Tepelné stroje: od molekul po černé díry

Rozměr: px
Začít zobrazení ze stránky:

Download "Tepelné stroje: od molekul po černé díry"

Transkript

1 Tepelné stroje: od molekul po černé díry Tomáš Opatrný PřF UP Olomouc Zlín T 2 T (a) T W maser T2 (b) Therm. rad. SS (c) W rad W comp.

2 Tepelné stroje: od molekul po černé díry Obsah. Maxwellův démon a některé jeho modely 2. Szillardův stroj 3. Maser jako reverzibilní tepelný stroj 4. Liboffův třícestný model 5. Tepelný stroj s černými dírami

3 Maxwellův démon J.C. Maxwell, 87 třídění molekul podle rychlostí vychýlení z teplotní rovnováhy narušení druhého termodynamického zákona? 2

4 Maxwellův démon W Q 2 Q 3

5 Maxwellův démon - možnosti automatického třídění molekul Jednosměrná dvířka 4

6 Maxwellův démon - možnosti automatického třídění molekul Kolečko se západkou (Feynmanovy přednášky z fyziky) 5

7 6

8 Maxwellův démon Szilardova verze Maxwellova démona (929) W Q W = k B T ln 2 7

9 Může to fungovat??? Možné odpovědi: Museli bychom mít technologie schopné pracovat na úrovni jednotlivých molekul. To nebude nikdy možné ve velkém měřítku. Nikdy neříkej nikdy. Pokrok v nanotechnologiích je velký, jednou bychom to mohli zvládnout. Ale druhý termodynamický zákon to přece zakazuje. Nikdo nesmí porušovat druhý termodynamický zákon. U řady přírodních zákonů se později zjistilo, že mají omezenou platnost. Ukáže se to i u druhého termodynamického zákona. 8

10 Maxwellův démon vs. 2. termodynamický zákon The law that entropy always increases, the second law of thermodynamics holds, I think, the supreme position among the laws of Nature. If someone points out to you that your pet theory of the universe is in disagreement with Maxwell s equations then so much the worse for Maxwell s equations. If it is found to be contradicted by observation well, these experimentalists bungle things sometimes. But if your theory is found to be against the second law of thermodynamics I can give you no hope; there is nothing for it but to collapse in deepest humiliation. A. Eddington, The Nature of the Physical World, (London: J.M. Dent & Sons 935). 9

11 Maxwellův démon Szilardova verze Maxwellova démona (929) Leo Szilard: problém je v měření polohy. Vždy disipace energie. Charles Bennett (982): měřit lze vratně. Tady problém není! 2 3 R L R L R L R L R L R L 0

12 Maxwellův démon vs. Landauerův princip Problém je v nulování paměti! Landauerův princip: při nulování neznámých bitů se disipuje energie. Množství znehodnocené energie nutné na vynulování každého bitu při teplotě okolí T je alespoň k B T ln 2. Maxwellův démon může pracovat jen dokud zcela nezaplní svou pamět. Pokud chceme jeho pamět vynulovat při stejné teplotě, při jaké pracoval stroj, musíme znehodnotit alespoň tolik energie, kolik práce nám umožnil získat. Rolf Landauer ( )

13 Amoniakový maser H H N N H H 24 GHz E H H NH 3 24 GHz λ=,25 cm x Pump 2

14 Maser a Maxwellův démon: Scullyho schéma a b ε 3

15 Maser a Maxwellův démon: Scullyho schéma 4

16 Maser a Maxwellův démon: Scullyho schéma Přeměna energie termálního záření (tepla) na energii koherentního maserového záření (práci), dokud lze odkládat entropii do pohybových stupňů volnosti atomu. Ale: ohřívání atomu v dutině je ireverzibilní proces snížení účinnosti jak vynulovat polohu atomu bez nadbytečné disipace energie? 5

17 Maser jako vratný tepelný stroj T W maser T2 Therm. rad. SS W rad W comp. T. Opatrný, American Journal of Physics 73, (2005). 6

18 . Maser jako vratný tepelný stroj Vratné ohřívání atomu. Adiabatická expanze záření T W maser T2 2. Adiabatická komprese záření s atomem Therm. rad. SS 3. Izotermická expanze záření na původní objem W rad W comp 3 P/P Compression of radiation with the atom Radiation expansion V/V 2 7

19 Maser jako vratný tepelný stroj Práce maseru T W maser T2 Therm. rad. SS W rad W comp. W maser = p a ɛ = E (at) (T ). 8

20 Maser jako vratný tepelný stroj Reverzibilní stlačování objemu T W maser T2 Therm. rad. SS W rad W comp. Atom byl původně lokalizován v objemu V 0, nyní je někde v celkovém objemu 2V 0. Nutno stlačit na V 0 (při teplotě T 2 ). Stlačujme v jedné dráze na V a a ve druhé na V b : V a + V b = V 0, V a /V b = p a /p b 9

21 Reverzibilní stlačování objemu T W maser T2 Therm. rad. SS W rad W comp. Podle původního stavu atomu konáme práci bud W a = kt 2 ln V 0 V a = kt 2 ln p a, nebo W b = kt 2 ln V 0 V b = kt 2 ln p b. Průměrná práce W comp = p a W a + p b W b = kt 2 (p a ln p a + p b ln p b ) = T 2 S (at) (T ) je pro konečné teploty nižší než kt 2 ln 2. 20

