Slovní úlohy na procenta

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Slovní úlohy na procenta"

Transkript

1 Slovní úlohy na procenta 1. Krev činí v lidském těle přibližně 7,6 % hmotnosti těla. Kolik kg krve je v těle dospělého člověka, který má hmotnost 80 kg? Kolik procent hmotnosti bude činit krev v těle téhož člověka bezprostředně po odběru 0,5 kg krve? 100 % 80 kg 7,6 % x kg po odběru y = 6,08 0,5 = 5,58 kg 80 kg 100 % 5,58 kg x % V těle je 6,08 kg krve. Krev bude činit 6,975 % hmotnosti těla. 2. Robert dal Oldovi úkol: Zastaralý výrobek s původní cenou byl třikrát za sebou zlevněn o 20 % a pak ještě o 40 %. Jaká je jeho konečná cena? Olda se domnívá, že výrobek byl nakonec zadarmo. Měl pravdu? Jaká byla konečná cena? z0 = z1 = 0,8 z0 = 0, = z2 = 0,8 z1 = 0, = z3 = 0,8 z2 = 0, = z4 = 0,6 z3 = 0, = 1 228, přímo z = 0,8 0,8 0,8 0,6 z0 = (0,8) 3 0, = 1 228, Konečná cena výrobku byla 1 228,80.

2 3. Při přechodném snížení cen byly lyže s původní cenou 850 zlevněny o 20 %. Později byly zdraženy o 20 %. Prodavačka na ně opět připevnila cenu Bylo to správné? Jaká byla konečná cena lyží? z0 = % % x z1 = % % x Konečná cena lyží byla Kanadský hokejový brankář chytil v zápase se Švédskem 34 střel, což bylo 85 % všech střel na jeho branku. Švédský brankář chytil jen 80 % všech střel vystřelených na švédskou branku, přesto Švédsko vyhrálo rozdílem jedné branky. Jaké bylo skóre Švédsko Kanada? Kolik střel švédský brankář chytil? 85 % 34 střel 100 % x Počet úspěšných střel do kanadské branky: = 6 Počet úspěšných střel do švédské branky: 6 1 = 5 Švédský brankář nechytil 5 střel, což bylo (100 80) = 20 % střel na jeho branku 20 %.. 5 střel 80 % x Skóre zápasu Švédsko Kanada bylo 6 : 5. Švédský brankář chytil 20 střel.

3 5. Martin, Radim a Michal si rozdělili zisk ze společného podniku. Radim dostal 35 % a Martin 0,45 zbytku. Kolik dostal každý, byl-li celkový zisk ? Radim 35 % 100 % % x zbývá na Martina a Michala = Martin 45 % ze zbytku, tj. z 100 % 35 %, tj. z ) 100 % % y Michal z = = Radim získal , Martin a Michal Číslo 72 zvětši o 25 %. O kolik procent budeš muset číslo, které ti vyšlo zmenšit, abys opět dostal číslo 72? 100 % % x Zvětšené číslo je = % 18 x % Číslo musím zmenšit o 20 %.

4 Další úlohy na procenta 1. Určete a) 18 % z % % x b) 29 % z 315 t 100 % 315 t 29 % x t = 243 = 243 c) 7,6 % z 0,34 km (2,584 km) d) 115 % z 3050 (3507,50 ) e) 27 % z ( ) e) ( ) 2. Původní rozpočet na výstavbu domu byl Dodatečnými úpravami se zvýšil o 9 %. O kolik se zvýšil rozpočet? Jaká byla výsledná cena? y = x = = = % % x 100 % % x y = x = = (x zvýšení ceny, y výsledná cena) y = x = = (x výsledná cena, y zvýšení ceny) Rozpočet se zvýšil o , výsledná cena byla Televizor za byl zlevněn o 12 %. Jaká je jeho nynější cena? 100 % 12 % = 88 % Nynější cena televizoru je

5 4. Krevní zkouškou bylo zjištěno v krvi řidiče 0,5 promile alkoholu. Kolik je to gramů, je-li v těle přibližně 6 kg krve? PROMILE (zn. ) tisícina celku 0,5 = 0,05 % 100 % g = 0, g = 3 g 0,05 % g Řidič měl v krvi 3 g alkoholu. 5. Mezi místy A a B, jejichž vodorovná vzdálenost je m, má silnice stoupání 14 promile. Jaký je výškový rozdíl míst A a B? 14 = 1,4 % 100 % m = 0, m = 49 m 1,4 % m m Výškový rozdíl míst A a B je 49 m. 6. Elektrické vedení je dlouhé 5,3 km. Na prohnutí drátů a spojování je nutno přidat 3,25 % délky. Kolik metrů drátu potřebují montéři, má-li vedení osm drátů? 8 drátů 8 5,3 km = 42,4 km m 100 % m = 1, m = m 103,25 % m m Montéři potřebují m drátu. 7. Zemědělský podnik pěstoval pšenici na 50 hektarech. V roce sklidili 4,2 tun z hektaru. V roce 2001 snížili osevní plochu o 10 %. Jakého museli dosáhnout hektarového výnosu v roce 2 001, aby sklidili stejné množství pšenice jako v roce 2 000? rok rok sklidili 50 4,2 t = 210 t osevní plocha 0,9 50 ha = 45 ha musí dosáhnout 210 : 45 = 4,7 t/ha Museli by sklidit 4,7 t z hektaru.

6 8. Škola získala obdélníkový pozemek o rozměrech 45 m a 30 m. První rok žáci obdělali 30 % z celé plochy. Druhým rokem zúrodnili další plochu o 20 % větší než v prvním roce. Jak velkou plochu musí zúrodnit ve třetím roce, zůstane-li na jedné pětině zahrady trávník? S = = m 2 1. rok obdělali S1 = 0, m 2 = 405 m 2 2. rok obdělali další plochu S2 = 1,20 S1 = 1,2 405 = 486 m 2 3. rok má zůstat tráva na St = S = = 270 m 2 musí zúrodnit S3 = S (S1 + S2 + St) = ( ) = 189 m 2 Ve třetím roce musí zúrodnit 189 m 2 zahrady. Počet procent 9. Určete, kolik procent je a) 4,2 t z 35 t b) 68,4 l z 3,6 hl 3,6 hl = 360 l (hekto 100) 35 t 100 % 4,2 t x % 360 l 100 % 68,4 l x % c) m z 7,8 km [55 %] d) [114,3 %] 10. Ze série ručních čerpadel bylo 13 vadných. Jaké bylo procento zmetků? ks 100 % 13 ks V sérii bylo 0,4 % zmetků.

