Slovní úlohy na procenta

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Slovní úlohy na procenta"

Transkript

1 Slovní úlohy na procenta 1. Krev činí v lidském těle přibližně 7,6 % hmotnosti těla. Kolik kg krve je v těle dospělého člověka, který má hmotnost 80 kg? Kolik procent hmotnosti bude činit krev v těle téhož člověka bezprostředně po odběru 0,5 kg krve? 100 % 80 kg 7,6 % x kg po odběru y = 6,08 0,5 = 5,58 kg 80 kg 100 % 5,58 kg x % V těle je 6,08 kg krve. Krev bude činit 6,975 % hmotnosti těla. 2. Robert dal Oldovi úkol: Zastaralý výrobek s původní cenou byl třikrát za sebou zlevněn o 20 % a pak ještě o 40 %. Jaká je jeho konečná cena? Olda se domnívá, že výrobek byl nakonec zadarmo. Měl pravdu? Jaká byla konečná cena? z0 = z1 = 0,8 z0 = 0, = z2 = 0,8 z1 = 0, = z3 = 0,8 z2 = 0, = z4 = 0,6 z3 = 0, = 1 228, přímo z = 0,8 0,8 0,8 0,6 z0 = (0,8) 3 0, = 1 228, Konečná cena výrobku byla 1 228,80.

2 3. Při přechodném snížení cen byly lyže s původní cenou 850 zlevněny o 20 %. Později byly zdraženy o 20 %. Prodavačka na ně opět připevnila cenu Bylo to správné? Jaká byla konečná cena lyží? z0 = % % x z1 = % % x Konečná cena lyží byla Kanadský hokejový brankář chytil v zápase se Švédskem 34 střel, což bylo 85 % všech střel na jeho branku. Švédský brankář chytil jen 80 % všech střel vystřelených na švédskou branku, přesto Švédsko vyhrálo rozdílem jedné branky. Jaké bylo skóre Švédsko Kanada? Kolik střel švédský brankář chytil? 85 % 34 střel 100 % x Počet úspěšných střel do kanadské branky: = 6 Počet úspěšných střel do švédské branky: 6 1 = 5 Švédský brankář nechytil 5 střel, což bylo (100 80) = 20 % střel na jeho branku 20 %.. 5 střel 80 % x Skóre zápasu Švédsko Kanada bylo 6 : 5. Švédský brankář chytil 20 střel.

3 5. Martin, Radim a Michal si rozdělili zisk ze společného podniku. Radim dostal 35 % a Martin 0,45 zbytku. Kolik dostal každý, byl-li celkový zisk ? Radim 35 % 100 % % x zbývá na Martina a Michala = Martin 45 % ze zbytku, tj. z 100 % 35 %, tj. z ) 100 % % y Michal z = = Radim získal , Martin a Michal Číslo 72 zvětši o 25 %. O kolik procent budeš muset číslo, které ti vyšlo zmenšit, abys opět dostal číslo 72? 100 % % x Zvětšené číslo je = % 18 x % Číslo musím zmenšit o 20 %.

4 Další úlohy na procenta 1. Určete a) 18 % z % % x b) 29 % z 315 t 100 % 315 t 29 % x t = 243 = 243 c) 7,6 % z 0,34 km (2,584 km) d) 115 % z 3050 (3507,50 ) e) 27 % z ( ) e) ( ) 2. Původní rozpočet na výstavbu domu byl Dodatečnými úpravami se zvýšil o 9 %. O kolik se zvýšil rozpočet? Jaká byla výsledná cena? y = x = = = % % x 100 % % x y = x = = (x zvýšení ceny, y výsledná cena) y = x = = (x výsledná cena, y zvýšení ceny) Rozpočet se zvýšil o , výsledná cena byla Televizor za byl zlevněn o 12 %. Jaká je jeho nynější cena? 100 % 12 % = 88 % Nynější cena televizoru je

5 4. Krevní zkouškou bylo zjištěno v krvi řidiče 0,5 promile alkoholu. Kolik je to gramů, je-li v těle přibližně 6 kg krve? PROMILE (zn. ) tisícina celku 0,5 = 0,05 % 100 % g = 0, g = 3 g 0,05 % g Řidič měl v krvi 3 g alkoholu. 5. Mezi místy A a B, jejichž vodorovná vzdálenost je m, má silnice stoupání 14 promile. Jaký je výškový rozdíl míst A a B? 14 = 1,4 % 100 % m = 0, m = 49 m 1,4 % m m Výškový rozdíl míst A a B je 49 m. 6. Elektrické vedení je dlouhé 5,3 km. Na prohnutí drátů a spojování je nutno přidat 3,25 % délky. Kolik metrů drátu potřebují montéři, má-li vedení osm drátů? 8 drátů 8 5,3 km = 42,4 km m 100 % m = 1, m = m 103,25 % m m Montéři potřebují m drátu. 7. Zemědělský podnik pěstoval pšenici na 50 hektarech. V roce sklidili 4,2 tun z hektaru. V roce 2001 snížili osevní plochu o 10 %. Jakého museli dosáhnout hektarového výnosu v roce 2 001, aby sklidili stejné množství pšenice jako v roce 2 000? rok rok sklidili 50 4,2 t = 210 t osevní plocha 0,9 50 ha = 45 ha musí dosáhnout 210 : 45 = 4,7 t/ha Museli by sklidit 4,7 t z hektaru.

