPOTATET 2005 [5] Michalcová, V. NUMERICKÉ MODELOVÁNÍ ZATÍŽENÍ BUDOV PŘI KVAZISTATICKÉM PŮSOBENÍ VĚTRU: TEZE DISERTAČNÍ PRÁCE, Ostrava
NUMERICKÉ MODELOVÁNÍ ÚČINKŮ ZATÍŽENÍ KONSTRUKCÍ
NUMERICKÉ MODELOVÁNÍ ÚČINKŮ ZATÍŽENÍ KONSTRUKCÍ VĚTREM V REÁLNÉ ATMOSFÉŘE NUMERICAL MODELING WIND ACTION ON STRUCTURES IN REAL ATMOSPHERE Vladimíra Michalcová 1, Zdeněk Michalec 2, Lenka Lausová 3, Abstract
VíceStudentská tvůrčí činnost 2009
Studentská tvůrčí činnost 2009 Numerické řešení proudového pole v kompresorové lopatkové mříži Balcarová Lucie Vedoucí práce: Prof. Ing. P. Šafařík, CSc. a Ing. T. Hyhlík, PhD. Numerické řešení proudového
VíceSborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2010, ročník X, řada stavební článek č. 18
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2010, ročník X, řada stavební článek č. 18 Vladimíra MICHALCOVÁ 1, Zdeněk MICHALEC 2, Tomáš BLEJCHAŘ 3 NUMERICKÁ
VíceINOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA
VícePříspěvek do konference STČ 2008: Numerické modelování obtékání profilu NACA 0012 dvěma nemísitelnými tekutinami
Příspěvek do konference STČ 2008: Numerické modelování obtékání profilu NACA 0012 dvěma nemísitelnými tekutinami (Numerical Modelling of Flow of Two Immiscible Fluids Past a NACA 0012 profile) Ing. Tomáš
VíceModelování zdravotně významných částic v ovzduší v podmínkách městské zástavby
Modelování zdravotně významných částic v ovzduší v podmínkách městské zástavby Jiří Pospíšil, Miroslav Jícha pospisil.j@fme.vutbr.cz Vysoké učení technické v Brně Fakulta strojního inženýrství Energetický
VíceFLUENT přednášky. Turbulentní proudění
FLUENT přednášky Turbulentní proudění Pavel Zácha zdroj: [Kozubková, 2008], [Fluent, 2011] Proudění skutečných kapalin - klasifikujeme 2 základní druhy proudění: - laminární - turbulentní - turbulentní
VíceMODELOVÁNÍ OBTÉKÁNÍ DVOU PRAHŮ V KANÁLU S VOLNOU HLADINOU Modelling of flow over two transversal ribs in a channel with free surface
Colloquium FLUID DYNAMICS 007 Institute of Thermomechanics AS CR, v. v. i., Prague, October 4-6, 007 p.1 MODELOVÁNÍ OBTÉKÁNÍ DVOU PRAHŮ V KANÁLU S VOLNOU HLADINOU Modelling of flow over two transversal
VíceVliv protiprašných sítí na dispersi pevných částic v blízkosti technologického celku (matematické modelování - předběžná zpráva)
Vliv protiprašných sítí na dispersi pevných částic v blízkosti technologického celku (matematické modelování - předběžná zpráva) Byl sestaven zjednodušený matematický model pro dvojrozměrné (2D) simulace
VíceHydromechanické procesy Obtékání těles
Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak
VíceNumerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky
Konference ANSYS 2009 Numerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky J. Štěch Západočeská univerzita v Plzni, Katedra energetických strojů a zařízení jstech@kke.zcu.cz
VíceProudění vzduchu v chladícím kanálu ventilátoru lokomotivy
Proudění vzduchu v chladícím kanálu ventilátoru lokomotivy P. Šturm ŠKODA VÝZKUM s.r.o. Abstrakt: Příspěvek se věnuje optimalizaci průtoku vzduchu chladícím kanálem ventilátoru lokomotivy. Optimalizace
VíceVLIV KMITÁNÍ TRUBKY NA PŘESTUP TEPLA V KANÁLU MEZIKRUHOVÉHO PRŮŘEZU