7 11. Automobil jel rychlostí 75 km/h, cyklista rychlostí 5 m/s. Kolik procent rychlosti automobilu činí rychlost cyklisty? Pozor na jednotky! 5 m/s = 5 m = 18 km/h 75 km/h 100 % 18 km/h Rychlost cyklisty činí 24 % rychlosti automobilu. 12. Vodorovná vzdálenost mezi stanicemi Ostružná a Ramzová je m. Nadmořská výška Ostružné je 715 m a Ramzové 760 m. Urči v promile stoupání trati mezi Ostružnou a Ramzovou. h = = 45 m m 100 % 45 m Stoupání mezi Ramzovou a Ostružnou je 22,5 13. O kolik procent se zmenší objem krychle, zmenšíme-li její hranu o 20 %? původ. délka hrany a objem V = nová délka hrany a1 nový objem = 1V 100 % 0,512 V [Nebo komu činí problémy obecně, zvol si konkrétní objem.] Objem se zmenší o 48,8 %.

8 14. Konzervárna dodala na domácí trh 7/12 z celkového množství vyrobených meruňkových kompotů, 3/10 zbytku prodali do zahraničí. Kolik procent ze všech vyrobených kompotů mají ještě na skladu? Domácí trh (celku) Zahraničí b ( ) e Na skladě zůstalo e 1celek 100 % celku Konzervárna má ve skladu 29,17 % kompotů. 15. Původní cena knihy byla 120. Antikvariát ji vykoupil za 60 a prodal za 78. Za kolik procent původní ceny knihu koupili? Za kolik procent původní ceny knihu prodali? Kolika procentní zisk činil prodej knihy? % 60 Antikvariát zakoupil za 50 % původní ceny (lze i zpaměti) % 78 Knihu prodali za 65 % původní ceny % 78 zisk Zisk činil 30 %. [zisk lze i přímo jako 18 z 60 ]

9 Výpočet základu 9. Určete, kolik je základ (tj. 100 %), víte-li, že a) 75 % je 300 b) 140 % je 28 kg 75 % % x 140 % 28 kg 100 % x kg c) [100] d) [9] 10. V nově založeném sadu se ujalo stromků, což je 98 % všech sazenic. Kolik stromků vysadili? 98 % stromků 100 % x stromků om V sadu bylo vysazeno stromků. 11. Sušením ztrácí podběl 70 % své hmotnosti. Kolik čerstvého podbělu musí Lucka nasbírat, aby usušila ¾ kg? 70 % 0,75 kg 100 % x kg Lucka musí nasbírat 2,5 kg čerstvého podbělu.

10 12. Při opravě domku se ušetřilo , což bylo 8,5 % plánovaných nákladů. Jaké byly plánované náklady? 8,5 % % x y = = Plánované náklady byly , skutečné náklady Bronz je slitina cínu a mědi. Mědi je 85 %, zbytek je cín. Kolik bronzu vyrobíme z 51 kg mědi? Bude nám stačit 8 kg cínu? 85 % 51 kg 100 % x kg 60 kg bronzu 51 kg mědi = 9 kg cínu Z daného množství mědi vyrobíme 60 kg bronzu. Nebude stačit 8 kg cínu, potřebujeme 9 kg. 14. Zvětšením neznámého čísla o 4 % dostaneme 780. Urči neznámé číslo. 104 % % x Neznámé číslo je Zmenšíme-li neznámé číslo o 28,5 % dostaneme 243,1. Určete neznámé číslo. 71,5 % 243,1 100 % x Hledané číslo je 340.

11 16. Zmenšíme-li neznámé číslo o 427 dostaneme 65% jeho hodnoty. Určete neznámé číslo. p = 100 % 65 % = 35 % 35 % % x Hledané číslo je 1220.

Procenta. Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz.

Procenta. Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. Variace 1 Procenta Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Procenta U příkladů, kde se vyskytují procenta,

Více

Úlohy. b) číslo 0,8 o 35% d) číslo 220 o 22 % 1 % ze z 10,80 Kč č 10,80 Kč 103,5 = 1117,80 Kč

Úlohy. b) číslo 0,8 o 35% d) číslo 220 o 22 % 1 % ze z 10,80 Kč č 10,80 Kč 103,5 = 1117,80 Kč 2. Obnos 1080 Kč představuje základ z, ze kterého počítáme procentovou část č, odpovídající počtu procent p 3,5; vypočítanou procentovou část pak přičteme k základu. 1. způsob: z 1080 Kč p 103,5 č... Kč

Více

10a) Procenta, promile

10a) Procenta, promile 10a) Procenta, promile 1% (procento) je 1 setina základu Při výpočtu příkladů, které se týkají procent se setkáváme se třemi základními pojmy : základ ( z ), počet procent ( p ), procentová část (č ).

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 15. 10. 2013 Obtížnost 1 Úloha 1 Přednáška trvala 80 minut a skončila

Více

Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce)

Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce) Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 15. září

Více

Úlohy k procvičení tematického celku Procenta

Úlohy k procvičení tematického celku Procenta Úlohy k procvičení tematického celku Procenta 1. Zlomkem a desetinným číslem vyjádřete: a) 3 % b) 17 % c) 145 % d) 0,14 % 2. Vypočítejte: a) 8 % z 80 b) 0,1 % ze 200 3. Určete, kolik procent je: a) 75

Více

Ze 120 kg cukrovky se získá 24 kg cukru. Z kolika tun cukrovky se získají 4 tuny cukru?