6 8. Škola získala obdélníkový pozemek o rozměrech 45 m a 30 m. První rok žáci obdělali 30 % z celé plochy. Druhým rokem zúrodnili další plochu o 20 % větší než v prvním roce. Jak velkou plochu musí zúrodnit ve třetím roce, zůstane-li na jedné pětině zahrady trávník? S = = m 2 1. rok obdělali S1 = 0, m 2 = 405 m 2 2. rok obdělali další plochu S2 = 1,20 S1 = 1,2 405 = 486 m 2 3. rok má zůstat tráva na St = S = = 270 m 2 musí zúrodnit S3 = S (S1 + S2 + St) = ( ) = 189 m 2 Ve třetím roce musí zúrodnit 189 m 2 zahrady. Počet procent 9. Určete, kolik procent je a) 4,2 t z 35 t b) 68,4 l z 3,6 hl 3,6 hl = 360 l (hekto 100) 35 t 100 % 4,2 t x % 360 l 100 % 68,4 l x % c) m z 7,8 km [55 %] d) [114,3 %] 10. Ze série ručních čerpadel bylo 13 vadných. Jaké bylo procento zmetků? ks 100 % 13 ks V sérii bylo 0,4 % zmetků.

7 11. Automobil jel rychlostí 75 km/h, cyklista rychlostí 5 m/s. Kolik procent rychlosti automobilu činí rychlost cyklisty? Pozor na jednotky! 5 m/s = 5 m = 18 km/h 75 km/h 100 % 18 km/h Rychlost cyklisty činí 24 % rychlosti automobilu. 12. Vodorovná vzdálenost mezi stanicemi Ostružná a Ramzová je m. Nadmořská výška Ostružné je 715 m a Ramzové 760 m. Urči v promile stoupání trati mezi Ostružnou a Ramzovou. h = = 45 m m 100 % 45 m Stoupání mezi Ramzovou a Ostružnou je 22,5 13. O kolik procent se zmenší objem krychle, zmenšíme-li její hranu o 20 %? původ. délka hrany a objem V = nová délka hrany a1 nový objem = 1V 100 % 0,512 V [Nebo komu činí problémy obecně, zvol si konkrétní objem.] Objem se zmenší o 48,8 %.

8 14. Konzervárna dodala na domácí trh 7/12 z celkového množství vyrobených meruňkových kompotů, 3/10 zbytku prodali do zahraničí. Kolik procent ze všech vyrobených kompotů mají ještě na skladu? Domácí trh (celku) Zahraničí b ( ) e Na skladě zůstalo e 1celek 100 % celku Konzervárna má ve skladu 29,17 % kompotů. 15. Původní cena knihy byla 120. Antikvariát ji vykoupil za 60 a prodal za 78. Za kolik procent původní ceny knihu koupili? Za kolik procent původní ceny knihu prodali? Kolika procentní zisk činil prodej knihy? % 60 Antikvariát zakoupil za 50 % původní ceny (lze i zpaměti) % 78 Knihu prodali za 65 % původní ceny % 78 zisk Zisk činil 30 %. [zisk lze i přímo jako 18 z 60 ]

9 Výpočet základu 9. Určete, kolik je základ (tj. 100 %), víte-li, že a) 75 % je 300 b) 140 % je 28 kg 75 % % x 140 % 28 kg 100 % x kg c) [100] d) [9] 10. V nově založeném sadu se ujalo stromků, což je 98 % všech sazenic. Kolik stromků vysadili? 98 % stromků 100 % x stromků om V sadu bylo vysazeno stromků. 11. Sušením ztrácí podběl 70 % své hmotnosti. Kolik čerstvého podbělu musí Lucka nasbírat, aby usušila ¾ kg? 70 % 0,75 kg 100 % x kg Lucka musí nasbírat 2,5 kg čerstvého podbělu.

10 12. Při opravě domku se ušetřilo , což bylo 8,5 % plánovaných nákladů. Jaké byly plánované náklady? 8,5 % % x y = = Plánované náklady byly , skutečné náklady Bronz je slitina cínu a mědi. Mědi je 85 %, zbytek je cín. Kolik bronzu vyrobíme z 51 kg mědi? Bude nám stačit 8 kg cínu? 85 % 51 kg 100 % x kg 60 kg bronzu 51 kg mědi = 9 kg cínu Z daného množství mědi vyrobíme 60 kg bronzu. Nebude stačit 8 kg cínu, potřebujeme 9 kg. 14. Zvětšením neznámého čísla o 4 % dostaneme 780. Urči neznámé číslo. 104 % % x Neznámé číslo je Zmenšíme-li neznámé číslo o 28,5 % dostaneme 243,1. Určete neznámé číslo. 71,5 % 243,1 100 % x Hledané číslo je 340.

11 16. Zmenšíme-li neznámé číslo o 427 dostaneme 65% jeho hodnoty. Určete neznámé číslo. p = 100 % 65 % = 35 % 35 % % x Hledané číslo je 1220.

