Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"

Podobné dokumenty
Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"

Tématické okruhy pro státní závěrečné zkoušky. magisterské studium

Tématické okruhy pro státní závěrečné zkoušky. Navazující magisterské studium. studijní obor "Management jakosti"

Tématické okruhy pro státní závěrečné zkoušky. Navazující magisterské studium. studijní obor "Management kvality"

JAROSLAV NENADÁL / DARJA ~OSKIEVIČOVÁ RUŽENA PETRÍKOVÁ / JIRÍ PLURA JOSEF TOŠENOVSKÝ MODERNI MANAGEMENT JAKOSTI MANAGEMENT PRESS, PRAHA 2008

VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA METALURGIE A MATERIÁLOVÉHO INŽENÝRSTVÍ KATEDRA KONTROLY A ŘÍZENÍ JAKOSTI

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Metodické listy pro kombinované studium předmětu MANAGEMENT JAKOSTI Metodický list č. l

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA Sylabus pro předmět STATISTIKA Pomůcky... 7

Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a aplikovaná statistika

Management kvality, environmentu a bezpečnosti práce

PRAVDĚPODOBNOST A STATISTIKA 1 Metodický list č 1.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Statistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží

MANAŽER KVALITY PŘEHLED POŽADOVANÝCH ZNALOSTÍ K HODNOCENÍ ZPŮSOBILOSTI CO 4.4/2007

Pravděpodobnost a statistika I KMA/K413

Bakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika. 1 Úvodní poznámky. Verze: 13. června 2013

, Brno Hanuš Vavrčík Základy statistiky ve vědě

Úvodem Dříve les než stromy 3 Operace s maticemi

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Téma 22. Ondřej Nývlt

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k )

Náhodná veličina a rozdělení pravděpodobnosti

Charakterizace rozdělení

Číselné charakteristiky

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Statistika. Diskrétní data. Spojitá data. Charakteristiky polohy. Charakteristiky variability

Tomáš Karel LS 2012/2013

1) Jsou normy v ČR závazné a jaká je jejich úloha? normy nejsou v ČR závazné od roku 2000 od roku 2000 mají pouze doporučující charakter

Tomáš Karel LS 2012/2013

P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.

Zápočtová práce STATISTIKA I

Statistické řízení jakosti - regulace procesu měřením a srovnáváním

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík

pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti.

AUDITOR KVALITY PŘEHLED POŽADOVANÝCH ZNALOSTÍ K HODNOCENÍ ZPŮSOBILOSTI CO 4.5/2007

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

Problematikou logistiky v oblasti řízení jakosti se zabývají normy ISO řady Dotýká se oblastí: Manipulace, uskladnění, označování, balení,

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Jaroslav Nenadál, 2006 ISBN

Pracovní adresář. Nápověda. Instalování a načtení nového balíčku. Importování datového souboru. Práce s datovým souborem

Přednáška. Diskrétní náhodná proměnná. Charakteristiky DNP. Základní rozdělení DNP

1. soustředění (2 hod.)

Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík


Vybrané praktické aplikace statistické regulace procesu

Národní informační středisko pro podporu kvality

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ

Katedra řízení podniku (FES)

ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK

KGG/STG Statistika pro geografy

SYSTÉM ŘÍZENÍ JAKOSTI VE VEŘEJNÉ SPRÁVĚ

TEMATICKÝ PLÁN VÝUKY

METODY, TECHNIKY A NÁSTROJE MANAGEMENTU KVALITY

Pelantová Věra Technická univerzita v Liberci. Předmět RJS. TU v Liberci

Výběrové charakteristiky a jejich rozdělení

Č.t. Téma školení Cílová skupina Rozsah

Vybraná rozdělení náhodné veličiny

TECHNICKÁ UNIVERZITA V LIBERCI

Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)

správně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B.

Praktická statistika. Petr Ponížil Eva Kutálková

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory

Osnovy prezenčního studia předmětu RiJ - ŘÍZENÍ JAKOSTI

Národní informační středisko pro podporu kvality

SYSTÉM ŘÍZENÍ JAKOSTI VE VEŘEJNÉ SPRÁVĚ

Regulační diagramy (RD)

6.1. Výcvikový kurz QFD - Quality Function Deployment Přenášení požadavků zákazníků do procesů v organizaci

Tomáš Karel LS 2012/2013

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC

2. Friesl, M.: Posbírané příklady z pravděpodobnosti a statistiky. Internetový zdroj (viz odkaz).

NMAI059 Pravděpodobnost a statistika

Přednáška. Další rozdělení SNP. Limitní věty. Speciální typy rozdělení. Další rozdělení SNP Limitní věty Speciální typy rozdělení

Pravděpodobnost a matematická statistika

VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky SMAD

a způsoby jejího popisu Ing. Michael Rost, Ph.D.