Ze 120 kg cukrovky se získá 24 kg cukru. Z kolika tun cukrovky se získají 4 tuny cukru? Přímá úměrnost Přímá úměrnost Roste-li první veličina, roste i druhá. Snižuje-li se první veličina, snižuje se i druhá. (Např. čím více rohlíků koupíme, tím více za ně zaplatíme) Kolikrát se zvětší (zmenší)

Více

odpověď: Turisté ušli první den 10 km, druhý den 20 km a třetí den 15 km.

odpověď: Turisté ušli první den 10 km, druhý den 20 km a třetí den 15 km. Různé slovní úlohy 1. Turisté ušli za tři dny 45 km. Druhý den ušli dvakrát více než první den. Třetí den o pět km méně než druhý den. Kolik ušli turisté první, druhý a třetí den? zkouška: odpověď: Turisté

Více

Očekávaný výstup Zvládnutí slovních úloh využívajících poměr Speciální vzdělávací žádné

Očekávaný výstup Zvládnutí slovních úloh využívajících poměr Speciální vzdělávací žádné Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 Autor Ing. Renata Dupalová Datum 17. 8. 2014 Ročník 7. Vzdělávací oblast Matematika a její aplikace Vzdělávací obor Matematika

Více

2.5.27 Promile. Předpoklady: 020526

2.5.27 Promile. Předpoklady: 020526 2.5.27 Promile Předpoklady: 020526 Pedagogická poznámka: Na odhady nechávám jen chvíli cca 2 minut. Pak si kontrolujeme výsledky (2, 1, 0, -1 bod) a říkáme si, jak k odhadu dospět. Pak si žáci zjistí přesné

Více

Poměry a úměrnosti. Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku

Poměry a úměrnosti. Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku Poměry a úměrnosti Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku S poměrem lze pracovat jako se zlomkem a : b = a b porovnávat,

Více

Základní škola Kaznějov, příspěvková organizace, okres Plzeň-sever

Základní škola Kaznějov, příspěvková organizace, okres Plzeň-sever Základní škola Kaznějov, příspěvková organizace, okres Plzeň-sever DIGITÁLNÍ UČEBNÍ MATERIÁL Název projektu Registrační číslo projektu UČENÍ JE SKRYTÉ BOHATSTVÍ INOVACE VÝUKY ZŠ KAZNĚJOV CZ.1.07/1.1.12/02.0029

Více

( ) Zadání SPORT 2014. 1. Kolik % z 2,5 Kč je 0,5 Kč? a) 5% b) 10% c) 20% d) 25% 2. Žák popleta v písemce napsal: ( x 1) x 1

( ) Zadání SPORT 2014. 1. Kolik % z 2,5 Kč je 0,5 Kč? a) 5% b) 10% c) 20% d) 25% 2. Žák popleta v písemce napsal: ( x 1) x 1 Zadání SPORT 0. Kolik % z,5 Kč 0,5 Kč? a) 5% b) 0% c) 0% d) 5%. Žák popleta v písemce napsal: ( x ) x =. Pro která x ho výpočet správný? a) x = b) x = c) x = 0 d) pro žádné x. Určete délku x podle údajů

Více

Přímá a nepřímá úměrnost

Přímá a nepřímá úměrnost Přímá a ne - rovnice: y = k.x + c - graf: přímka - platí: čím víc, tím víc - př.: spotřeba benzínu motorovým vozidlem a vzdálenost, kterou vozidlo urazí při stejném výkonu ne k - rovnice: y c x - graf:

Více

Přirozená čísla do milionu 1

Přirozená čísla do milionu 1 statisíce desetitisíce tisíce stovky desítky jednotky Klíčová aktivita: Přirozená čísla do milionu 1 č. 1 Matematika 1. Porovnej čísla: , =. 758 258 4 258 4 285 568 470 56 847 203 488 1 584 2 458 896

Více

Přípravný kurz - Matematika

Přípravný kurz - Matematika Přípravný kurz - Matematika Téma: Procenta, poměr, trojčlenka Klíčová slova: Procenta, poměr, zvětšení, zmenšení, trojčlenka, měřítko Autor: Mlynářová 1 Trojčlenka označuje postup při řešení úloh přímé

Více

Přímá nepřímá úměrnost Sbírka příkladů k procvičování

Přímá nepřímá úměrnost Sbírka příkladů k procvičování Přímá nepřímá úměrnost Sbírka příkladů k procvičování. 8 Trysek naplní bazén za 2 a půl hodiny. Za jak dlouho naplní bazén 5 trysek? 2. 24 zedníků vypije za den na stavbě 72 lahví nápoje. Kolik lahví by

Více

Procenta. 100, tzn. desetinné číslo 0,45. Jméno pochází z per cento, znamenajícího na sto.

Procenta. 100, tzn. desetinné číslo 0,45. Jméno pochází z per cento, znamenajícího na sto. Procenta Procenta jsou způsobem, jak vyjádřit část celku (setiny, tzn. zlomek) pomocí celého čísla. Zápis např. 45% je ve skutečnosti jenom zkratkou pro zlomek 45 100, tzn. desetinné číslo 0,45. Jméno

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Trojúhelník má jeden úhel tupý,

Více

1. Na stole jsou tři hromádky jablek. Na první je o třináct jablek méně než na druhé, na třetí hromádce je o osm

1. Na stole jsou tři hromádky jablek. Na první je o třináct jablek méně než na druhé, na třetí hromádce je o osm 1. Na stole jsou tři hromádky jablek. Na první je o třináct jablek méně než na druhé, na třetí hromádce je o osm jablek více než na první. Kolik jablek je dohromady na stole, víš-li, že na druhé hromádce

Více

Úlohy na procvičení z matematiky před nástupem na SPŠST Panská

Úlohy na procvičení z matematiky před nástupem na SPŠST Panská Úlohy na procvičení z matematiky před nástupem na SPŠST Panská PROCENTA Kolik je 0 % ze? Určete základ, je-li 0 rovno % Kolik procent je 0 ze 7? Najděte číslo, které je o % větší, než číslo 0 Je zlomek

Více

Obecné informace: Typy úloh a hodnocení:

Obecné informace: Typy úloh a hodnocení: Obecné informace: Počet úloh: 30 Časový limit: 60 minut Max. možný počet bodů: 30 Min. možný počet bodů: 8 Povolené pomůcky: modrá propisovací tužka obyčejná tužka pravítko kružítko mazací guma Poznámky:

Více

Příklady k opakování učiva ZŠ

Příklady k opakování učiva ZŠ Příklady k opakování učiva ZŠ 1. Číslo 78 je dělitelné: 8 7 3. Rozhodněte, které z následujících čísel je dělitelem čísla 94: 4 14 15 3. Určete všechny dělitele čísla 36:, 18, 4, 9, 6, 3, 1, 3, 6, 1 3,

Více

Vzorové příklady k přijímacím zkouškám. 1) Doplňte číselné řady o další dvě čísla. a) 3, 6, 12, 24, 48, 96,... b) 875, 764, 653, 542, 431,...