Procenta. Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz.

Procenta. Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. Variace 1 Procenta Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Procenta U příkladů, kde se vyskytují procenta,

Více

Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce)

Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce) Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 15. září

Více

Očekávaný výstup Zvládnutí slovních úloh využívajících poměr Speciální vzdělávací žádné

Očekávaný výstup Zvládnutí slovních úloh využívajících poměr Speciální vzdělávací žádné Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 Autor Ing. Renata Dupalová Datum 17. 8. 2014 Ročník 7. Vzdělávací oblast Matematika a její aplikace Vzdělávací obor Matematika

Více

Slovní úlohy na lineární rovnici

Slovní úlohy na lineární rovnici Slovní úlohy na lineární rovnici Slovní úlohy je výhodné rozdělit na několik typů a určit nejsnadnější postup jejich řešení. Je vhodné označit v dané úloze jednu veličinu jako neznámou ( většinou tu, na

Více

Přípravný kurz - Matematika

Přípravný kurz - Matematika Přípravný kurz - Matematika Téma: Procenta, poměr, trojčlenka Klíčová slova: Procenta, poměr, zvětšení, zmenšení, trojčlenka, měřítko Autor: Mlynářová 1 Trojčlenka označuje postup při řešení úloh přímé

Více

01-8 Z 1500 vyrobených žárovek bylo 21 vadných. Kolik procent vyrobených žárovek bylo bez vady?

01-8 Z 1500 vyrobených žárovek bylo 21 vadných. Kolik procent vyrobených žárovek bylo bez vady? Příklady na 1. týden 01-1 Vypočtěte: a) 23 - [2,6 + (6-3 2 ) - 4,52] b) 3,5 2 + 2 [2,7 - (-0,5 + 0,3. 0,6)] 01-2 Vyjádřete v jednotkách uvedených v závorce: a) 4 g (kg) 325 km (m) b) 12 kg (g) 37,5 mm

Více

Přirozená čísla do milionu 1

Přirozená čísla do milionu 1 statisíce desetitisíce tisíce stovky desítky jednotky Klíčová aktivita: Přirozená čísla do milionu 1 č. 1 Matematika 1. Porovnej čísla: , =. 758 258 4 258 4 285 568 470 56 847 203 488 1 584 2 458 896

Více

1. Dělitelnost v oboru přirozených čísel

1. Dělitelnost v oboru přirozených čísel . Dělitelnost v oboru přirozených čísel Zopakujte si co to je násobek a dělitel čísla co je to prvočíslo jak se hledá rozklad složeného čísla na prvočinitele největší společný dělitel, nejmenší společný

Více

Obecné informace: Typy úloh a hodnocení:

Obecné informace: Typy úloh a hodnocení: Obecné informace: Počet úloh: 30 Časový limit: 60 minut Max. možný počet bodů: 30 Min. možný počet bodů: 8 Povolené pomůcky: modrá propisovací tužka obyčejná tužka pravítko kružítko mazací guma Poznámky:

Více

Základní škola Nýrsko, Školní ulice, příspěvková organizace. (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) MIŠ MAŠ

Základní škola Nýrsko, Školní ulice, příspěvková organizace. (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) MIŠ MAŠ Základní škola Nýrsko, Školní ulice, příspěvková organizace (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) Název projektu: MIŠ MAŠ Moderní Interaktivní Škola Možností a Šancí (pro každého žáka) Číslo

Více

Při výpočtu příkladů, které se týkají procent se setkáváme se třemi základními pojmy : základ ( z ), počet procent ( p ), procentová část ( č ).

Při výpočtu příkladů, které se týkají procent se setkáváme se třemi základními pojmy : základ ( z ), počet procent ( p ), procentová část ( č ). 5. Procenta 5.. Vymezení pojmů Při výpočtu příkladů, které se týkají procent se setkáváme se třemi základními pojmy : základ ( z ), počet procent ( p ), procentová část ( č ). Z těchto tří údaje dva známe

Více

Variace. Poměr, trojčlenka

Variace. Poměr, trojčlenka Variace 1 Poměr, trojčlenka Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Poměr Poměr je matematický zápis

Více

4. Poměr a úměrnost 4.1. Poměr

4. Poměr a úměrnost 4.1. Poměr 4. Poměr a úměrnost 4.. Poměr 7. ročník -4. Poměr a úměrnost 4... Vymezení pojmu Poměr je vztah mezi dvěma veličinami, který nám vyjadřuje podíl mezi velikostmi těchto veličin. Z poměru můžeme také vyčíst

Více

Digitální učební materiál

Digitální učební materiál Projekt: Digitální učební materiál Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

Matematika. Až zahájíš práci, nezapomeò:

Matematika. Až zahájíš práci, nezapomeò: 9. TØÍDA PZ 2012 9. tøída I MA D Matematika Až zahájíš práci, nezapomeò: každá úloha má jen jedno správné øešení úlohy mùžeš øešit v libovolném poøadí test obsahuje 30 úloh na 60 minut sleduj bìhem øešení

Více

Základní škola Nýrsko, Školní ulice, příspěvková organizace. (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) MIŠ MAŠ