VLIV KMITÁNÍ TRUBKY NA PŘESTUP TEPLA V KANÁLU MEZIKRUHOVÉHO PRŮŘEZU Autoři: Ing. Petr KOVAŘÍK, Ph.D., Katedra energetických strojů a zařízení, FST, ZÁPADOČESKÁ UNIVERZITA V PLZNI, e-mail: kovarikp@ntc.zcu.cz
VícePOSTUPY SIMULACÍ SLOŽITÝCH ÚLOH AERODYNAMIKY KOLEJOVÝCH VOZIDEL
POSTUPY SIMULACÍ SLOŽITÝCH ÚLOH AERODYNAMIKY KOLEJOVÝCH VOZIDEL Autor: Dr. Ing. Milan SCHUSTER, ŠKODA VÝZKUM s.r.o., Tylova 1/57, 316 00 Plzeň, e-mail: milan.schuster@skodavyzkum.cz Anotace: V příspěvku
VíceTEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE
TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE Autoři: Ing. David LÁVIČKA, Ph.D., Katedra eneegetických strojů a zařízení, Západočeská univerzita v Plzni, e-mail:
VícePočítačová dynamika tekutin (CFD) - úvod -
Počítačová dynamika tekutin (CFD) - úvod - Co je CFD? 2 Computational Fluid Dynamics (CFD) je moderní metoda jak získat představu o proudění tekutin, přenosu tepla a hmoty, průběhu chemických reakcích
VíceCFD SIMULACE VE VOŠTINOVÉM KANÁLU CHLADIČE
CFD SIMULACE VE VOŠTINOVÉM KANÁLU CHLADIČE Autoři: Ing. Michal KŮS, Ph.D., Západočeská univerzita v Plzni - Výzkumné centrum Nové technologie, e-mail: mks@ntc.zcu.cz Anotace: V článku je uvedeno porovnání
Víceκ ln 9, 793 ρ.u.y B = 1 κ ln f r, (2.2) B = 0 pro k s + < 2, 25, (2.3)
Obtékání drsných stěn (Modelování vlivu drsnosti stěn na ztráty v lopatkové mříži) Ing. Jiří Stanislav, Prof.Ing. Jaromír Příhoda, CSc., Prof.Ing. Pavel Šafařík, CSc. 1 Úvod Znalost smykového napětí na
VíceNumerická simulace sdílení tepla v kanálu mezikruhového průřezu
Konference ANSYS 2009 Numerická simulace sdílení tepla v kanálu mezikruhového průřezu Petr Kovařík Západočeská univerzita v Plzni, Univerzitní 22, 306 14 Plzeň, kovarikp@ntc.zcu.cz Abstract: The paper
VícePočítačová dynamika tekutin (CFD) Turbulence
Počítačová dynamika tekutin (CFD) Turbulence M. Jahoda Turbulence 2 Turbulentní proudění vzniká při vysokých Reynoldsových číslech (Re>>1); je způsobováno komplikovanou interakcí mezi viskózními a setrvačnými
VíceNumerická simulace přestupu tepla v segmentu výměníku tepla
Konference ANSYS 2009 Numerická simulace přestupu tepla v segmentu výměníku tepla M. Kůs Západočeská univerzita v Plzni, Výzkumné centrum Nové technologie, Univerzitní 8, 306 14 Plzeň Abstract: The article
VíceNUMERICKÝ VÝPOČET RADIÁLNÍHO VENTILÁTORU V KLIMATIZAČNÍ JEDNOTCE
NUMERICKÝ VÝPOČET RADIÁLNÍHO VENTILÁTORU V KLIMATIZAČNÍ JEDNOTCE Autoři: Ing. Petr ŠVARC, Technická univerzita v Liberci, petr.svarc@tul.cz Ing. Václav DVOŘÁK, Ph.D., Technická univerzita v Liberci, vaclav.dvorak@tul.cz
VíceModelování proudění vzdušiny v elektroodlučovači ELUIII
Konference ANSYS 2009 Modelování proudění vzdušiny v elektroodlučovači ELUIII Richard Matas, František Wegschmied Západočeská univerzita v Plzni, Výzkumné centrum Nové technologie, Univerzitní 8, 306 14
VíceStudentská tvůrčí činnost 2009. 3D modelování vírových struktur v rozváděcí turbínové lopatkové mříži. David Jícha
Studentská tvůrčí činnost 2009 3D modelování vírových struktur v rozváděcí turbínové lopatkové mříži David Jícha Vedoucí práce : Prof.Ing.P.Šafařík,CSc. a Ing.D.Šimurda 3D modelování vírových struktur
VíceNUMERICKÁ SIMULACE PROUDĚNÍ DVOUFÁZOVÉ VLHKÉ PÁRY OHYBEM POTRUBÍ Numerical simulation of two phase wet steam flow in pipeline elbow