Vzorové příklady k přijímacím zkouškám. 1) Doplňte číselné řady o další dvě čísla. a) 3, 6, 12, 24, 48, 96,... b) 875, 764, 653, 542, 431,... Vzorové příklady k přijímacím zkouškám ) Doplňte číselné řady o další dvě čísla. a), 6,, 4, 48, 96,... b) 87, 764, 6, 4, 4,... c), 6, 8,,, 0, 6,... d),,, 7,,, 7, 9,,... e) ; ; ; ; ; 8 ) Doplňte číslo místo.

Více

Slovní úlohy na lineární rovnici

Slovní úlohy na lineární rovnici Slovní úlohy na lineární rovnici Slovní úlohy je výhodné rozdělit na několik typů a určit nejsnadnější postup jejich řešení. Je vhodné označit v dané úloze jednu veličinu jako neznámou ( většinou tu, na

Více

01-8 Z 1500 vyrobených žárovek bylo 21 vadných. Kolik procent vyrobených žárovek bylo bez vady?

01-8 Z 1500 vyrobených žárovek bylo 21 vadných. Kolik procent vyrobených žárovek bylo bez vady? Příklady na 1. týden 01-1 Vypočtěte: a) 23 - [2,6 + (6-3 2 ) - 4,52] b) 3,5 2 + 2 [2,7 - (-0,5 + 0,3. 0,6)] 01-2 Vyjádřete v jednotkách uvedených v závorce: a) 4 g (kg) 325 km (m) b) 12 kg (g) 37,5 mm

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Na obrázku jsou čtyři červené

Více

57 LINEÁRNÍ rovnice slovní úlohy I 25.4.2014.notebook. April 21, 2016. Rozcvička

57 LINEÁRNÍ rovnice slovní úlohy I 25.4.2014.notebook. April 21, 2016. Rozcvička Rozcvička A B 1 Ve třídě je celkem 28 žáků. Chlapců je o 4 méně než děvčat. Kolik je ve třídě chlapců a kolik děvčat? celkem... 28 žáků chlapci... x 4...12 chlapců dívky... x... 16 dívek 2 Celková výměra

Více

Seminář č. 2 slovní úlohy využívající operací s přirozenými čísly

Seminář č. 2 slovní úlohy využívající operací s přirozenými čísly Metody řešení matematických úloh II Seminář č. 2 slovní úlohy využívající operací s přirozenými čísly Růžena Blažková A) Složené slovní úlohy využívající porovnávání pomocí vztahů o několik více méně,

Více

Variace. Poměr, trojčlenka

Variace. Poměr, trojčlenka Variace 1 Poměr, trojčlenka Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Poměr Poměr je matematický zápis

Více

MATEMATIKA 7. ročník II. pololetí

MATEMATIKA 7. ročník II. pololetí MATEMATIKA 7. ročník II. pololetí Racionální čísla A) Vypočítejte a výsledek zapište v základním tvaru popř. ve tvaru smíšeného čísla 5-7 - - 8 + 5 4 ( 9 7 + ) ( - 9 ) (- 0,) ( - ) + ( - 4 ) B) Vypočítejte

Více

RNDr. Zdeněk Horák 23. 11. 2013 VII.

RNDr. Zdeněk Horák 23. 11. 2013 VII. Jméno RNDr. Zdeněk Horák Datum 23. 11. 2013 Ročník VII. Vzdělávací oblast MATEMATIKA A JEJÍ APLIKACE Vzdělávací obor MATEMATIKA Tematický okruh ZLOMKY Téma klíčová slova Slovní úlohy se zlomky, početní

Více

Otázky z kapitoly Základní poznatky

Otázky z kapitoly Základní poznatky Otázky z kapitoly Základní poznatky 4. ledna 2016 Obsah 1 Krokované příklady (0 otázek) 1 2 Mnohočleny a lomené výrazy (88 otázek) 1 2.1 Obtížnost 2 (78 otázek)....................................... 1

Více

Při výpočtu příkladů, které se týkají procent se setkáváme se třemi základními pojmy : základ ( z ), počet procent ( p ), procentová část ( č ).

Při výpočtu příkladů, které se týkají procent se setkáváme se třemi základními pojmy : základ ( z ), počet procent ( p ), procentová část ( č ). 5. Procenta 5.. Vymezení pojmů Při výpočtu příkladů, které se týkají procent se setkáváme se třemi základními pojmy : základ ( z ), počet procent ( p ), procentová část ( č ). Z těchto tří údaje dva známe

Více

1. Ve třídě je celkem 28 žáků. Chlapců je o 4 méně než děvčat. Kolik je ve třídě chlapců a kolik děvčat? 2. Jana uspořila dvakrát více než Jitka,

1. Ve třídě je celkem 28 žáků. Chlapců je o 4 méně než děvčat. Kolik je ve třídě chlapců a kolik děvčat? 2. Jana uspořila dvakrát více než Jitka, 1. Ve třídě je celkem 28 žáků. Chlapců je o 4 méně než děvčat. Kolik je ve třídě chlapců a kolik děvčat? 2. Jana uspořila dvakrát více než Jitka, Alena o 27 Kč méně než Jana. Celkem uspořily 453 Kč. Kolik