Základní škola Nýrsko, Školní ulice, příspěvková organizace. (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) MIŠ MAŠ Základní škola Nýrsko, Školní ulice, příspěvková organizace (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) Název projektu: MIŠ MAŠ Moderní Interaktivní Škola Možností a Šancí (pro každého žáka) Číslo

Více

Přirozená čísla. g) 3 n + 1 b) 2 n + 4. d) 2 n 1. e) 2 n 3. h) 3 n + 4 c) 2 n + 7

Přirozená čísla. g) 3 n + 1 b) 2 n + 4. d) 2 n 1. e) 2 n 3. h) 3 n + 4 c) 2 n + 7 Přirozená čísla OPAKOVÁNÍ ZŠ. Rozhodněte, která z uvedených čísel jsou přirozená: ; ; ; ; ; 0,;. Vypočtěte co nejúsporněji: + + + b) + + + c).. d)... Vypočtěte:. +. Strana (celkem ) e) f) g) + h) c). +.

Více

Očekávaný výstup Praktické využití trojčlenky k vyřešení slovních úloh Speciální vzdělávací žádné

Očekávaný výstup Praktické využití trojčlenky k vyřešení slovních úloh Speciální vzdělávací žádné Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 Autor Ing. Renata Dupalová Datum 17. 8. 2014 Ročník 7. Vzdělávací oblast Matematika její aplikace Vzdělávací obor Matematika

Více

Příklad : Číslo 547,382 5 4 7, 3 8 2..stovky desítky jednotky, desetiny setiny tisíciny.. desetinná čárka

Příklad : Číslo 547,382 5 4 7, 3 8 2..stovky desítky jednotky, desetiny setiny tisíciny.. desetinná čárka 4. Desetinná čísla 4.1. Řád desetinného čísla V praktickém životě nehovoříme jen o 5 kg jablek, 8 metrů, 7 0 C, ale můžeme se setkat s údaji 5,2 kg, 8,5 metru, 7,3 0 C. Vidíme, že vedle celých čísel existují

Více

Test z celoplošné zkoušky I. MATEMATIKA. 9. ročník ZŠ (kvarta G8, sekunda G6)

Test z celoplošné zkoušky I. MATEMATIKA. 9. ročník ZŠ (kvarta G8, sekunda G6) Test žáka Zdroj testu: Domácí testování Školní rok 2014/2015 Test z celoplošné zkoušky I. MATEMATIKA 9. ročník ZŠ (kvarta G8, sekunda G6) Jméno: Třída: Škola: Termín testování: Datum tisku: 01. 02. 2015

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Projekt: Registrační číslo projektu: Každý máme

Více

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 24. 7. 212 Název zpracovaného celku: KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Fyzikální veličiny popisují vlastnosti, stavy a změny hmotných

Více

ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647

ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647 ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647 Název vzdělávacího materiálu: VY_32_INOVACE_HRAVĚ18 Soutěž celá čísla, poměr, úměra, lomené výrazy, geometrie

Více

4. V každé ze tří lahví na obrázku je 600 gramů vody. Ve které z lahví má voda největší objem?

4. V každé ze tří lahví na obrázku je 600 gramů vody. Ve které z lahví má voda největší objem? TESTOVÉ ÚLOHY (správná je vždy jedna z nabídnutých odpovědí) 1. Jaká je hmotnost vody v krychlové nádobě na obrázku, která je vodou zcela naplněna? : (A) 2 kg (B) 4 kg (C) 6 kg (D) 8 kg 20 cm 2. Jeden

Více

odpověď: Do obchodu dovezli 28 balení levnějšího a 22 balení dražšího másla.

odpověď: Do obchodu dovezli 28 balení levnějšího a 22 balení dražšího másla. Příklad 1: Do obchodu přivezli 50 čtvrtkilových balení másla dvojího druhu. Levnější po 16 Kč za kus a dražší po 18 Kč za kus. Kolik kterého másla bylo v dodávce, jestliže její cena byla 844 Kč? odpověď:

Více

MIŠ MAŠ. 38 PROCENTA procentová část 4.6.2014.notebook. May 18, 2015. Základní škola Nýrsko, Školní ulice, příspěvková organizace.

MIŠ MAŠ. 38 PROCENTA procentová část 4.6.2014.notebook. May 18, 2015. Základní škola Nýrsko, Školní ulice, příspěvková organizace. Základní škola Nýrsko, Školní ulice, příspěvková organizace (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) Název projektu: MIŠ MAŠ Moderní Interaktivní Škola Možností a Šancí (pro každého žáka) Číslo

Více

Přípravný kurz - Matematika

Přípravný kurz - Matematika Přípravný kurz - Matematika Téma: Základy statistiky, kombinační úsudek v úlohách Klíčová slova: tabulky, grafy, diagramy Autor: Mlynářová 1 Základy statistiky Statistika je vědní obor, který se zabývá

Více

TABULKY PRACOVNÍ LISTY - tabulky s jednoduchým záhlavím

TABULKY PRACOVNÍ LISTY - tabulky s jednoduchým záhlavím TABULKY PRACOVNÍ LISTY - tabulky s jednoduchým záhlavím Centrum pro virtuální a moderní metody a formy vzdělávání na Obchodní akademii T. G. Masaryka, Kostelec nad Orlicí 1. Spotřeba obilovin v ČR Vypracujte