NUMERICKÁ SIMULACE PROUDĚNÍ DVOUFÁZOVÉ VLHKÉ PÁRY OHYBEM POTRUBÍ Numerical simulation of two phase wet steam flow in pipeline elbow Šťastný Miroslav 1, Střasák Pavel 2 1 Západočeská univerzita v Plzni,
VíceModelování přepadu vody přes pohyblivou klapkovou konstrukci
Konference ANSYS 2011 Modelování přepadu vody přes pohyblivou klapkovou konstrukci V. Jirsák, M. Kantor, P. Sklenář České vysoké učení v Praze, Fakulta stavební, Thákurova 7, 166 29 Praha 6 Abstract: The
VíceCFD ANALÝZA CHLAZENÍ MOTORU
CFD ANALÝZA CHLAZENÍ MOTORU Ing. Zdeněk PORUBA, Ph.D., VŠB TU Ostrava, zdenek.poruba@vsb.cz Ing. Jan SZWEDA, Ph.D., VŠB TU Ostrava, jan.szweda@vsb.cz Anotace česky (slovensky) Předložený článek prezentuje
VíceStacionární 2D výpočet účinnosti turbínového jeden a půl stupně
Stacionární D výpočet účinnosti turbínového jeden a půl stupně Petr Toms Abstrakt Příspěvek je věnován popisu řešení proudění stacionárního D výpočtu účinnosti jeden a půl vysokotlakého turbínového stupně
VíceCFD výpočtový model bazénu pro skladování použitého paliva na JE Temelín a jeho validace
CFD výpočtový model bazénu pro skladování použitého paliva na JE Temelín a jeho validace Ondřej Burian Pavel Zácha Václav Železný ČVUT v Praze, Fakulta strojní, Ústav energetiky NUSIM 2013 Co je to CFD?
VíceÚstav termomechaniky AV ČR. Témata diplomových prací (2007) Oddělení dynamiky tekutin Dolejšova 5 Praha 8 mail:
Ústav termomechaniky AV ČR Oddělení dynamiky tekutin Dolejšova 5 Praha 8 mail: uruba@it.cas.cz Témata diplomových prací (2007) Metody identifikace koherentních struktur ve 2D vektorových polích. Teoretická
VíceMODELOVÁNÍ PROUDĚNÍ VODY V OTEVŘENÝCH KORYTECH
MODELOVÁNÍ PROUDĚNÍ VODY V OTEVŘENÝCH KORYTECH Ing., Martin KANTOR, ČVUT Praha Fakulta stavební, martin.kantor@fsv.cvut.cz Annotation This article deals with CFD modelling of free surface flow in a rectangular
VíceCFD simulace obtékání studie studentské formule FS.03
CFD simulace obtékání studie studentské formule FS.03 Bc. Marek Vilím Vedoucí práce: Ing. Tomáš Hyhlík, Ph.D. Abstrakt Práce pojednává o návrhu numerické simulace obtékání studie studentské formule FS.03
VíceVEGETAČNÍ BARIÉRY Mgr. Jan Karel
VEGETAČNÍ BARIÉRY Metodika pro výpočet účinnosti výsadeb vegetačních pásů ke snížení imisních příspěvků liniových a plošných zdrojů emisí částic a na ně vázaných polutantů 17. 10. 2017 Mgr. Jan Karel Vegetační
VíceSborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava řada stavební, ročník 15, číslo 2, rok 2015 článek č.
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava řada stavební, ročník 15, číslo 2, rok 2015 článek č. 14 Vladimíra MICHALCOVÁ 1, Lenka LAUSOVÁ 2 NUMERICKÝ VÝPOČET AERODYNAMICKÉ
VíceSTANOVENÍ SOUČINITELŮ MÍSTNÍCH ZTRÁT S VYUŽITÍM CFD
19. Konference Klimatizace a větrání 010 OS 01 Klimatizace a větrání STP 010 STANOVENÍ SOUČINITELŮ MÍSTNÍCH ZTRÁT S VYUŽITÍM CFD Jan Schwarzer, Vladimír Zmrhal ČVUT v Praze, Fakulta strojní, Ústav techniky
VíceIX. Metody fyzikálního modelování
IX. Metody fyzikálního modelování Již v úvodu bylo zmíněno, že výzkum MVA in situ je velice nákladný a vesměs dává pouze výsledky omezeného rozsahu. Proto jsou většinou používány metody modelování. Z kapitol
VíceExperimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf.