22 Výsledná čistá práce: Energetická bilance a účinnost stroje W net = W rad + W maser W comp [ ] = T S (at) (T ) E (at) (T ) + E (at) (T ) T 2 S (at) (T ) = (T T 2 ) S (at) (T ). Vstupní teplo: Účinnost: Q in = W rad + W maser = T S (at) (T ). η = W net Q in = W comp W rad + W maser = T 2 T, 2

23 Přeměna mechanické práce na maserové záření: při T = T 2 je W net = 0 a tedy W rad = W comp W maser. Přeměna tepla na maserové záření: Při teplotě vnějších stupňů volnosti atomu je T 2 = T [ + ] x (e x + ) ln ( + e x, x = ɛ/kt ) W mech = W rad W comp = 0 a W maser = Q in, zařízení tedy pracuje čistě jako Carnotův maser produkující maserové záření z tepla při Carnotově účinnosti. 22

24 Srovnání se Scullyho cyklem: Bez vratného ohřívání atomů a optimálního stlačování objemu: W mech = W comp = kt 2 ln 2, Q in = E (at) (T ), W maser = E (at) (T ), W net = E (at) (T ) kt 2 ln 2, tedy čistou práci lze produkovat pouze při dostatečném rozpětí teplot. Např. s T = T 2 se přeměňuje mechanická práce na maserovou s účinností W maser W mech = E(at) (T ) kt ln 2 ; pokud ɛ/kt = x 0 =.278, účinnost je 0.40 (srv. W maser / W mech = ve vratném případì). 23

25 24

26 Maxwellův démon: R. L. Liboff, Found. Phys. Lett. 0, 89 (997) B A C P Všechny disky se soustředí v kanále B. 25

27 26

28 Zuzana Mišáková, T.Opatrný: Exorcising Maxwell s Demon from Liboff s Three-Channel Conundrum w B A C w 2R R z L x 27

29 Vymítání třícestného Maxwellova démona (a) B (b) B A C A C 28

30 Vymítání třícestného Maxwellova démona A B C s 0 s d v d z 2 π 2 m k v s s x 29

31 Vymítání třícestného Maxwellova démona 6 z x 30

32 Kvantový model: rychlá částice z 6 (a) z 6 (b) x x z 6 (c) z 6 (d) x x 3

33 Kvantový model: pomalá částice x z (a) x z (b) x z (c) x z (d) 32

34 Černé díry a termodynamika Bekenstein 973: Černá díra má entropii úměrnou povrchu, ( M S BH = 4πk m P ) 2, E = Mc 2, m P = hc/g kg. Musí tedy mít i teplotu: T BH = E BH S BH = hc3 8πkGM. Pokud má teplotu, můžeme ji použít k pohonu tepelných strojů? 33

35 Role černých děr v pozdním stadiu vesmíru S. Frautschi Entropy in an expanding universe, Science 27, 593 (982). L. M. Krauss and G. D. Starkman Life, the universe, and nothing : life and death in an ever-expanding universe, The Astrophysical Journal 53, 22 (2000). 34

36 Černé díry a termodynamika Produkce entropie: Člověk (za celý život): 0 9 J/K Země (za celou dobu existence): 0 32 J/K Slunce (za celou dobu existence): 0 40 J/K Pokud by sluneční hmota byla stlačena do černé díry: 0 54 J/K Pokud dvě černé díry o stejné hmotnosti splynou, celková entropie se zdvojnásobí! Můžeme získat práci místo entropie? 35

37 Černé díry a termodynamika S B B 2 B 4 B 3 A E Energie a entropie 36

38 Černá díra a záření v objemu V Černé díry a termodynamika E tot = Mc 2 + av T 4, [ 4πG S tot = k hc M ] 4 π2 V c h 3 (M tot M) 3/4, [arb. units] S tot M [arb. units] 37

39 Tepelný stroj s černými dírami T 2 T (a) (b) (c) Carnotův proces [T.O. & L. Richterek, Am. J. Phys., přijato k publikaci] 38

40 Tepelný stroj s černými dírami p p T (a) (b) p 2 (c) T 2 Carnotův proces 0 V a V b V η W Q a = T 2 W tot = T ( M,0 + M 2,0 ) M,0 2 + M 2,0 2 c 2. 39

41 Tepelný stroj s černými dírami Výkon P π 240 k 2 T 2 (T T 2 ). h Příklad: M = kg, T =, K, M 2 = kg, T 2 = 60 nk W J P 0 4 W 40

42 Shrnutí. Maxwellův démon a některé jeho modely, jednosměrná vrátka, západka s pružinou Szillardův stroj: jednomolekulový systém, lze najít i model s nedisipativním měřením polohy částice. 3. Landauerův princip: mazání paměti vyžaduje disipaci energie kt ln 2 na každý bit. 4. Maser jako reverzibilní tepelný stroj: třídění molekul, entropie roste s objemem. Lze navrhnout reverzibilní model pracující s Carnotovou účinností. 5. Liboffův třícestný model (disky se setkají v prostředním kanále): model ale nemůže fungovat ani v idealizovaném případě, částici jsou dostupné i příčné stupně volnosti, nebo - v kvantovém případě - neplatí zákon odrazu. 6. Černé díry místo černého uhlí na topení v tepelných strojích? Může fungovat, ale velmi pomalu... 4

43 Děkuji za pozornost 42

Termodynamické stroje, Maxwellův démon, teplo, práce, informace. l Tomáš Opatrný PřF UP Olomouc