Náhodná proměnná. Náhodná proměnná může mít rozdělení diskrétní (x 1. , x 2. ; x 2. spojité (<x 1

I. D i s k r é t n í r o z d ě l e n í

z Matematické statistiky 1 1 Konvergence posloupnosti náhodných veličin

Řízení vztahů se zákazníky

p(x) = P (X = x), x R,

Národní informační středisko pro podporu jakosti

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

Národní informační středisko pro podporu kvality

Základy teorie pravděpodobnosti

Průzkumová analýza dat

Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která

Transkript:

Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2013/2014

Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období. 2. Koncepce managementu jakosti, charakteristiky a účel. 3. Základní principy managementu jakosti. 4. Normy ISO řady 9000, struktura, účel. 5. Procesní přístup v managementu jakosti charakteristiky a nástroje. 6. Základní požadavky na systémy managementu jakosti podle ČSN EN ISO 9001. 7. Řízení dokumentů a záznamů, účel a postupy. 8. Struktura dokumentů v systémech managementu jakosti. 9. Základní činnosti managementu jakosti v nakupování. 10. Základní procesy managementu jakosti při realizaci produktů. 11. Ověřování shody/technická kontrola produktů, účel, druhy a formy organizace. 12. Postupy řízení neshodných produktů, nápravná a preventivní opatření. 13. Základní oblasti managementu infrastruktury, údržba infrastruktury. 14. Pojem a druhy auditů v systémech managementu jakosti. 15. Postupy a cíle interních auditů v systémech managementu jakosti. 16. Přístupy Evropské unie k zabezpečování jakosti a posuzování shody. 17. Modulární pojetí posuzování shody. 18. Role a význam lidského faktoru/personálního řízení v systémech managementu jakosti, efektivní využívání lidských zdrojů v podnikových procesech, osobní kvalita. 19. Požadavky na řízení lidských zdrojů (SŘLZ) v souladu s aktuální verzí norem ISO 9000. 20. Výchova a vzdělávání pracovníků k jakosti, výchovné programy, výcvik a vzdělávání jako proces, měření efektivnosti výcviku, certifikace personálu. 21. Motivace v systémech managementu jakosti (definice, formy, předpoklady a příklady účinné motivace). 22. Komunikace v systémech jakosti (definice, formy, příklady a vztah k motivaci).

23. Týmová práce zásady, formy a příklady v managementu (Kroužky jakosti, Kaizen, IIP). 24. Tvořivost a inovace v podnikovém řízení. 25. Učící se podnik (definiční vymezení, impulsy a formy), od učící se organizace ke znalostní společnosti. 26. Řízení znalostí v aktuální verzi norem ISO 9000 (data-informace-znalosti), klíčové znalostní procesy. 27. CSR (definiční vymezení, základní oblasti, příklady). 28. CSR, mezinárodní společenská odpovědnost, hodnocení, příklady. 29. Podniková kultura a TQM, specifika podnikové kultury našich podniků. 30. Požadavky na řízení měřicích a monitorovacích zařízení. Teorie pravděpodobnosti a matematická statistika B 1. Náhodný pokus, elementární jev, jev, pravděpodobnost, pravděpodobnostní prostor, operace s jevy, vlastnosti operací s jevy, speciální jevy. 2. Klasická, statistická a geometrická definice pravděpodobnosti: definice, vlastnosti. Kolmogorovovy axiomy teorie pravděpodobnosti. 3. Podmíněná pravděpodobnost, věta o pravděpodobnosti průniku a o pravděpodobnosti sjednocení. Věta o úplné pravděpodobnosti, Bayesův vzorec. 4. Opakované nezávislé a závislé pokusy. Nejpravděpodobnější výsledek. 5. Definice náhodné proměnné. Funkce p(x) a F(x): definice, vlastnosti, vzájemné vztahy. 6. Rozdělení rovnoměrné, binomické, hypergeometrické, Poissonovo. 7. Spojitá náhodná proměnná (definice a její důsledky), definice f(x) a F(x), vlastnosti, vzájemné vztahy, rozdělení rovnoměrné, exponenciální.