Experimentáln lní měření průtok toků ve VK EMO XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký Systém měření průtoku EMO Měření ve ventilačním komíně
VíceVliv úhlu distální anastomózy femoropoplitálního bypassu na proudové charakteristiky v napojení
Vliv úhlu distální anastomózy femoropoplitálního bypassu na proudové charakteristiky v napojení Manoch Lukáš Abstrakt: Práce je zaměřena na stanovení vlivu úhlu napojení distální anastomózy femoropoplitálního
VíceRozvoj tepla v betonových konstrukcích
Úvod do problematiky K novinkám v požární odolnosti nosných konstrukcí Praha, 11. září 2012 Ing. Radek Štefan prof. Ing. Jaroslav Procházka, CSc. Znalost rozložení teploty v betonové konstrukci nebo její
VícePočítačová dynamika tekutin (CFD) Okrajové podmínky
Počítačová dynamika tekutin (CFD) Okrajové podmínky M. Jahoda Okrajové podmínky 2 Řídí pohyb tekutiny. Jsou požadovány matematickým modelem. Specifikují toky do výpočetní oblasti, např. hmota, hybnost
VíceČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D.
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Modelování termohydraulických jevů 3.hodina Hydraulika Ing. Michal Kabrhel, Ph.D. Letní semestr 008/009 Pracovní materiály pro výuku předmětu.
VíceOsobní údaje. Vzdělání, odborná příprava a školení. Pracovní zkušenosti. prof., Ing., CSc. jaroslav.janalik@vsb.cz Státní příslušnost
Osobní údaje Křestní jméno / Příjmení Jaroslav Janalík Tituly prof., Ing., CSc. E-mail jaroslav.janalik@vsb.cz Státní příslušnost ČR Zařazení: Profesor Místnost: A 748 Telefon: +420 59732 4383 Vzdělání,
VícePosouzení vlivu vnitřních svalků na průchodnost přivaděče zhotoveného z polyetylénových trub.
přivaděče zhotoveného z polyetylénových trub. Autor: Vedoucí diplomové práce: Konzultant: Prof. Ing. Jan Melichar, CSc. Ing. Tomáš Hyhlík Ph.D Obsah Cíle práce Aktuální stav Hydraulický výpočet gravitačního
VíceVáclav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF
Václav Uruba uruba@fst.zcu.cz home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF 14.12.14 Mechanika tekuln 12/13 1 Mechanika teku,n - přednášky 1. Úvod, pojmy,
VíceAnemometrie - žhavené senzory
Anemometrie - žhavené senzory Fyzikální princip metody Metoda je založena na ochlazování žhaveného senzoru proudícím médiem. Teplota senzoru: 50 300 C Ochlazování závisí na: Vlastnostech senzoru Fyzikálních
VícePROUDĚNÍ REGULAČNÍ MEZISTĚNOU TURBÍNOVÉHO STUPNĚ PŘI ROTACI OBĚŽNÉHO LOPATKOVÁNÍ. Jaroslav Štěch
SOUTĚŽNÍ PŘEHLÍDKA STUDENTSKÝCH A DOKTORSKÝCH PRACÍ FST 2007 PROUDĚNÍ REGULAČNÍ MEZISTĚNOU TURBÍNOVÉHO STUPNĚ PŘI ROTACI OBĚŽNÉHO LOPATKOVÁNÍ Jaroslav Štěch ABSTRAKT Úkolem bylo zjistit numerickou CFD
VíceŘešení vnější aerodynamiky kolejových vozidel
Řešení vnější aerodynamiky kolejových vozidel Milan Schuster Výzkumný a zkušební ústav Plzeň s.r.o., Tylova 46, 301 00 Plzeň, e-mail: schuster@vzuplzen.cz Abstract: This paper deals with numerical simulations
VíceSVOČ FST Bc. Václav Sláma, Zahradní 861, Strakonice Česká republika
VÝPOČET PROUDĚNÍ V NADBANDÁŽOVÉ UCPÁVCE PRVNÍHO STUPNĚ OBĚŽNÉHO KOLA BUBNOVÉHO ROTORU TURBÍNY SVOČ FST 2011 Bc. Václav Sláma, Zahradní 861, 386 01 Strakonice Česká republika Bc Jan Čulík, Politických vězňů
VíceCFD simulace teplotně-hydraulické charakteristiky na modelu palivové tyči v oblasti distanční mřížky
Konference ANSYS 011 CFD simulace teplotně-hydraulické charakteristiky na modelu palivové tyči v oblasti distanční mřížky D. Lávička Západočeská univerzita v Plzni, Katedra energetických strojů a zařízení,
VícePROUDĚNÍ V KAVITĚ VYVOLANÉ SMYKOVÝM TOKEM PŘI VELKÝCH REYNOLDSOVÝCH ČÍSLECH Shear-driven cavity flow at high Reynolds numbers
Colloquium FLUID DYNAMICS 27 Institute of Thermomechanics AS CR, v. v. i., Prague, October 24-26, 27 p.1 PROUDĚNÍ V KAVITĚ VYVOLANÉ SMYKOVÝM TOKEM PŘI VELKÝCH REYNOLDSOVÝCH ČÍSLECH Shear-driven cavity
VíceVýpočet stlačitelného proudění metodou konečných objemů
Výpočet stlačitelného proudění metodou konečných objemů Petra Punčochářová Ústav technické matematiky, Fakulta strojní, Vysoké učení technické v Praze Vedoucí práce: Prof. RNDr. K. Kozel DrSc. Úvod V 80.