Více

6.PRAVOÚHLÁ SOUSTAVA SOUŘADNIC, PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST

6.PRAVOÚHLÁ SOUSTAVA SOUŘADNIC, PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST 6.PRAVOÚHLÁ SOUSTAVA SOUŘADNIC, PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST Zde je třeba pečlivě nastudovat teorii, ohledně obou funkci, jejich znázorňování a Důležitou roli přirozeně hraje metoda trojčlenky, kterou je třeba

Více

původ neafrický, neevropský Rh(D) Rh(D)+ 2 Zapiš pomocí zlomku výskyt krevních skupin v ČR. AB AB AB AB AB AB AB AB AB 0

původ neafrický, neevropský Rh(D) Rh(D)+ 2 Zapiš pomocí zlomku výskyt krevních skupin v ČR. AB AB AB AB AB AB AB AB AB 0 Seznámení se zlomky Pro lidi s krví Rh je riskantní cestovat do jiných částí světa, kde jsou zásoby krve Rh jen malé. Vybarvi podle hodnot uvedených v tabulce dané části. Ve kterých oblastech mají málo

Více

Základní škola a Mateřská škola Bohuňovice

Základní škola a Mateřská škola Bohuňovice Základní škola a Mateřská škola Bohuňovice 4. třída leden 2014 Zábavné procvičování matematiky Příklady od Viktorky Horákové: 1. Porovnej čísla 8x80 6x90 24:2 24:4 60x2 50x30 35:5 32:4 2x90 60x3 81:9 64:8

Více

Relativní atomová hmotnost

Relativní atomová hmotnost Relativní atomová hmotnost 1. Jak se značí relativní atomová hmotnost? 2. Jaké jsou jednotky Ar? 3. Zpaměti urči a) Ar(N) b) Ar (C) 4. Bez kalkulačky urči, kolika atomy kyslíku bychom vyvážili jeden atom

Více

Jedná se o slovní úlohy s tématy běžného života. Žáci řeší slovní úlohy pomocí trojčlenky.

Jedná se o slovní úlohy s tématy běžného života. Žáci řeší slovní úlohy pomocí trojčlenky. Šablona č. I, sada č. 1 Vzdělávací oblast Vzdělávací obor Tematický okruh Téma Matematika a její aplikace Matematika a její aplikace Číslo a proměnná Přímá a nepřímá úměrnost Ročník 7. Materiál slouží

Více

Matematický KLOKAN 2005 kategorie Junior

Matematický KLOKAN 2005 kategorie Junior Matematický KLOKAN 2005 kategorie Junior Vážení přátelé, v následujících 75 minutách vás čeká stejný úkol jako mnoho vašich vrstevníků v řadě dalších evropských zemí. V níže uvedeném testu je zadáno čtyřiadvacet

Více

Postup při řešení matematicko-fyzikálně-technické úlohy

Postup při řešení matematicko-fyzikálně-technické úlohy Postup při řešení matematicko-fyzikálně-technické úlohy Michal Kolesa Žádná část této publikace NESMÍ být jakkoliv reprodukována BEZ SOUHLASU autora! Poslední úpravy: 3.7.2010 Úvod Matematicko-fyzikálně-technické

Více

JEDNODUCHÉ SLOVNÍ ÚLOHY NA SČÍTÁNÍ A ODČÍTÁNÍ A NA SČÍTÁNÍ A ODČÍTÁNÍ S POROVNÁVÁNÍM

JEDNODUCHÉ SLOVNÍ ÚLOHY NA SČÍTÁNÍ A ODČÍTÁNÍ A NA SČÍTÁNÍ A ODČÍTÁNÍ S POROVNÁVÁNÍM VY_32_INOVACE_M_206 SLOVNÍ ÚLOHY 3. ROČNÍK JEDNODUCHÉ SLOVNÍ ÚLOHY NA SČÍTÁNÍ A ODČÍTÁNÍ A NA SČÍTÁNÍ A ODČÍTÁNÍ S POROVNÁVÁNÍM Autor: Mgr. Irena Štěpánová Použití: 3. ročník Datum vypracování: 10. 8.

Více

VÝROČNÍ ZPRÁVA. za kalendářní rok 2011. Zemědělské obchodní družstvo Brniště 1, PSČ 471 29 IČO: 00119407. V Brništi dne 27. 2.