Termodynamické stroje, Maxwellův démon, teplo, práce, informace. l Tomáš Opatrný PřF UP Olomouc Termodynamické stroje, Maxwellův démon, teplo, práce, informace l Tomáš Opatrný PřF UP Olomouc Termodynamické stroje, Maxwellův démon, teplo, práce, informace Obsah 1. Od tepla k práci aneb pohybová síla

Více

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika)

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) 1 Maxwellův démon Jak je to přesně s platností druhého termodynamického zákona? Víme, že podle něj nesmí celková entropie izolovaného

Více

IDEÁLNÍ PLYN. Stavová rovnice

IDEÁLNÍ PLYN. Stavová rovnice IDEÁLNÍ PLYN Stavová rovnice Ideální plyn ) rozměry molekul jsou zanedbatelné vzhledem k jejich vzdálenostem 2) molekuly plynu na sebe působí jen při vzájemných srážkách 3) všechny srážky jsou dokonale

Více

LOGO. Struktura a vlastnosti plynů Ideální plyn

LOGO. Struktura a vlastnosti plynů Ideální plyn Struktura a vlastnosti plynů Ideální plyn Ideální plyn Protože popsat chování plynů je nad naše možnosti, zavádíme zjednodušený model tzv. ideálního plynu, který má tyto vlastnosti: Částice ideálního plynu

Více

Elektroenergetika 1. Termodynamika a termodynamické oběhy

Elektroenergetika 1. Termodynamika a termodynamické oběhy Termodynamika a termodynamické oběhy Termodynamika Popisuje procesy, které zahrnují změny teploty, přeměny energie a vzájemný vztah mezi tepelnou energií a mechanickou prací Opakování fyziky Termodynamický

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

Termodynamika 1. UJOP Hostivař 2014

Termodynamika 1. UJOP Hostivař 2014 Termodynamika 1 UJOP Hostivař 2014 Termodynamika Zabývá se tepelnými ději obecně. Existují 3 termodynamické zákony: 1. Celkové množství energie (všech druhů) izolované soustavy zůstává zachováno. 2. Teplo

Více

Elektroenergetika 1. Termodynamika

Elektroenergetika 1. Termodynamika Elektroenergetika 1 Termodynamika Termodynamika Popisuje procesy, které zahrnují změny teploty, přeměny energie a vzájemný vztah mezi tepelnou energií a mechanickou prací Opakování fyziky Termodynamický

Více

Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn

Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Termodynamika materiálů Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Důležité konstanty Standartní podmínky Avogadrovo číslo N A = 6,023.10

Více

Fáze a fázové přechody

Fáze a fázové přechody Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Fáze a fázové přechody Pojem fáze je zobecněním pojmu skupenství, označuje homogenní část makroskopického tělesa. Jednotlivé fáze v

Více

Zpracování teorie 2010/11 2011/12

Zpracování teorie 2010/11 2011/12 Zpracování teorie 2010/11 2011/12 Cykly Děje Proudění (turbíny) počet v: roce 2010/11 a roce 2011/12 Chladící zařízení (nakreslete cyklus a nakreslete schéma)... zde 13 + 2 (15) Izochorický děj páry (nakreslit

Více

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček: Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie

Více

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=

Více

TEPLO A TEPELNÉ STROJE

TEPLO A TEPELNÉ STROJE TEPLO A TEPELNÉ STROJE STROJE A ZAŘÍZENÍ ČÁSTI A MECHANISMY STROJŮ ENERGIE,, PRÁCE A TEPLO Energie - z řeckého energia: aktivita, činnost. Ve strojírenské praxi se projevuje jako dominantní energie mechanická.

Více

Termodynamika a živé systémy. Helena Uhrová

Termodynamika a živé systémy. Helena Uhrová Termodynamika a živé systémy Helena Uhrová Základní pojmy termodynamiky soustava izolovaná otevřená okolí vlastnosti soustavy znaky popisující soustavu stav rovnováhy tok m či E =0 funkce stavu - soubor

Více

6. Jaký je výkon vařiče, který ohřeje 1 l vody o 40 C během 5 minut? Měrná tepelná kapacita vody je W)

6. Jaký je výkon vařiče, který ohřeje 1 l vody o 40 C během 5 minut? Měrná tepelná kapacita vody je W) TEPLO 1. Na udržení stále teploty v místnosti se za hodinu spotřebuje 4,2 10 6 J tepla. olik vody proteče radiátorem ústředního topení za hodinu, jestliže má voda při vstupu do radiátoru teplotu 80 ºC

Více

Kapitoly z fyzikální chemie KFC/KFCH. II. Termodynamika

Kapitoly z fyzikální chemie KFC/KFCH. II. Termodynamika Kapitoly z fyzikální chemie KFC/KFCH II. Termodynamika Karel Berka Univerzita Palackého v Olomouci Katedra Fyzikální chemie karel.berka@upol.cz Termodynamika therme - teplo a dunamis - síla popis jak systémy

Více

Magnetokalorický jev MCE

Magnetokalorický jev MCE Magnetokalorický jev a jeho aplikační potenciál P. Svoboda Katedra fyziky kondenzovaných látek Magnetokalorický jev MCE MCE: znám déle než 120 let renesance zájmu během posledních 35 let PROČ? Připomínka

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 12

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 12 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 2 Termodynamika reálných plynů část 2 Hana Charvátová, Dagmar Janáčová Zlín 203 Tento studijní

Více

Termodynamické zákony

Termodynamické zákony Termodynamické zákony Makroskopická práce termodynamické soustavy Již jsme uvedli, že změna vnitřní energie soustavy je obecně vyvolána dvěma ději: tepelnou výměnou mezi soustavou a okolím a konáním práce