VíceBc. David Fenderl Západočeská univerzita v Plzni, Univerzitní 8, Plzeň Česká republika
EXPERIMENTÁLNÍ OVĚŘENÍ VLASTNOSTÍ PROUDĚNÍ V LOPATKOVÉ KASKÁDĚ STŘEDORYCHLOSTNÍHO TUNELU A POTVRZENÍ VÝSLEDKŮ POMOCÍ CFD SIMULACÍ S OHLEDEM NA VLIV DRSNOSTI POVRCHŮ. SVOČ FST 2015 ABSTRAKT Bc. David Fenderl
VíceModel Position Influence on Surrounding Pressure Field in Wind- Tunnel Test Section
VLIV POLOHY MODELU NA TLAKOVÉ POLE V JEHO OKOLÍ V MĚŘÍCÍM PROSTORU AERODYNAMICKÉHO TUNELU Model Position Influence on Surrounding Pressure Field in Wind- Tunnel Test Section Ing. Peter Kohút 1 ÚVOD Hodnoty
VíceVliv Mosteckého jezera na teplotu a vlhkost vzduchu a rychlost větru. Lukáš Pop Ústav fyziky atmosféry v. v. i. AV ČR
Vliv Mosteckého jezera na teplotu a vlhkost vzduchu a rychlost větru Lukáš Pop Ústav fyziky atmosféry v. v. i. AV ČR Motivace a cíle výzkumu Vznik nové vodní plochy mění charakter povrchu (teplotní charakteristiky,
VíceMechanika tekutin. Tekutiny = plyny a kapaliny
Mechanika tekutin Tekutiny = plyny a kapaliny Vlastnosti kapalin Kapaliny mění tvar, ale zachovávají objem jsou velmi málo stlačitelné Ideální kapalina: bez vnitřního tření je zcela nestlačitelná Viskozita
VíceMĚŘENÍ A MODELOVÁNÍ DYNAMICKÝCH DĚJŮ V PRUŽNÉM POTRUBÍ. Soušková H., Grobelný D.,Plešivčák P.
MĚŘENÍ A MODELOVÁNÍ DYNAMICKÝCH DĚJŮ V PRUŽNÉM POTRUBÍ Soušková H., Grobelný D.,Plešivčák P. Katedra měřicí a řídicí techniky VŠB-TU Ostrava, Fakulta elektrotechniky a informatiky Abstrakt : Příspěvek
VíceColloquium FLUID DYNAMICS 2007 Institute of Thermomechanics AS CR, v. v. i., Prague, October 24-26, 2007 p.1
Colloquium FLUID DYNAMICS 27 Institute of Thermomechanics AS CR, v. v. i., Prague, October 24-26, 27 p.1 NUMERICKÉ ŘEŠENÍ STACIONÁRNÍHO A NESTACIONÁRNÍHO TRANSSONICKÉHO PROUDĚNÍ VE VNĚJŠÍ AERODYNAMICE
VíceNUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014
NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014 Miroslav Kabát, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT
VíceU218 - Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. ! t 2 :! Stacionární děj, bez vnitřního zdroje, se zanedbatelnou viskózní disipací
VII. cená konvekce Fourier Kirchhoffova rovnice T!! ρ c p + ρ c p u T λ T + µ d t :! (g d + Q" ) (VII 1) Stacionární děj bez vnitřního zdroje se zanedbatelnou viskózní disipací! (VII ) ρ c p u T λ T 1.