VÝROČNÍ ZPRÁVA. za kalendářní rok 2011. Zemědělské obchodní družstvo Brniště 1, PSČ 471 29 IČO: 00119407. V Brništi dne 27. 2. VÝROČNÍ ZPRÁVA za kalendářní rok 2011 Zemědělské obchodní družstvo Brniště 1, PSČ 471 29 IČO: 00119407 V Brništi dne 27. 2. 2012 1) OBECNÉ ÚDAJE 1 a) Údaje z rozvahy, výkazu zisků a ztrát a přílohy k účetní

Více

URČI HODNOTU VÝRAZU. A) Urči hodnotu výrazu 3 2 5 VYPOČÍTEJ 3 2 5 = 6 5 = 1. B) Urči hodnotu výrazu 4( x + 3) pro x = -1

URČI HODNOTU VÝRAZU. A) Urči hodnotu výrazu 3 2 5 VYPOČÍTEJ 3 2 5 = 6 5 = 1. B) Urči hodnotu výrazu 4( x + 3) pro x = -1 URČI HODNOTU VÝRAZU Kolik to je? A) Urči hodnotu výrazu 3 2 5 VYPOČÍTEJ 3 2 5 = 6 5 = 1 určit (vy)počítat dosadit hodnota výrazu (urči) (vypočítej) (dosaď) B) Urči hodnotu výrazu 4( x + 3) pro x = -1 DOSAĎ

Více

Slovní úlohy: Pohyb. a) Stejným směrem

Slovní úlohy: Pohyb. a) Stejným směrem Slovní úlohy: Pohyb a) Stejným směrem Ze stejného města vyjely dva automobily různými rychlostmi. První vyrazil v 10:30 hodin stálou rychlostí 62 km/h. Deset minut za ním vyjel po stejné trase druhý automobil

Více

PRÁCE A ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

PRÁCE A ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie PRÁCE A ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Práce Pokud síla vyvolává pohyb Fyzikální veličina ( odvozená ) značka: W základní jednotka: Joule ( J ) Vztah pro výpočet práce: W = F s Práce

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

Digitální učební materiál

Digitální učební materiál Projekt: Digitální učební materiál Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce a energie Mechanická práce Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce Mechanickou práci koná každé těleso,

Více

MANUÁL. Výukových materiálů. Matematický kroužek 8.ročník MK2

MANUÁL. Výukových materiálů. Matematický kroužek 8.ročník MK2 MANUÁL Výukových materiálů Matematický kroužek 8.ročník MK2 Vypracovala: Mgr. Jana Kotvová 2014 Číslo hodiny: 1 Téma: Celá čísla, přednost matematických operací Očekávané výstupy: žáci počítají jednoduché

Více

Autor: Tomáš Galbička www.nasprtej.cz Téma: Roztoky Ročník: 2.

Autor: Tomáš Galbička www.nasprtej.cz Téma: Roztoky Ročník: 2. Roztoky směsi dvou a více látek jsou homogenní (= nepoznáte jednotlivé částečky roztoku - částice jsou menší než 10-9 m) nejčastěji se rozpouští pevná látka v kapalné látce jedna složka = rozpouštědlo

Více

Téma Pohyb grafické znázornění

Téma Pohyb grafické znázornění Téma Pohyb grafické znázornění Příklad č. 1 Na obrázku je graf závislosti dráhy na čase. a) Jak se bude těleso pohybovat? b) Urči velikost rychlosti pohybu v jednotlivých časových úsecích dráhy. c) Jak

Více

Neotvírej, dokud nedostaneš pokyn od zadávajícího!

Neotvírej, dokud nedostaneš pokyn od zadávajícího! 6. třída Neotvírej, dokud nedostaneš pokyn od zadávajícího! jméno třída číslo žáka až zahájíš práci, nezapomeň: www.scio.cz, s.r.o. Pobřežní 4, 186 Praha 8 tel.: 24 75 555 fax: 24 75 55 e-mail: scio@scio.cz

Více

Příklady z hydrostatiky

Příklady z hydrostatiky Příklady z hydrostatiky Poznámka: Při řešení příkladů jsou zaokrouhlovány pouze dílčí a celkové výsledky úloh. Celý vlastní výpočet všech úloh je řešen bez zaokrouhlování dílčích výsledků. Za gravitační

Více

6. NEJVĚTŠÍ a) malý b) prťavý c) menší d) nejmenší e) miniaturní

6. NEJVĚTŠÍ a) malý b) prťavý c) menší d) nejmenší e) miniaturní Přijímací test - IBACO OSP VERZE CVIČNÁ V následujících úlohách vyberte z nabízených možností slovo či dvojici slov, která se nejlépe hodí na vynechaná místa ve větě v zadání. 1. Při napadení je člověk

Více

Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu

Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud v kovech Elektrický proud = usměrněný pohyb

Více

11090 VŠEOBECNÉ VYKLIZENÍ OSTATNÍCH PLOCH M2 0 Kč

11090 VŠEOBECNÉ VYKLIZENÍ OSTATNÍCH PLOCH M2 0 Kč 11010 VŠEOBECNÉ VYKLIZENÍ ZASTAVĚNÉHO ÚZEMÍ M2 0 Kč zahrnuje odstranění všech překážek pro uskutečnění stavby 11020 VŠEOBECNÉ VYKLIZENÍ ZEMĚDĚLSKÝCH PLOCH M2 0 Kč zahrnuje odstranění všech překážek pro

Více

Výukový materiál zpracován v rámci operačního projektu. EU peníze školám. Registrační číslo projektu: CZ.1.07/1.5.00/34.0512

Výukový materiál zpracován v rámci operačního projektu. EU peníze školám. Registrační číslo projektu: CZ.1.07/1.5.00/34.0512 Výukový materiál zpracován v rámci operačního projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0512 Střední škola ekonomiky, obchodu a služeb SČMSD Benešov, s.r.o. Matematika Trojčlenka