Více

Termomechanika 5. přednáška

Termomechanika 5. přednáška Termomechanika 5. přednáška Miroslav Holeček, Jan Vychytil Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autory s využitím

Více

Fyzikální chemie Úvod do studia, základní pojmy

Fyzikální chemie Úvod do studia, základní pojmy Fyzikální chemie Úvod do studia, základní pojmy HMOTA A JEJÍ VLASTNOSTI POSTAVENÍ FYZIKÁLNÍ CHEMIE V PŘÍRODNÍCH VĚDÁCH HISTORIE FYZIKÁLNÍ CHEMIE ZÁKLADNÍ POJMY DEFINICE FORMY HMOTY Formy a nositelé hmoty

Více

Fyzikální informace. 1) fyzikální informace neexistuje:

Fyzikální informace. 1) fyzikální informace neexistuje: Fyzikální informace kategorie fyzikálního obrazu světa: hmota, energie, prostor, čas, informace fyzikální informace: informace v anorganickém světě existuje vůbec? - názory vědců se rozcházejí fyzikální

Více

FYZIKA I cvičení, FMT 2. POHYB LÁTKY

FYZIKA I cvičení, FMT 2. POHYB LÁTKY FYZIKA I cvičení, FMT 2.1 Kinematika hmotných částic 2. POHYB LÁTKY 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 Těleso při volném pádu urazí v poslední sekundě dvě třetiny své dráhy. Určete celkovou dráhu volného

Více

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník PLYNNÉ LÁTKY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Ideální plyn Po molekulách ideálního plynu požadujeme: 1.Rozměry molekul ideálního plynu jsou ve srovnání se střední vzdáleností molekul

Více

Teplota a její měření

Teplota a její měření Teplota a její měření Teplota a její měření Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_03_01 Teplota, Celsiova a Kelvinova teplotní stupnice, převodní vztahy, příklady. Tepelná výměna, měrná

Více

5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6.

5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6. OBSAH Předmluva 9 I. ZÁKLADY TERMODYNAMIKY 10 1. Základní pojmy 10 1.1 Termodynamická soustava 10 1.2 Energie, teplo, práce 10 1.3 Stavy látek 11 1.4 Veličiny popisující stavy látek 12 1.5 Úlohy technické

Více

Termodynamika. Děj, který není kvazistatický, se nazývá nestatický.

Termodynamika. Děj, který není kvazistatický, se nazývá nestatický. Termodynamika Zabývá se ději, při nichž se mění tepelná energie v jiné druhy energie (zejména mechanické). Studuje vlastnosti látek bez přihlédnutí k jejich mikrostruktuře. Je vystavěna na axiomech (0.,

Více

Fluktuace termodynamických veličin

Fluktuace termodynamických veličin Kvantová a statistická fyzika (Termodynamika a statistická fyzika Fluktuace termodynamických veličin Fluktuace jsou odchylky hodnot fyzikálních veličin od svých středních (rovnovážných hodnot. Mají původ

Více

9. Struktura a vlastnosti plynů

9. Struktura a vlastnosti plynů 9. Struktura a vlastnosti plynů Osnova: 1. Základní pojmy 2. Střední kvadratická rychlost 3. Střední kinetická energie molekuly plynu 4. Stavová rovnice ideálního plynu 5. Jednoduché děje v plynech a)

Více

metoda je základem fenomenologické vědy termodynamiky, statistická metoda je základem kinetické teorie plynů, na níž si princip této metody ukážeme.

metoda je základem fenomenologické vědy termodynamiky, statistická metoda je základem kinetické teorie plynů, na níž si princip této metody ukážeme. Přednáška 1 Úvod Při studiu tepelných vlastností látek a jevů probíhajících při tepelné výměně budeme používat dvě různé metody zkoumání: termodynamickou a statistickou. Termodynamická metoda je základem

Více

Cvičení z termodynamiky a statistické fyziky

Cvičení z termodynamiky a statistické fyziky Cvičení termodynamiky a statistické fyiky 1Nechť F(x, y=xe y Spočtěte F/ x, F/, 2 F/ x 2, 2 F/ x, 2 F/ x, 2 F/ x 2 2 Bud dω = A(x, ydx+b(x, ydy libovolná diferenciální forma(pfaffián Ukažte, ževpřípadě,žedωjeúplnýdiferenciál(existujefunkce

Více

Cvičení z termomechaniky Cvičení 7.

Cvičení z termomechaniky Cvičení 7. Příklad 1 Vypočítejte účinnost a výkon Humpreyoho spalovacího cyklu bez regenerace, když látkou porovnávacího oběhu je vzduch. Cyklus nakreslete v p-v a T-s diagramu. Dáno: T 1 = 300 [K]; τ = T 1 = 4;

Více

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013 Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná

Více

4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul

4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul Fyzika 20 Otázky za 2 body. Celsiova teplota t a termodynamická teplota T spolu souvisejí známým vztahem. Vyberte dvojici, která tento vztah vyjadřuje (zaokrouhleno na celá čísla) a) T = 253 K ; t = 20

Více

3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj

3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj 3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj a) tepelný děj přechod plynu ze stavu 1 do stavu tepelnou výměnou nebo konáním práce dále uvaž., že hmotnost plynu m = konst. a navíc