Více

Slovní úlohy řešené soustavou rovnic

Slovní úlohy řešené soustavou rovnic Slovní úlohy řešené soustavou rovnic Jirka s maminkou byl na nákupu. Maminka koupila 2 kg broskví a 5 kg brambor a platila 173 Kč. Sousedka koupila 3 kg broskví a 4 kg brambor a platila 186 Kč. Kolik stál

Více

ÍKLAD Rychlost st ely = 4 gramy = 1 tuny = 20,4 cm zákon pohybová energie náboje polohovou energii t p e el e n l ou en e e n r e gi r i

ÍKLAD Rychlost st ely = 4 gramy = 1 tuny = 20,4 cm zákon pohybová energie náboje polohovou energii t p e el e n l ou en e e n r e gi r i PŘÍKLAD Rychlost střely lze určit tak, že se vystřelí zblízka do dostatečně těžkého pytle s pískem, který je zavěšen na několikametrovém laně. Změří se, do jaké výšky vystoupalo těžiště T pytle. Odtud

Více

PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST

PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST PŘÍMÁ EPŘÍMÁ ÚMĚRNOST y kx, kde k je Pro kladné veličiny x, y, které jsou přímo úměrné, platí kladné číslo, které se nazývá koeficient přímé úměrnosti. Kolikrát se zvětší x, tolikrát se zvětší y. Kolikrát

Více

Základní škola Nýrsko, Školní ulice, příspěvková organizace. (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) MIŠ MAŠ

Základní škola Nýrsko, Školní ulice, příspěvková organizace. (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) MIŠ MAŠ Základní škola Nýrsko, Školní ulice, příspěvková organizace (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) Název projektu: MIŠ MAŠ Moderní Interaktivní Škola Možností a Šancí (pro každého žáka) Číslo

Více

Rovnice ve slovních úlohách

Rovnice ve slovních úlohách Rovnice ve slovních úlohách Při řešení slovních úloh postupujeme obvykle takto (matematizace): 1. V textu úlohy vyhledáme veličinu, která je neznámá, a její číselnou hodnotu označíme vhodným písmenem (

Více

1. Dělitelnost v oboru přirozených čísel

1. Dělitelnost v oboru přirozených čísel . Dělitelnost v oboru přirozených čísel Zopakujte si co to je násobek a dělitel čísla co je to prvočíslo jak se hledá rozklad složeného čísla na prvočinitele největší společný dělitel, nejmenší společný

Více

Mateřská škola a Základní škola při dětské léčebně, Křetín 12

Mateřská škola a Základní škola při dětské léčebně, Křetín 12 VY_32_INOVACE_DUM.M.18 Mateřská škola a Základní škola při dětské léčebně, Křetín 12 Autor: Mgr. Miroslav Páteček Vytvořeno: červen 2012 Klíčová slova: Třída: Anotace: Matematika a její aplikace Racionální

Více

Matematika. Až zahájíš práci, nezapomeò:

Matematika. Až zahájíš práci, nezapomeò: 9. TØÍDA PZ 2012 9. tøída I MA D Matematika Až zahájíš práci, nezapomeò: každá úloha má jen jedno správné øešení úlohy mùžeš øešit v libovolném poøadí test obsahuje 30 úloh na 60 minut sleduj bìhem øešení

Více

Kinematika pohyb rovnoměrný

Kinematika pohyb rovnoměrný DUM Základy přírodních věd DUM III/2-T3-03 Téma: Kinematika rovnoměrný Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý VÝKLAD Kinematika rovnoměrný Kinematika je jedna ze základních

Více

Přípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro

Přípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro Příjímací zkoušky 01 Přípravný kurz k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) 1. Číselné obory 1.1. Doplňte číslo do rámečku tak, aby platila rovnost: 1.1.1.

Více

Základní škola Nýrsko, Školní ulice, příspěvková organizace. (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) MIŠ MAŠ

Základní škola Nýrsko, Školní ulice, příspěvková organizace. (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) MIŠ MAŠ Základní škola Nýrsko, Školní ulice, příspěvková organizace (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) Název projektu: MIŠ MAŠ Moderní Interaktivní Škola Možností a Šancí (pro každého žáka) Číslo

Více

Neotvírej, dokud nedostaneš pokyn od zadávajícího!

Neotvírej, dokud nedostaneš pokyn od zadávajícího! 9. třída Neotvírej, dokud nedostaneš pokyn od zadávajícího! jméno třída číslo žáka až zahájíš práci, nezapomeň: www.scio.cz, s.r.o. Pobřežní, 86 00 Praha 8 tel.: 0 fax: 0 0 e-mail: scio@scio.cz www.scio.cz

Více

5.2 DRUHY POMĚRNÝCH ČÍSEL (UKAZATELŮ)

5.2 DRUHY POMĚRNÝCH ČÍSEL (UKAZATELŮ) Druhy poměrných čísel. Poměrná čísla intenzity Aleš Drobník strana 1 5.2 DRUHY POMĚRNÝCH ČÍSEL (UKAZATELŮ) Poměrná čísla (poměrné ukazatele) dělíme dle jejich vzniku na: 1. Poměrná čísla intenzity (hustoty).

Více

Zákon zachování energie - příklady

Zákon zachování energie - příklady DUM Základy přírodních věd DUM III/2-T3-13 Téma: ZZE - příklady Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý VÝKLAD Zákon zachování energie - příklady 1.) Jakou má polohovou energii

Více

Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková

Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková VY_42_INOVACE_MA1_01-36 Název školy Základní škola Benešov, Jiráskova 888 Číslo projektu CZ.1.07/1.4.00/21.1278 Název projektu Pojďte s námi Číslo a název šablony klíčové aktivity IV/2 Inovace a zkvalitnění

Více

1.1.5 Poměry a úměrnosti II

1.1.5 Poměry a úměrnosti II 1.1.5 Poměry a úměrnosti II Předpoklady: 1104 U následujících úloh je nutné poznat, zda jde o přímou nebo nepřímou úměrnost případně příklad, který není možné řešit ani jedním z obou postupů. Pedagogická

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ..7/.5./4.82 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

Více

ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647

ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647 ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647 Název vzdělávacího materiálu: VY_32_INOVACE_HRAVĚ17 Soutěž zlomky, procenta, mocniny a odmocniny, převody