Více

VNITŘNÍ ENERGIE, TEPLO A PRÁCE

VNITŘNÍ ENERGIE, TEPLO A PRÁCE VNITŘNÍ ENERGIE, TEPLO A PRÁCE 1. Vnitřní energie (U) Vnitřní energie je energie uložená v těleseh. Je těžké určit absolutní hodnotu. Pro většinu dějů to není nezbytné, protože ji nejsme shopni uvolnit

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Slovní úlohy II Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Čerm_19a

Více

MATEMATICKÉ DOVEDNOSTI

MATEMATICKÉ DOVEDNOSTI Hodnocení výsledků vzdělávání žáků 9. tříd 005 MA0Z9 MATEMATICKÉ DOVEDNOSTI A Testový sešit obsahuje 7 úloh. Na řešení úloh máte 40 minut. Při řešení konstrukční úlohy užívejte rýsovací potřeby. V průběhu

Více

Daňový systém. Prof. Ing. Václav Vybíhal, CSc.

Daňový systém. Prof. Ing. Václav Vybíhal, CSc. Daňový systém Prof. Ing. Václav Vybíhal, CSc. Téma : Majetkové daně (II) Daň silniční 1. Poplatník daně. 2. Předmět daně. 3. Základ daně. 4. Sazby daně. 5. Vznik a zánik daňové povinnosti. 6. Placení daně.

Více

Základy statistiky pro obor Kadeřník

Základy statistiky pro obor Kadeřník Variace 1 Základy statistiky pro obor Kadeřník Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz 1. Aritmetický průměr

Více

Systém odděleného sběru bioodpadů ve městě Proseč. Analýza potenciálu produkce odpadu

Systém odděleného sběru bioodpadů ve městě Proseč. Analýza potenciálu produkce odpadu Systém odděleného sběru bioodpadů ve městě Proseč Analýza potenciálu produkce odpadu Datum: 28.11.2013 Razítko a podpis zpracovatele Razítko a podpis žadatele Obsah: 1.Identifikační údaje...3 1.1Název

Více

PŘÍLOHA V INFORMAČNÍ LIST INF 4 A ŽÁDOST O INFORMAČNÍ LIST INF 4

PŘÍLOHA V INFORMAČNÍ LIST INF 4 A ŽÁDOST O INFORMAČNÍ LIST INF 4 PŘÍLOHA V INFORMAČNÍ LIST INF 4 A ŽÁDOST O INFORMAČNÍ LIST INF 4 Pokyny k tisku 1. Tiskopis, na kterém je vytištěn informační list INF 4, musí být vytištěn na bílém bezdřevém klíženém papíru o hmotnosti

Více

Ing. Eliška Galambicová Moravskoslezská obchodní akademie, s. r. o.

Ing. Eliška Galambicová Moravskoslezská obchodní akademie, s. r. o. 1) Pan Špaček používá v roce 2014 k podnikání tyto vozidla: 1. osobní automobil 3T57982, pořízen 20. 3. 2014 a bylo používáno až do konce roku 2014. Objem motoru 1850 cm 3, první registrace vozidla byla

Více

1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT,

1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT, 1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT, JEDNOTEK A JEJICH PŘEVODŮ FYZIKÁLNÍ VELIČINY Fyzikálními veličinami charakterizujeme a popisujeme vlastnosti fyzikálních objektů parametry stavů, ve

Více

[2 b.] Zákon o silničním provozu upravuje pravidla provozu: [2 b.] Řidič smí v provozu na pozemních komunikacích užít:

[2 b.] Zákon o silničním provozu upravuje pravidla provozu: [2 b.] Řidič smí v provozu na pozemních komunikacích užít: 1) [2 b.] Zákon o silničním provozu upravuje pravidla provozu: a) Jen na dálnicích a silnicích pro motorová vozidla. b) Na dálnicích, silnicích, místních komunikacích a účelových komunikacích. c) Na všech

Více

1 mm = 0,01 dm 1 m = 1 000 mm 1 mm = 0,001 m 1 km = 1 000 m 1 m = 0,001 km

1 mm = 0,01 dm 1 m = 1 000 mm 1 mm = 0,001 m 1 km = 1 000 m 1 m = 0,001 km Téma: Převody jednotek fyzikálních veličin A. Pravidla pro převody jednotek v desítkové soustavě převádíme-li z jednotky větší na menší číslo bude větší násobíme 10, 100, 1 000, 1 000 000 posuneme desetinou

Více

Výsledný graf ukazuje následující obrázek.