Více

Kontrolní otázky k 1. přednášce z TM

Kontrolní otázky k 1. přednášce z TM Kontrolní otázky k 1. přednášce z TM 1. Jak závisí hodnota izobarického součinitele objemové roztažnosti ideálního plynu na teplotě a jak na tlaku? Odvoďte. 2. Jak závisí hodnota izochorického součinitele

Více

Molekulová fyzika a termodynamika

Molekulová fyzika a termodynamika Molekulová fyzika a termodynamika Molekulová fyzika a termodynamika Úvod, vnitřní energie soustavy, teplo, teplota, stavová rovnice ideálního plynu Termodynamické zákony, termodynamické děje Teplotní a

Více

Kapitoly z fyzikální chemie KFC/KFCH. I. Základní pojmy FCH a kinetická teorie plynů

Kapitoly z fyzikální chemie KFC/KFCH. I. Základní pojmy FCH a kinetická teorie plynů Kapitoly z fyzikální chemie KFC/KFCH I. Základní pojmy FCH a kinetická teorie plynů RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci Zkouška a doporučená literatura Ústní kolokvium Doporučená literatura

Více

Příklady k zápočtu molekulová fyzika a termodynamika

Příklady k zápočtu molekulová fyzika a termodynamika Příklady k zápočtu molekulová fyzika a termodynamika 1. Do vody o teplotě t 1 70 C a hmotnosti m 1 1 kg vhodíme kostku ledu o teplotě t 2 10 C a hmotnosti m 2 2 kg. Do soustavy vzápětí přilijeme další

Více

Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova

Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova 1 Rozložení, distribuce tepla Teplota je charakteristika tepelného stavu hmoty je to stavová veličina, charakterizující termodynamickou rovnováhu systému. Teplo vyjadřuje kinetickou energii částic. Teplota

Více

2.4 Stavové chování směsí plynů Ideální směs Ideální směs reálných plynů Stavové rovnice pro plynné směsi

2.4 Stavové chování směsí plynů Ideální směs Ideální směs reálných plynů Stavové rovnice pro plynné směsi 1. ZÁKLADNÍ POJMY 1.1 Systém a okolí 1.2 Vlastnosti systému 1.3 Vybrané základní veličiny 1.3.1 Množství 1.3.2 Délka 1.3.2 Délka 1.4 Vybrané odvozené veličiny 1.4.1 Objem 1.4.2 Hustota 1.4.3 Tlak 1.4.4

Více

ATOM VODÍKU MODEL : STOJÍCÍ BODOVÉ JÁDRO A ELEKTRON VZÁJEMNĚ ELEKTROSTATICKY INTERAGUJÍCÍ SCHRÖDINGEROVA ROVNICE PRO PŘÍPAD POTENCIÁLNÍ ENERGIE.

ATOM VODÍKU MODEL : STOJÍCÍ BODOVÉ JÁDRO A ELEKTRON VZÁJEMNĚ ELEKTROSTATICKY INTERAGUJÍCÍ SCHRÖDINGEROVA ROVNICE PRO PŘÍPAD POTENCIÁLNÍ ENERGIE. ATOMY + MOLEKULY ATOM VODÍKU MODEL : STOJÍCÍ BODOVÉ JÁDRO A ELEKTRON VZÁJEMNĚ ELEKTROSTATICKY INTERAGUJÍCÍ SCHRÖDINGEROVA ROVNICE H ˆψ = Eψ PRO PŘÍPAD POTENCIÁLNÍ ENERGIE Vˆ = Ze 2 4πε o r ŘEŠENÍ HLEDÁME

Více

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace Fyzika - 6. ročník Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí stavba látek - látka a těleso - rozdělení látek na pevné, kapalné a plynné

Více

1.4. II. věta termodynamiky

1.4. II. věta termodynamiky ... věta termodynamiky Slovní formulace: homsonova formulace: Nelze sestrojit periodicky pracující stroj, který by konal práci, přičemž by ochlazoval jediné těleso, jehož teplota by byla všude stejná,

Více

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

FYZIKÁLNÍ CHEMIE chemická termodynamika

FYZIKÁLNÍ CHEMIE chemická termodynamika FYZIKÁLNÍ CHEMIE chemická termodynamika ermodynamika jako vědní disciplína Základní zákony termodynamiky Práce, teplo a energie Vnitřní energie a entalpie Chemická termodynamika Definice termodynamiky

Více

Výroba tablet. Inženýrství chemicko-farmaceutických výrob. Lisování tablet. POMOCNÉ LÁTKY (kluzné látky, rozvolňovadla) LÉČIVÉ LÁTKY

Výroba tablet. Inženýrství chemicko-farmaceutických výrob. Lisování tablet. POMOCNÉ LÁTKY (kluzné látky, rozvolňovadla) LÉČIVÉ LÁTKY Lisování tablet Výroba tablet GRANULÁT POMOCNÉ LÁTKY (kluzné látky, rozvolňovadla) LÉČIVÉ LÁTKY POMOCNÉ LÁTKY plniva, suchá pojiva, kluzné látky, rozvolňovadla tabletování z granulátu homogenizace TABLETOVINA

Více

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno JAMES WATT 19.1.1736-19.8.1819 Termodynamika principy, které vládnou přírodě Obsah přednášky Vysvětlení základních

Více

Statistická termodynamika

Statistická termodynamika Statistická termodynamika Jan Řezáč UOCHB AV ČR 24. listopadu 2016 Jan Řezáč (UOCHB AV ČR) Statistická termodynamika 24. listopadu 2016 1 / 38 Úvod Umíme popsat jednotlivé molekuly (případně jejich interakce)