VíceSolární komín řešení pro nefungující systémy přirozeného větrání
Solární komín řešení pro nefungující systémy přirozeného větrání Radim Galko VŠTE v Českých Budějovicích, Katedra stavebnictví Abstrakt Článek podává informace o systému přirozeného větrání, jehož účinnost
VíceKatedra geotechniky a podzemního stavitelství
Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Modelování zatížení tunelů (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního
VíceMechanika tekutin. Hydrostatika Hydrodynamika
Mechanika tekutin Hydrostatika Hydrodynamika Hydrostatika Kapalinu považujeme za kontinuum, můžeme využít předchozí úvahy Studujeme kapalinu, která je v klidu hydrostatika Objem kapaliny bude v klidu,
VíceVEGETAČNÍ BARIÉRY Mgr. Jan Karel
VEGETAČNÍ BARIÉRY Využití metodiky pro kvantifikaci efektu výsadeb vegetačních bariér na snížení koncentrací suspendovaných částic a na ně vázaných polutantů 10. 11. 2017 Mgr. Jan Karel Metodika pro výpočet
VíceVliv změny geometrie mostní konstrukce a tvaru zábradlí na účinky větru
Vysoké učení technické Brno Stavební fakulta Studentská vědecká odborná činnost Školní rok 2005/2006 Vliv změny geometrie mostní konstrukce a tvaru zábradlí na účinky větru Jméno a příjmení studenta :Filip
VíceVáclav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF
Václav Uruba uruba@fst.zcu.cz home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF 0.11.14 Mechanika tekumn 1/13 1 Mechanika teku,n - přednášky 1. Úvod, pojmy, definice.
VíceTermomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
VíceFLOW PARAMETERS MEASUREMENT IN THE CURVED DIFFUSER OF THE RECTANGULAR CROSS-SECTION
FLOW PARAMETERS MEASUREMENT IN THE CURVED DIFFUSER OF THE RECTANGULAR CROSS-SECTION Zubík. P., Šulc J. Summary: The article deals with measurement of flow parameters in the bend diffuser of the rectangular
Více1 POPIS MATEMATICKÉHO MODELU. 1.1 Použitý software FLOW-3D. Vodní nádrže , Brno
1 POPIS MATEMATICKÉHO MODELU 1.1 Použitý software FLOW-3D Pro modelování proudění byl zvolen komerční softwarový balík FLOW-3D. Jedná se o CFD (Computional Fluid Dynamics) nástroj využívající matematické
VícePOČÍTAČOVÉ MODELOVÁNÍ POŽÁRNÍ ZKOUŠKY V MOKRSKU COMPUTER - SIMULATION OF A FIRE TEST IN MOKRSKO
Otto DVOŘÁK 1, Jan ANGELIS 2, Tomáš KUNDRATA 3, Hana MATHEISLOVÁ 4, Petra BURSÍKOVÁ 5, Milan JAHODA 6 POČÍTAČOVÉ MODELOVÁNÍ POŽÁRNÍ ZKOUŠKY V MOKRSKU Abstrakt COMPUTER - SIMULATION OF A FIRE TEST IN MOKRSKO
VíceSIMULACE PULZUJÍCÍHO PRŮTOKU V POTRUBÍ S HYDRAULICKÝM AKUMULÁTOREM Simulation of pulsating flow in pipe with hydraulic accumulator
Colloquium FLUID DYNAMICS 2009 Institute of Thermomechanics AS CR, v.v.i., Prague, October 21-23, 2009 p.1 SIMULACE PULZUJÍCÍHO PRŮTOKU V POTRUBÍ S HYDRAULICKÝM AKUMULÁTOREM Simulation of pulsating flow
VíceNumerická simulace elastohydrodynamicky mazaného kruhového kontaktu nehladkých povrchů
Numerická simulace elastohydrodynamicky mazaného kruhového kontaktu nehladkých povrchů Pojednání ke státní doktorské zkoušce Ing. Libor Urbanec VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ
VíceTermomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
VícePočítačová dynamika tekutin užitečný nástroj pro inženýry
Počítačová dynamika tekutin užitečný nástroj pro inženýry M. Jahoda Úvod Počítačová dynamika tekutin (Computational Fluid Dynamics, CFD) je moderní metoda, která se zabývá prouděním tekutin, přenosem tepla
VíceProudění stlačitelné tekutiny v úzkém kanále 2016 ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STROJNÍ BAKALÁŘSKÁ PRÁCE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STROJNÍ BAKALÁŘSKÁ PRÁCE KRALOVICE 2016 Martina HLADÍKOVÁ 1 ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní Ústav mechaniky tekutin a termodynamiky Proudění
VícePokud proudění splňuje všechny výše vypsané atributy, lze o něm prohlásit, že je turbulentní (atributy je třeba znát).