Více

Mateřská škola a Základní škola při dětské léčebně, Křetín 12

Mateřská škola a Základní škola při dětské léčebně, Křetín 12 VY_32_INOVACE_DUM.M.14 Mateřská škola a Základní škola při dětské léčebně, Křetín 12 Autor: Mgr. Miroslav Páteček Vytvořeno: duben 2012 Klíčová slova: Matematika a její aplikace Početní operace s přirozenými

Více

Test z celoplošné zkoušky I. MATEMATIKA. 9. ročník ZŠ (kvarta G8, sekunda G6)

Test z celoplošné zkoušky I. MATEMATIKA. 9. ročník ZŠ (kvarta G8, sekunda G6) Test žáka Zdroj testu: Domácí testování Školní rok 2014/2015 Test z celoplošné zkoušky I. MATEMATIKA 9. ročník ZŠ (kvarta G8, sekunda G6) Jméno: Třída: Škola: Termín testování: Datum tisku: 01. 02. 2015

Více

Opakování PRÁCE, VÝKON, ÚČINNOST, ENERGIE

Opakování PRÁCE, VÝKON, ÚČINNOST, ENERGIE Opakování PRÁCE, VÝKON, ÚČINNOST, ENERGIE 1 Rozhodni a zdůvodni, zda koná práci člověk, který a) vynese tašku do prvního patra, b) drží činku nad hlavou, c) drží tašku s nákupem na zastávce autobusu, d)

Více

ČÍSLA, ZÁKLADNÍ VÝPOČTY, SLOVNÍ ÚLOHY, PROCENTA

ČÍSLA, ZÁKLADNÍ VÝPOČTY, SLOVNÍ ÚLOHY, PROCENTA ČÍSLA, ZÁKLADNÍ VÝPOČTY, SLOVNÍ ÚLOHY, PROCENTA ČÍSLA. Vyznačte na číselné ose obrazy čísel / a 5/6.. a) Na číselné ose vyznačte interval - n; n - pro n = 5. b) Najděte nejmenší přirozené číslo n, pro

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/4.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_2_INOVACE_CH29_1_01 ŠVP Podnikání RVP 64-41-L/51

Více

Přípravný kurz z fyziky na DFJP UPa

Přípravný kurz z fyziky na DFJP UPa Přípravný kurz z fyziky na DFJP UPa 26. 28.8.2015 RNDr. Jan Zajíc, CSc. ÚAFM FChT UPa Pohyby rovnoměrné 1. Člun pluje v řece po proudu z bodu A do bodu B rychlostí 30 km.h 1. Při zpáteční cestě z bodu

Více

Digitální učební materiál

Digitální učební materiál Projekt: Digitální učební materiál Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

PŘÍKLADY. Náklady Kč/ks v roce. Celkové náklady tis. Kč v roce 1 2 1 2. Provoz A 0,8 0,75 7 200 8 850 B 0,7 0,68 9 100 6 800

PŘÍKLADY. Náklady Kč/ks v roce. Celkové náklady tis. Kč v roce 1 2 1 2. Provoz A 0,8 0,75 7 200 8 850 B 0,7 0,68 9 100 6 800 PŘÍKLADY 4. Tabulka obsahuje údaje o nákladech Kč/ks a celkových nákladech ve dvou provozech akciové společnosti. Vypočtěte všechny individuální složené indexy a absolutní rozdíly. Zaokrouhlujte na dvě

Více

1BMATEMATIKA. 0B9. třída

1BMATEMATIKA. 0B9. třída BMATEMATIKA 0B. třída. Na mapě v měřítku : 40 000 je vyznačena červená turistická trasa o délce cm. Za jak dlouho ujde tuto trasu turista, který se pohybuje stálou rychlostí 4 km/h? (A) za minut (B) za

Více

Slovní úlohy řešené rovnicí pro učební obory

Slovní úlohy řešené rovnicí pro učební obory Variace 1 Slovní úlohy řešené rovnicí pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Slovní

Více

Očekávaný výstup Praktické využití trojčlenky k vyřešení slovních úloh Speciální vzdělávací žádné

Očekávaný výstup Praktické využití trojčlenky k vyřešení slovních úloh Speciální vzdělávací žádné Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 Autor Ing. Renata Dupalová Datum 17. 8. 2014 Ročník 7. Vzdělávací oblast Matematika její aplikace Vzdělávací obor Matematika

Více

3. VELIČINY UŽÍVANÉ VE STATISTICE A EKONOMICE

3. VELIČINY UŽÍVANÉ VE STATISTICE A EKONOMICE Veličiny užívané ve statistice Aleš Drobník strana 1 3. VELIČINY UŽÍVANÉ VE STATISTICE A EKONOMICE Lze zjednodušeně říci: Statistika = matematika užitá v ekonomice (aj. vědních oborech). Statistika jako

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Otec je o 10 cm vyšší než matka

Více

2.3.17 Slovní úlohy vedoucí na soustavy rovnic I

2.3.17 Slovní úlohy vedoucí na soustavy rovnic I .3.7 Slovní úlohy vedoucí na soustavy rovnic I Předpoklady: 34 Pedagogická poznámka: Jak už bylo uvedeno dříve slovní úlohy tvoří specifickou část matematiky jednoduše proto, že nestačí sledovat dříve

Více

Základní škola Kaplice, Školní 226

Základní škola Kaplice, Školní 226 Základní škola Kaplice, Školní 226 DUM VY_2_INOVACE_06MA autor: Michal Benda období vytvoření: 2011 ročník, pro který je vytvořen: 7 vzdělávací oblast: vzdělávací obor: tématický okruh: téma: Matematika

Více

SLOVNÍ Matematizace reálné MATEMATICKÁ ÚLOHA situace ÚLOHA. VÝSLEDEK Interpretace VÝSLEDEK SLOVNÍ výsledku MÚ MATEMATICKÉ ÚLOHY do reality ÚLOHY