Více

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15 Proč studovat hvězdy? 9 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů.... 13 1.3 Model našeho Slunce 15 2 Záření a spektrum 21 2.1 Elektromagnetické záření

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 11

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 11 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 11 Termodynamika reálných plynů část 1 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní

Více

STLAČITELNOST. σ σ. během zatížení

STLAČITELNOST. σ σ. během zatížení STLAČITELNOST Princip: Naneseme-li zatížení na zeminu, dojde k porušení rovnováhy a dochází ke stlačování zeminy (přemístňují se částice). Stlačení je ukončeno jakmile nastane rovnováha mezi působícím

Více

Opakování: shrnutí základních poznatků o struktuře atomu

Opakování: shrnutí základních poznatků o struktuře atomu 11. Polovodiče Polovodiče jsou krystalické nebo amorfní látky, jejichž elektrická vodivost leží mezi elektrickou vodivostí kovů a izolantů a závisí na teplotě nebo dopadajícím optickém záření. Elektrické

Více

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky Harmonický kmitavý pohyb a) vysvětlení harmonického kmitavého pohybu b) zápis vztahu pro okamžitou výchylku c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky d) perioda

Více

Project 3 Unit 7B Kelly s problem

Project 3 Unit 7B Kelly s problem VY_32_INOVACE_94 Project 3 Unit 7B Kelly s problem Vzdělávací oblast: Jazyk a jazyková komunikace Vzdělávací obor: Anglický jazyk Ročník: 8. P3 U7B důvod náladový nepřátelský rada někomu zavolat bazar

Více

CHEMICKÁ ENERGETIKA. Celá termodynamika je logicky odvozena ze tří základních principů, které mají axiomatický charakter.

CHEMICKÁ ENERGETIKA. Celá termodynamika je logicky odvozena ze tří základních principů, které mají axiomatický charakter. CHEMICKÁ ENERGETIKA Energetickou stránkou soustav a změnami v těchto soustavách se zabývá fyzikální disciplína termodynamika. Z široké oblasti obecné termodynamiky se chemická termodynamika zajímá o chemické

Více

VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ

VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ Výhody: medium (vzduch) se nachází všude kolem nás možnost využití centrální výroby stlačeného vzduchu v závodě kompresor nemusí pracovat nepřetržitě (stlačený

Více

1- Úvod do fotosyntézy

1- Úvod do fotosyntézy 1- Úvod do fotosyntézy Prof. RNDr. Petr Ilík, Ph.D. KBF a CRH, PřF UP FS energetická bilance na povrch Země dopadá 2/10 10 energie ze Slunce z toho 30% odraz do kosmu 47% teplo 23% odpar vody 0.02% pro

Více

Výroba tablet. Lisovací nástroje. Inženýrství chemicko-farmaceutických výrob. Lisování tablet. Horní trn (razidlo) Lisovací matrice (forma, lisovnice)

Výroba tablet. Lisovací nástroje. Inženýrství chemicko-farmaceutických výrob. Lisování tablet. Horní trn (razidlo) Lisovací matrice (forma, lisovnice) Lisování tablet Výroba tablet GRANULÁT POMOCNÉ LÁTKY (kluzné látky, rozvolňovadla) LÉČIVÉ LÁTKY POMOCNÉ LÁTKY plniva, suchá pojiva, kluzné látky, rozvolňovadla tabletování z granulátu homogenizace TABLETOVINA

Více

Termodynamické zákony

Termodynamické zákony ermoynamické zákony. termoynamický zákon (zákon zachování energie) (W je práce vykonaná na systém) teplo Q oané systému plus vynaložená práce W zvyšují vnitřní energii systému U (W je práce vykonaná systémem)

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

STRUKTURA A VLASTNOSTI PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

STRUKTURA A VLASTNOSTI PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D09_Z_OPAK_T_Plyny_T Člověk a příroda Fyzika Struktura a vlastnosti plynů Opakování

Více

= [-] (1) Přednáška č. 9 Využití sluneční energie pro výrobu tepla 1. Úvod Součinitel znečištění atmosféry Z: Kde: I 0

= [-] (1) Přednáška č. 9 Využití sluneční energie pro výrobu tepla 1. Úvod Součinitel znečištění atmosféry Z: Kde: I 0 Přednáška č. 9 Využití sluneční energie pro výrobu tepla 1. Úvod Součinitel znečištění atmosféry Z: Z ln I ln I ln I ln I 0 n = [-] (1) 0 n, č Kde: I 0 sluneční konstanta 1 360 [W.m -2 ]; I n intenzita

Více

Střední odborná škola stavební a Střední odborné učiliště stavební Rybitví

Střední odborná škola stavební a Střední odborné učiliště stavební Rybitví Střední odborná škola stavební a Střední odborné učiliště stavební Rybitví Vzdělávací oblast: Vzdělávání a komunikace v cizím jazyce Název: Rozdíl v používání as/ like Autor: Mgr.Tompos Monika Datum, třída:

Více

Mol. fyz. a termodynamika

Mol. fyz. a termodynamika Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli

Více

dvojí povaha světla Střední škola informatiky, elektrotechniky a řemesel Rožnov pod Radhoštěm Název školy Předmět/modul (ŠVP) Vytvořeno listopad 2012

dvojí povaha světla Střední škola informatiky, elektrotechniky a řemesel Rožnov pod Radhoštěm Název školy Předmět/modul (ŠVP) Vytvořeno listopad 2012 Název školy Dvojí povaha světla Název a registrační číslo projektu Označení RVP (název RVP) Vzdělávací oblast (RVP) Vzdělávací obor (název ŠVP) Předmět/modul (ŠVP) Tematický okruh (ŠVP) Název DUM (téma)