8. Normální rozdělení, normované normální rozdělení, tabelování distribuční funkce, grafy f(x) a F(x), pravidlo 3 sigma, význam parametrů. 9. Funkce náhodné proměnné a její důležité typy rozdělení: Pearsonovo rozdělení, Fischerovo a Studentovo rozdělení (definice, graf, vlastnosti). 10. Momentová vytvořující funkce (definice, vlastnosti, tvar pro normální rozdělení). 11. Obecné a centrální momenty k-tého řádu, vztahy, přehled používaných momentů (význam, vlastnosti). Modus. 12. Náhodný vektor definice funkcí p, F, f, vlastnosti a vzájemné vztahy. 13. Číselné charakteristiky náhodného vektoru: vektor středních hodnot, variační matice (definice, výpočet, vlastnosti). 14. Základní a výběrový statistický soubor, variační řada, četnost, výběrové a základní charakteristiky. 15. Číselné charakteristiky výběrového souboru střední hodnota, rozptyl, variační koeficient, koeficient šikmosti a špičatosti jejich význam a interpretace. 16. Kvantily: definice, výpočet pro neroztříděný a roztříděný soubor. 17. Třídní rozdělení četností (postup, význam), histogram (použití). 18. Věta o jednom výběru z normálního rozdělení, použití. 19. Věta o dvou výběrech z normálního rozdělení, použití. 20. Teorie odhadu: bodové odhady a intervalové odhady parametrů. 21. Obecný postup testování hypotéz. F-test 22. Dvouvýběrový t-test. 23. Jednovýběrový t-test. 24. Histogram s nerovnoměrným rozdělením. Grubbsův test odlehlých hodnot. 25. Box plot, normální pravděpodobnostní graf. Výhody a nevýhody grafických metod. 26. Regresní analýza princip, předpoklady, základní pojmy - 27. Základní věty regresní analýzy - 28. Korelační analýza princip, koeficient korelace (vzorec, výpočet, vlastnosti, test). 29. Index korelace, Spearmanův koeficient korelace. 30. Test nezávislosti v kontingenčních tabulkách.

Základní metody plánování a zlepšování jakosti C 1. Obsah a význam plánování jakosti. Plány jakosti. 2. Plánování jakosti produktů podle J. M. Jurana. Moderní přístupy k plánování jakosti produktů. 3. Metoda QFD a její použití. Základní a zdokonalená varianta Domu jakosti. Čtyřmaticový přístup. 4. Přezkoumání návrhu, cíle, zásady, obsah. 5. Metoda FMEA a její použití. FMEA návrhu produktu. FMEA procesu. 6. Analýza způsobilosti procesu, postup, řešení nestandardních situací. 7. Indexy způsobilosti procesu a jejich interpretace. Využití indexů způsobilosti k odhadu výskytu neshodných produktů. 8. Analýza způsobilosti výrobního zařízení. 9. Statistické vlastnosti systémů měření. Analýza systému měření pomocí indexů Cg a Cgk. 10. Afinitní diagram. Diagram vzájemných vztahů. 11. Systematický diagram. Diagram PDPC. Maticový diagram. 12. Analýza údajů v matici, postup, metody. 13. Síťový graf, postup zpracování a vyhodnocení. 14. Časové rezervy činností. Ganttův diagram. 15. Zlepšování jakosti. Cyklus PDCA. Metoda Quality Journal. 16. Variabilita procesu a její analýza (definice, příčiny, metody analýzy). Objasnění pojmů statisticky zvládnutý proces a způsobilý proces a jejich souvislosti. 17. Vývojové diagramy. 18. Bodové diagramy. 19. Ishikawův diagram. Základy brainstormingu. 20. Paretova analýza. 21. Základy statistické regulace procesu SPC (cíle, principy). Charakteristika základního nástroje SPC. 22. Konstrukce a analýza regulačního diagramu vč. interpretace nenáhodných seskupení.

23. Shewhartovy regulační diagramy (předpoklady pro jejich použití, volba vhodného regulačního diagramu). 24. Fáze SPC. 25. SPC měřením. 26. SPC srovnáváním. 27. Základy statistické přejímky (cíle, principy, základní pojmy, členění). Operativní charakteristika přejímacího plánu. 28. Statistická přejímka srovnáváním. 29. Statistická přejímka měřením. 30. Základní systémy přejímacích plánů (charakteristika, použití).