SLOVNÍ Matematizace reálné MATEMATICKÁ ÚLOHA situace ÚLOHA. VÝSLEDEK Interpretace VÝSLEDEK SLOVNÍ výsledku MÚ MATEMATICKÉ ÚLOHY do reality ÚLOHY SLOVNÍ ÚLOHY ŘEŠENÉ ROVNICEMI Růžena Blažková, Irena Budínová Slovní úlohy jsou úlohy, ve kterých jsou vztahy mezi známými a neznámými údaji vyjádřeny slovní formulací. Úkolem řešení slovních úloh je najít

Více

Sbírka úloh z matematiky. 6. - 9. ročník

Sbírka úloh z matematiky. 6. - 9. ročník Sbírka úloh z matematiky 6. - 9. ročník Pro základní školy srpen 2011 Vypracovali: Mgr. Jaromír Čihák Ing. Jan Čihák Obsah 1 Úvod 2 2 6. ročník 3 2.1 Přirozená čísla.................................. 3

Více

M - Slovní úlohy řešené rovnicí - pro učební obory

M - Slovní úlohy řešené rovnicí - pro učební obory M - Slovní úlohy řešené rovnicí - pro učební obory Autor: Mgr. Jaromír Jurek Kopírování a jakékoliv další využití výukového materiálu je dovoleno pouze s využitím odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

Slovní úlohy pro procvičování v šesté třídě

Slovní úlohy pro procvičování v šesté třídě Mgr. Hana Tesařová ZŠ Edvarda Beneše Lysice Slovní úlohy pro procvičování v šesté třídě Jednoduché slovní úlohy 1. V dopravním podniku je plánovaná denní spotřeba nafty v pracovní den 12 000 litrů, v sobotu

Více

2.5.28 Procenta okolo nás I

2.5.28 Procenta okolo nás I 2.5.28 Procenta okolo nás I Předpoklady: 020526 Př. 1: Rozhodni z paměti bez výpočtu, která tvrzení jsou pravdivá. a) 75 % z 100 je větší než 70. b) 52 % z 600 je menší než 300. c) 20 % z 200 je menší

Více

soustava jednotek SI, základní, odvozené, vedlejší a doplňkové jednotky, násobky a díly jednotek, skalární a vektorové veličiny

soustava jednotek SI, základní, odvozené, vedlejší a doplňkové jednotky, násobky a díly jednotek, skalární a vektorové veličiny Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D01_Z_OPAK_M_Uvodni_pojmy_T Člověk a příroda Fyzika Úvodní pojmy, fyzikální veličiny

Více

1 z 7 18.6.2012 8:14. 1. otázka. Které číslo musíme odečíst od čísla 250, aby výsledné číslo bylo osminásobkem čísla 25? 2. otázka

1 z 7 18.6.2012 8:14. 1. otázka. Které číslo musíme odečíst od čísla 250, aby výsledné číslo bylo osminásobkem čísla 25? 2. otázka Stonožka 9 - M 2011 - náhled testu http://ib.scio.cz/test?t=ceow8rrhgtr79v2xq7/zcppky1fbxbzulq... 1 z 7 18.6.2012 8:14 1. otázka Které číslo musíme odečíst od čísla 250, aby výsledné číslo bylo osminásobkem

Více

Kolik otáček udělá válec parního válce, než uválcuje 150 m dlouhý úsek silnice? Válec má poloměr 110 cm a je 3 m dlouhý.

Kolik otáček udělá válec parního válce, než uválcuje 150 m dlouhý úsek silnice? Válec má poloměr 110 cm a je 3 m dlouhý. DDÚ Kolik otáček udělá válec parního válce, než uválcuje 150 m dlouhý úsek silnice? Válec má poloměr 110 cm a je m dlouhý. Na délce válce vůbec nezáleží, záleží na jeho obvodu, poloměr je 110 cm, vypočítám

Více

Sklizeň moštových hroznů v ČR v roce 2011 Jiří Sedlo a Martin Půček, Svaz vinařů ČR

Sklizeň moštových hroznů v ČR v roce 2011 Jiří Sedlo a Martin Půček, Svaz vinařů ČR Sklizeň moštových hroznů v ČR v roce 2011 Jiří Sedlo a Martin Půček, Svaz vinařů ČR Svaz vinařů České republiky provedl v roce 2011 již pošestnácté výběrové šetření ke sklizni hroznů, tentokráte ve 100

Více

Měřítko plánu a mapy Pracovní list do matematiky pro žáky 7. ročníku

Měřítko plánu a mapy Pracovní list do matematiky pro žáky 7. ročníku Měřítko plánu a mapy Pracovní list do matematiky pro žáky 7. ročníku MASARYKOVA ZÁKLADNÍ ŠKOLA A MATEŘSKÁ ŠKOLA VELKÁ BYSTŘICE projekt č. CZ.1.07/1.4.00/21.1920 Název projektu: Učení pro život Číslo DUMu:

Více

Přípravný kurz - Matematika

Přípravný kurz - Matematika Přípravný kurz - Matematika Téma: Základy statistiky, kombinační úsudek v úlohách Klíčová slova: tabulky, grafy, diagramy Autor: Mlynářová 1 Základy statistiky Statistika je vědní obor, který se zabývá

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita IV.2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.2.1 Algebraické výrazy, výrazy s mocninami

Více

ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647

ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647 ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647 Název vzdělávacího materiálu: VY_32_INOVACE_HRAVĚ18 Soutěž celá čísla, poměr, úměra, lomené výrazy, geometrie

Více

Základní škola a Mateřská škola Bohuňovice

Základní škola a Mateřská škola Bohuňovice Základní škola a Mateřská škola Bohuňovice 4. třída leden 2014 Zábavné procvičování matematiky Příklady od Viktorky Horákové: 1. Porovnej čísla 8x80 6x90 24:2 24:4 60x2 50x30 35:5 32:4 2x90 60x3 81:9 64:8

Více

7. Slovní úlohy o pohybu.notebook. May 18, 2015. 1. Vzdělávací oblast: Matematika a její aplikace. 3. Učivo: Slovní úlohy o pohybu

7. Slovní úlohy o pohybu.notebook. May 18, 2015. 1. Vzdělávací oblast: Matematika a její aplikace. 3. Učivo: Slovní úlohy o pohybu Registrační číslo projektu: Název projektu: Název a číslo globálního grantu: CZ.1.07/1.1.12/02.0010 Šumavská škola = evropská škola Zvyšování kvality ve vzdělání v Plzeňském kraji CZ.1.07/1.1.12 Název

Více

Stereometrie pro učební obory

Stereometrie pro učební obory Variace 1 Stereometrie pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz 1. Vzájemná poloha prostorových

Více

2.1 2.2. Testový sešit neotvírejte, počkejte na pokyn!