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Fyzika - Sexta, 2. ročník

Fyzika - Sexta, 2. ročník - Sexta, 2. ročník Fyzika Výchovné a vzdělávací strategie Kompetence komunikativní Kompetence k řešení problémů Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence

Více

Přehled základních fyzikálních veličin užívaných ve výpočtech v termomechanice. Autor Ing. Jan BRANDA Jazyk Čeština

Přehled základních fyzikálních veličin užívaných ve výpočtech v termomechanice. Autor Ing. Jan BRANDA Jazyk Čeština Identifikátor materiálu: ICT 2 41 Registrační číslo projektu CZ.1.07/1.5.00/34.0796 Název projektu Vzděláváme pro život Název příjemce podpory SOU plynárenské Pardubice název materiálu (DUM) Mechanika

Více

TEMATICKÝ PLÁN 6. ročník

TEMATICKÝ PLÁN 6. ročník TEMATICKÝ PLÁN 6. ročník Týdenní dotace: 1,5h/týden Vyučující: Mgr. Tomáš Mlejnek Ročník: 6. (6. A, 6. B) Školní rok 2018/2019 FYZIKA pro 6. ročník ZŠ PROMETHEUS, doc. RNDr. Růžena Kolářová, CSc., PaeDr.

Více

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Molekulová fyzika, termika 2. ročník, sexta 2 hodiny týdně Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Více

F MATURITNÍ ZKOUŠKA Z FYZIKY PROFILOVÁ ČÁST 2017/18

F MATURITNÍ ZKOUŠKA Z FYZIKY PROFILOVÁ ČÁST 2017/18 F MATURITNÍ ZKOUŠKA Z FYZIKY PROFILOVÁ ČÁST 2017/18 Podpis: Třída: Verze testu: A Čas na vypracování: 120 min. Datum: Učitel: INSTRUKCE PRO VYPRACOVÁNÍ PÍSEMNÉ PRÁCE: Na vypracování zkoušky máte 120 minut.

Více

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Anglický jazyk

Více

Standardní model a kvark-gluonové plazma

Standardní model a kvark-gluonové plazma Standardní model a kvark-gluonové plazma Boris Tomášik Fakulta jaderná a fyzikálně inženýrská, ČVUT International Particle Physics Masterclasses 2012 7.3.2012 Struktura hmoty molekuly atomy jádra a elektrony

Více

Vnitřní energie, práce, teplo.

Vnitřní energie, práce, teplo. Vnitřní energie, práce, teplo. Vnitřní energie tělesa Částice uvnitř látek mají kinetickou a potenciální energii. Je to energie uvnitř tělesa, proto ji nazýváme vnitřní energie. Značíme ji písmenkem U

Více

Urychlení KZ. Obecné principy, Fermiho urychlení, druhý řád, první řád, spektrum

Urychlení KZ. Obecné principy, Fermiho urychlení, druhý řád, první řád, spektrum Urychlení KZ Obecné principy, Fermiho urychlení, druhý řád, první řád, spektrum Obecné principy Netermální vznik nekompatibilní se spektrem KZ nerealistické teploty E k =3/2 k B T, Univerzalita tvaru spektra

Více

Složitost živých systémů. D. Lukáš 2015

Složitost živých systémů. D. Lukáš 2015 Složitost živých systémů D. Lukáš 2015 1 Obsah Formulace problému (Rozpor mezi biologickou evolucí a druhou větou termodynamickou) Biologické evoluce Druhá věta termodynamická (Definice mikrokanonického

Více

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn

Více

Energie, její formy a měření

Energie, její formy a měření Energie, její formy a měření aneb Od volného pádu k E=mc 2 Přednášející: Martin Zápotocký Seminář Aplikace lékařské biofyziky 2014/5 Definice energie Energos (ἐνεργός) = pracující, aktivní; ergon = práce

Více

Czech Republic. EDUCAnet. Střední odborná škola Pardubice, s.r.o.

Czech Republic. EDUCAnet. Střední odborná škola Pardubice, s.r.o. Czech Republic EDUCAnet Střední odborná škola Pardubice, s.r.o. ACCESS TO MODERN TECHNOLOGIES Do modern technologies influence our behavior? Of course in positive and negative way as well Modern technologies

Více

Kapitoly z fyzikální chemie KFC/KFCH. II. Termodynamika

Kapitoly z fyzikální chemie KFC/KFCH. II. Termodynamika Kapitoly z fyzikální chemie KFC/KFCH II. Termodynamika Karel Berka Univerzita Palackého v Olomouci Katedra Fyzikální chemie karel.berka@upol.cz Termodynamika therme - teplo a dunamis - síla popis jak systémy

Více

přednáška č. 6 Elektrárny B1M15ENY Tepelné oběhy: Stavové změny Typy oběhů Možnosti zvýšení účinnosti Ing. Jan Špetlík, Ph.D.

přednáška č. 6 Elektrárny B1M15ENY Tepelné oběhy: Stavové změny Typy oběhů Možnosti zvýšení účinnosti Ing. Jan Špetlík, Ph.D. Elektrárny B1M15ENY přednáška č. 6 Tepelné oběhy: Stavové změny Typy oběhů Možnosti zvýšení účinnosti Ing. Jan Špetlík, Ph.D. ČVUT FEL Katedra elektroenergetiky E-mail: spetlij@fel.cvut.cz Termodynamika:

Více

Joulův-Thomsonův jev. p 1 V 1 V 2. p 2 < p 1 V 2 > V 1. volná adiabatická expanze nevratný proces (vzroste entropie)

Joulův-Thomsonův jev. p 1 V 1 V 2. p 2 < p 1 V 2 > V 1. volná adiabatická expanze nevratný proces (vzroste entropie) Joulův-homsonův jev volná aiabatická expanze nevratný proces (vzroste entropie) ieální plyn: teplota t se nezmění ě a bue platit: p p p reálný plyn: teplota se změní (buď vzroste nebo klesne) p p < p >

Více

Komponenta Vzorce a popis symbol propojení Hydraulický válec jednočinný. d: A: F s: p provoz.: v: Q přítok: s: t: zjednodušeně:

Komponenta Vzorce a popis symbol propojení Hydraulický válec jednočinný. d: A: F s: p provoz.: v: Q přítok: s: t: zjednodušeně: Plánování a projektování hydraulických zařízení se provádí podle nejrůznějších hledisek, přičemž jsou hydraulické elementy voleny podle požadovaných funkčních procesů. Nejdůležitějším předpokladem k tomu

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: Lasery - druhy

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: Lasery - druhy Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Lasery - druhy Laser je tvořen aktivním prostředím, rezonátorem a zdrojem energie. Zdrojem energie, který může

Více

Příloha-výpočet motoru

Příloha-výpočet motoru Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ

Více

Vnitřní energie, práce a teplo

Vnitřní energie, práce a teplo Vnitřní energie, práce a teplo Zákon zachování mechanické energie V izolované soustavě těles je v každém okamžiku úhrnná mechanická energie stálá. Mění se navzájem jen potenciální energie E p a kinetická

Více

Výroba tablet. Fáze lisování. Lisovací nástroje. Typy tabletovacích lisů. Inženýrství chemicko-farmaceutických výrob

Výroba tablet. Fáze lisování. Lisovací nástroje. Typy tabletovacích lisů. Inženýrství chemicko-farmaceutických výrob Výroba tablet GRANULÁT POMOCNÉ LÁTKY (kluzné látky, rozvolňovadla) LÉČIVÉ LÁTKY POMOCNÉ LÁTKY piva, suchá pojiva, kluzné látky, rozvolňovadla homogenizace homogenizace tabletování z granulátu TABLETOVINA

Více

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Anglický jazyk

Více

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika VNITŘNÍ ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika Zákon zachování energie Ze zákona zachování mechanické energie platí: Ek + Ep = konst. Ale: Vnitřní energie tělesa Každé těleso má

Více

WORKSHEET 1: LINEAR EQUATION 1

WORKSHEET 1: LINEAR EQUATION 1 WORKSHEET 1: LINEAR EQUATION 1 1. Write down the arithmetical problem according the dictation: 2. Translate the English words, you can use a dictionary: equations to solve solve inverse operation variable

Více

Škola: Střední škola obchodní, České Budějovice, Husova 9. Inovace a zkvalitnění výuky prostřednictvím ICT

Škola: Střední škola obchodní, České Budějovice, Husova 9. Inovace a zkvalitnění výuky prostřednictvím ICT Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Číslo projektu: CZ.1.07/1.5.00/34.0536 Název projektu školy: Výuka s ICT na SŠ obchodní České Budějovice Šablona

Více

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013 Vysoké učení technické v Brně Fakulta strojního inženýrství, Energetický ústav Odbor termomechaniky a techniky prostředí TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM. M.Macháček : Fyzika pro ZŠ a VG 6/1, 6/2 (Prometheus) M.Macháček : Fyzika pro ZŠ a VG 7 (Prometheus)

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM. M.Macháček : Fyzika pro ZŠ a VG 6/1, 6/2 (Prometheus) M.Macháček : Fyzika pro ZŠ a VG 7 (Prometheus) Vyučovací předmět : Období ročník : Učební texty : Fyzika 3. období 7. ročník M.Macháček : Fyzika pro ZŠ a VG 6/1, 6/2 (Prometheus) M.Macháček : Fyzika pro ZŠ a VG 7 (Prometheus) Očekávané výstupy předmětu

Více

Látkové množství n poznámky 6.A GVN

Látkové množství n poznámky 6.A GVN Látkové množství n poznámky 6.A GVN 10. září 2007 charakterizuje látky z hlediska počtu částic (molekul, atomů, iontů), které tato látka obsahuje je-li v tělese z homogenní látky N částic, pak látkové

Více

00/20. Kvantové počítání. Pavel Cejnar Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta UK, Praha IBM

00/20. Kvantové počítání. Pavel Cejnar Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta UK, Praha IBM IBM 00/20 Kvantové počítání Pavel Cejnar Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta UK, Praha přednáška JČMF, Praha, říjen 2018 Intel 01/20 IBM IBM Q D Wave Piš, barde, střádej. 02/20

Více

Informace o písemných přijímacích zkouškách. Doktorské studijní programy Matematika

Informace o písemných přijímacích zkouškách. Doktorské studijní programy Matematika Informace o písemných přijímacích zkouškách (úplné zadání zkušebních otázek či příkladů, které jsou součástí přijímací zkoušky nebo její části, a u otázek s výběrem odpovědi správné řešení) Doktorské studijní

Více