Laminární proudění je jeden z typů proudění reálné, tedy vazké, tekutiny. Laminární proudění vzniká obecně při nižších rychlostech (přesněji Re). Proudnice laminárního proudu jsou rovnoběžné a vytvářejí
VíceVerifikace modelu Symos. Mgr. Ondřej Vlček Mgr. Zdenka Chromcová, Ph.D. Oddělení modelování a expertiz Úsek ochrany čistoty ovzduší, ČHMÚ
Verifikace modelu Symos Mgr. Ondřej Vlček Mgr. Zdenka Chromcová, Ph.D. Oddělení modelování a expertiz Úsek ochrany čistoty ovzduší, ČHMÚ Ochrana ovzduší ve státní správě, Třebíč 8. 11. 2016 Osnova Motivace
VíceMeteorologické minimum
Meteorologické minimum Stabilitně a rychlostně členěné větrné růžice jako podklad pro zpracování rozptylových studií Bc. Hana Škáchová Oddělení modelování a expertíz Úsek ochrany čistoty ovzduší, ČHMÚ
VíceRozptyl emisí. Ochrana ovzduší ZS 2012/2013
Rozptyl emisí Ochrana ovzduší ZS 01/013 1 Úvod emise přenos imise Závažné zdroje znečišťování posudek EIA rozptylová studie Šíření znečišťujících látek v přízemní vrstvě atmosféry Přenos znečišťujících
VíceBIM & Simulace CFD simulace ve stavebnictví. Ing. Petr Fischer
BIM & Simulace CFD simulace ve stavebnictví Ing. Petr Fischer Agenda 10:15 11:00 Úvod do problematiky Petr Fischer Technické informace a příklady Jiří Jirát Otázky a odpovědi Používané metody navrhování
VíceCFD. Společnost pro techniku prostředí ve spolupráci s ČVUT v Praze, Fakultou strojní, Ústavem techniky prostředí
Společnost pro techniku prostředí ve spolupráci s ČVUT v Praze, Fakultou strojní, Ústavem techniky prostředí Program celoživotního vzdělávání: kurz Klimatizace a Větrání 2013/2014 CFD Jan Schwarzer Počítačová
VíceHydromechanické procesy Turbulence
Hydromechanické procesy Turbulence M. Jahoda Turbulence 2 Turbulentní proudění vzniká při vysokých Reynoldsových číslech (Re>>1); je způsobováno komplikovanou interakcí mezi viskózními a setrvačnými členy
VícePOŽÁRNÍ ODOLNOST DŘEVOBETONOVÉHO STROPU
Energeticky efektivní budovy 2015 sympozium Společnosti pro techniku prostředí 15. října 2015, Buštěhrad POŽÁRNÍ ODOLNOST DŘEVOBETONOVÉHO STROPU Eva Caldová 1), František Wald 1),2) 1) Univerzitní centrum
VíceSborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 2, rok 2013, ročník XIII, řada stavební článek č.
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 2, rok 2013, ročník XIII, řada stavební článek č. 30 Iveta SKOTNICOVÁ 1, Zdeněk GALDA 2, Petra TYMOVÁ 3, Lenka LAUSOVÁ 4
VíceNESTABILITY VYBRANÝCH SYSTÉMŮ. Úvod. Vzpěr prutu. Petr Frantík 1
NESTABILITY VYBRANÝCH SYSTÉMŮ Petr Frantík 1 Úvod Úloha pokritického vzpěru přímého prutu je řešena dynamickou metodou. Prut se statickým zatížením je modelován jako nelineární disipativní dynamický systém.
VíceCharakteristika matematického modelování procesu spalování dřevní hmoty v aplikaci na model ohniště krbových kamen
Charakteristika matematického modelování procesu spalování dřevní hmoty v aplikaci na model ohniště krbových kamen Michal Branc, Marián Bojko Anotace Příspěvek se zabývá charakteristikou matematického
VíceCentrum kompetence automobilového průmyslu Josefa Božka - AutoSympo a Kolokvium Božek 2. a , Roztoky -
Popis obsahu balíčku WP13: Aerodynamika motorového prostoru a chlazení WP13: Aerodynamika motorového prostoru a chlazení Vedoucí konsorcia podílející se na pracovním balíčku České vysoké učení technické
VíceNávrh postupu pro stanovení četnosti překročení 24hodinového imisního limitu pro suspendované částice PM 10
Návrh postupu pro stanovení četnosti překročení 24hodinového imisního limitu pro suspendované částice PM 1 Tento návrh byl vypracován v rámci projektu Technologické agentury ČR č. TA23664 Souhrnná metodika