2.1 2.2. Testový sešit neotvírejte, počkejte na pokyn! FYZIKA DIDAKTICKÝ TEST FYM0D11C0T03 Maximální bodové hodnocení: 45 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 20 úloh. Časový limit pro řešení didaktického

Více

Otázky z kapitoly Základní poznatky

Otázky z kapitoly Základní poznatky Otázky z kapitoly Základní poznatky 10. února 2015 Obsah 1 Krokované příklady (0 otázek) 1 2 Mnohočleny a lomené výrazy (68 otázek) 1 2.1 Obtížnost 2 (58 otázek).......................................

Více

4. Poměr a úměrnost 4.1. Poměr

4. Poměr a úměrnost 4.1. Poměr 4. Poměr a úměrnost 4.. Poměr 7. ročník -4. Poměr a úměrnost 4... Vymezení pojmu Poměr je vztah mezi dvěma veličinami, který nám vyjadřuje podíl mezi velikostmi těchto veličin. Z poměru můžeme také vyčíst

Více

Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium

Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium V řešení číslujte úlohy tak, jak jsou číslovány v zadání. U všech úloh uveďte stručné zdůvodnění. Vyřešené úlohy zašlete elektronicky

Více

Výukový materiál zpracován v rámci operačního projektu. EU peníze školám. Registrační číslo projektu: CZ.1.07/1.5.00/34.0512

Výukový materiál zpracován v rámci operačního projektu. EU peníze školám. Registrační číslo projektu: CZ.1.07/1.5.00/34.0512 Výukový materiál zpracován v rámci operačního projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0512 Střední škola ekonomiky, obchodu a služeb SČMSD Benešov, s.r.o. Matematika Trojčlenka

Více

Metodický list. Název materiálu: Úlohy ze sadu a ze zahrady Autor materiálu: Jana Kuchtíková

Metodický list. Název materiálu: Úlohy ze sadu a ze zahrady Autor materiálu: Jana Kuchtíková Příjemce: Základní škola Ruda nad Moravou, okres Šumperk, Sportovní 300, 789 63 Ruda nad Moravou Zařazení materiálu: Metodický list Šablona: Inovace a zkvalitnění výuky směřující k rozvoji matematické

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_01_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_01_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_01_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Úvod

Více

Příklad : Číslo 547,382 5 4 7, 3 8 2..stovky desítky jednotky, desetiny setiny tisíciny.. desetinná čárka

Příklad : Číslo 547,382 5 4 7, 3 8 2..stovky desítky jednotky, desetiny setiny tisíciny.. desetinná čárka 4. Desetinná čísla 4.1. Řád desetinného čísla V praktickém životě nehovoříme jen o 5 kg jablek, 8 metrů, 7 0 C, ale můžeme se setkat s údaji 5,2 kg, 8,5 metru, 7,3 0 C. Vidíme, že vedle celých čísel existují

Více

Úlohy pro 52. ročník fyzikální olympiády, kategorie EF

Úlohy pro 52. ročník fyzikální olympiády, kategorie EF FO52EF1: Dva cyklisté Dva cyklisté se pohybují po uzavřené závodní trase o délce 1 200 m tak, že Lenka ujede jedno kolo za dobu 120 s, Petr za 100 s. Při tréninku mohou vyjet buď stejným směrem, nebo směry

Více

c) Matematické myšlení

c) Matematické myšlení c) Matematické myšlení Koš 1: 1. Které číslo doplníte místo otazníku?? 8 11 15 20 a) 3 b) 4 c) 5 d) 6 Správné řešení d) 2. Které číslo doplníte místo otazníku? 5 7? 17 25 a) b) 10 c) 11 d) 12 3. Které

Více

4. Stezkou, která vede na vrchol hory, vystupuje turista rychlostí 2,5 km/h, sestupuje rychlostí 5 km/h. Jakou průměrnou rychlostí jde?

4. Stezkou, která vede na vrchol hory, vystupuje turista rychlostí 2,5 km/h, sestupuje rychlostí 5 km/h. Jakou průměrnou rychlostí jde? 1. Při zjišťování počtu nezletilých dětí ve třiceti vybraných rodinách byly získány tyto výsledky: 1, 1, 0, 2, 3, 4, 2, 2, 3, 0, 1, 2, 2, 4, 3, 3, 0, 1, 1, 1, 2, 2, 0, 2, 1, 1, 2, 3, 3, 2. Uspořádejte

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Železná trubka o délce 3 metry

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Projekt: Registrační číslo projektu: Každý máme

Více

P Y T H A G O R I Á DA. 37. ročník 2013/2014 8. R O Č N Í K

P Y T H A G O R I Á DA. 37. ročník 2013/2014 8. R O Č N Í K P Y T H A G O R I Á DA 37. ročník 013/014 8. R O Č N Í K Š K O L N Í K O L O Adresář krajských garantů soutěží na školní rok - 013/014 Kraj Krajský úřad pověřená osoba * Mgr. Michaela Knappová. Magistrát

Více

Příklady pro přijímací zkoušku z matematiky školní rok 2012/2013

Příklady pro přijímací zkoušku z matematiky školní rok 2012/2013 Příklady pro přijímací zkoušku z matematiky školní rok 2012/2013 Test přijímací zkoušky bude obsahovat úlohy uzavřené, kdy žák vybírá správnou odpověď ze čtyř nabízených variant (správná je vždy právě

Více

Funkce. Úkol: Uveďte příklady závislosti dvou veličin.

Funkce. Úkol: Uveďte příklady závislosti dvou veličin. Funkce Pojem funkce Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Funkce vyjadřuje závislost

Více