VíceTomáš Syka Komořanská 3118, Most Česká republika
SOUČINITEL PŘESTUPU TEPLA V MAKETĚ PALIVOVÉ TYČE ZA RŮZNÝH VSTUPNÍH PARAMETRŮ HLADÍÍHO VZDUHU SVOČ FST 2008 Tomáš Syka Komořanská 38, 434 0 Most Česká republika ABSTRAKT Hlavním úkolem této práce bylo
VícePARAMETRICKÁ STUDIE VÝPOČTU KOMBINACE JEDNOKOMPONENTNÍCH ÚČINKŮ ZATÍŽENÍ
PARAMETRICKÁ STUDIE VÝPOČTU KOMBINACE JEDNOKOMPONENTNÍCH ÚČINKŮ ZATÍŽENÍ Ing. David KUDLÁČEK, Katedra stavební mechaniky, Fakulta stavební, VŠB TUO, Ludvíka Podéště 1875, 708 33 Ostrava Poruba, tel.: 59
VíceVÝSLEDKY EXPERIMENTÁLNÍHO MĚŘENÍ A NUMERICKÉHO ŘEŠENÍ TEPELNĚ VLHKOSTNÍHO CHOVÁNÍ STAVEBNÍCH KONSTRUKCÍ
VÝSLEDKY EXPERIMENTÁLNÍHO MĚŘENÍ A NUMERICKÉHO ŘEŠENÍ TEPELNĚ VLHKOSTNÍHO CHOVÁNÍ STAVEBNÍCH KONSTRUKCÍ Autoři: Ing. Iveta SKOTNICOVÁ, Ph.D. Ing. Vladan PANOVEC CZ.1.07/1.3.05/02.0026 Rozvoj profesního
VíceEXPERIMENTÁLNÍ A NUMERICKÝ VÝZKUM SPALOVACÍ KOMORY
10 th conference on Power System Engineering, Thermodynamics & Fluid Flow - ES 2011 June 16-17, 2011, Pilsen, Czech Republic EXPERIMENTÁLNÍ A NUMERICKÝ VÝZKUM SPALOVACÍ KOMORY TŮMA Jan, KUBATA Jan, BĚTÁK
VíceVliv vířivého proudění na přesnost měření průtoku v komínech
Vliv vířivého proudění na přesnost měření průtoku v komínech J. Geršl, S. Knotek Z. Belligoli, R. Dwight M. Coleman, R. Robinson Hradec Králové, 21.9. 2017 O čem bude přednáška Referenční metoda měření
VíceGenerování sítě konečných prvků
Generování sítě konečných prvků Jaroslav Beran Modelování a simulace Tvorba výpočtového modelu s využitím MKP zahrnuje: Tvorbu (import) geometrického modelu Generování sítě konečných prvků Definování vlastností
VíceModelování a simulace Lukáš Otte
Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast
VíceSíla, vzájemné silové působení těles
Síla, vzájemné silové působení těles Síla, vzájemné silové působení těles Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_02_01 Vytvořeno Leden 2014 Síla, značka a jednotka síly, grafické znázornění
VíceUniverzita obrany K-204. Laboratorní cvičení z předmětu AERODYNAMIKA. Měření rozložení součinitele tlaku c p na povrchu profilu Gö 398
Univerzita obrany K-204 Laboratorní cvičení z předmětu AERODYNAMIKA Měření rozložení součinitele tlaku c p na povrchu profilu Gö 39 Protokol obsahuje 12 listů Vypracoval: Vít Havránek Studijní skupina:
VícePracovní list vzdáleně ovládaný experiment. Obr. 1: Hodnoty součinitele odporu C pro různé tvary těles, převzato z [4].
Pracovní list vzdáleně ovládaný experiment Aerodynamika (SŠ) Větrný tunel Fyzikální princip Aerodynamika je věda, která se zabývá obtékáním vzduchu kolem těles. Při pohybu tělesa vznikají v důsledku vnitřního
VíceParametrická studie vlivu vzájemného spojení vrstev vozovky
Konference ANSYS 2009 Parametrická studie vlivu vzájemného spojení vrstev vozovky M. Štěpánek a J. Pěnčík VUT v Brně, Fakulta stavební, Ústav stavební mechaniky Abstract: The testing of a cyclic-load performance
VíceSTOPOVACÍ ZKOUŠKY V PUKLINOVÉM PROSTŘEDÍ PREDIKČNÍ MODEL A TERÉNNÍ MĚŘENÍ
STOPOVACÍ ZKOUŠKY V PUKLINOVÉM PROSTŘEDÍ PREDIKČNÍ MODEL A TERÉNNÍ MĚŘENÍ Gvoždík, Polák, Vaněček, Sosna 1H-PK/31 MPO ČR Metody a nástroje hodnocení vlivu inženýrských bariér na vzdálené interakce v prostředí
VíceCejchování kuželové pětiotvorové sondy pro vysokorychlostní aerodynamická měření
Cejchování kuželové pětiotvorové sondy pro vysokorychlostní aerodynamická měření Martin Kožíšek Vedoucí práce: Prof. Ing. Pavel Šafařík, CSc., Ing. Martin Luxa, Ph.D., Ing. David Šimurda Abstrakt Příspěvek
Více