Výsledný graf ukazuje následující obrázek. Úvod do problematiky GRAFY - SPOJNICOVÝ GRAF A XY A. Spojnicový graf Spojnicový graf používáme především v případě, kdy chceme graficky znázornit trend některé veličiny ve zvoleném časovém intervalu. V

Více

Test jednotky, veličiny, práce, energie, tuhé těleso

Test jednotky, veličiny, práce, energie, tuhé těleso DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost

Více

NAKLÁDÁNÍ S BIOODPADEM

NAKLÁDÁNÍ S BIOODPADEM Výsledky sledování indikátoru: NAKLÁDÁNÍ S BIOODPADEM v mikroregionu Drahanská vrchovina za rok 2012 Vydala: správní rada mikroregionu Zpracoval: Mgr.František Vlk Luleč : květen 2013 Úvod Nakládání s

Více

Výčtové typy OTSKP-SPK Skupina stav. dílů 9

Výčtové typy OTSKP-SPK Skupina stav. dílů 9 Výčtové typy OTSKP-SPK Skupina stav. dílů 9 Položka Výčtový typ Hodnoty výčtového typu Cena 911111 OCEL SILNIČ ZÁBRADLÍ NATÍRANÉ M 2 750 Kč Hmotnost zábradlí do 20kg/m přes 20kg/m do 25kg/m přes 25kg/m

Více

Soustava SI, převody jednotek

Soustava SI, převody jednotek Variace 1 Soustava SI, převody jednotek Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Co je fyzika, jednotky

Více

Klíčová slova: matematizace reálných úloh, přímá a nepřímá úměrnost, společná práce, zlomky, procenta, části celku Autor: Mgr.M.

Klíčová slova: matematizace reálných úloh, přímá a nepřímá úměrnost, společná práce, zlomky, procenta, části celku Autor: Mgr.M. Přípravný kurz - Matematika Téma: Slovní úlohy Klíčová slova: matematizace reálných úloh, přímá a nepřímá úměrnost, společná práce, zlomky, procenta, části celku Autor: Mgr.M.Hetmerová 12 19 9:02 Jak pracovat

Více

Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách

Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách Prioritní osa: 1 Počáteční vzdělávání Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách Registrační číslo projektu: CZ.1.07/1.4.00/21. 0918 Název projektu:inovace vzdělávání v

Více

Pohyb tělesa (5. část)

Pohyb tělesa (5. část) Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.

Více

MATEMATIKA NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN OD ZADÁVAJÍCÍHO! 5. třída

MATEMATIKA NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN OD ZADÁVAJÍCÍHO! 5. třída MATEMATIKA 5. třída NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN OD ZADÁVAJÍCÍHO! JMÉNO TŘÍDA ČÍSLO ŽÁKA AŽ ZAHÁJÍŠ PRÁCI, NEZAPOMEŇ: www.scio.cz, s.r.o. Pobřežní 34, 186 00 Praha 8 tel.: 234 705 555 fax: 234 705

Více

Řešení. Příklad 1: zkouška: odpověď: Turisté ušli první den 10 km, druhý den 20 km a třetí den 15 km. Příklad 2:

Řešení. Příklad 1: zkouška: odpověď: Turisté ušli první den 10 km, druhý den 20 km a třetí den 15 km. Příklad 2: Řešení Příklad 1: Turisté ušli za tři dny 45 km. Druhý den ušli dvakrát více než první den. Třetí den o pět km méně než druhý den. Kolik ušli turisté první, druhý a třetí den? zkouška: odpověď: Turisté

Více

MMČR v ledním hokeji 2010

MMČR v ledním hokeji 2010 STATISTIKA MMČR v ledním hokeji 2010 kategorie 8. tříd sk. B - F. Kučery po prvním hracím dnu 28. 31. 3. 2010 ICE Arena Letňany, Tesla Arena Praha 1. MMČR 8. tříd sk. F.Kučery - TABULKA U V VP PP P Skore

Více

při jízdě stejným směrem v čase L/(v2 v1) = 1200/(12 10) s = 600 s = 10 min. jsou dvakrát, třikrát, n-krát delší.

při jízdě stejným směrem v čase L/(v2 v1) = 1200/(12 10) s = 600 s = 10 min. jsou dvakrát, třikrát, n-krát delší. EF1: Dva cyklisté Lenka jede rychlostí v1 = 10 m/s, Petr rychlostí v2 = 12 m/s, tedy v2 > v1, délka uzavřené trasy L = 1200 m. Když vyrazí cyklisté opačnými směry, potom pro čas setkání t platí v1 t +

Více

koncentraci jsme získali roztok o koncentraci 18 %. Urči koncentraci neznámého roztoku.

koncentraci jsme získali roztok o koncentraci 18 %. Urči koncentraci neznámého roztoku. 2.2.2 Slovní úlohy vedoucí na lineární rovnice III Předpoklady: 22 Pedagogická poznámka: Příklady na míchání směsí jsou do dvou hodin rozděleny schválně. Snažím se tak zvýšit šanci, že si hlavní myšlenku

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Do jednoho vagonu se vejde 70

Více

Píklad : Kolik procent základu : a) jsou jeho 4 5 ; b) je 0,7 celku ( základu ); c) je 1 1 4

Píklad : Kolik procent základu : a) jsou jeho 4 5 ; b) je 0,7 celku ( základu ); c) je 1 1 4 1. Vymezení pojm Pi výpotu píklad, které se týkají procent se setkáváme se temi základními pojmy : základ ( z ), poet procent ( p ), procentová ást ( ). Z tchto tí údaje dva známe a tetí mžeme vypoítat.

Více

Klára Kochová, Norbert Rybář PedF UK, Učitelství pro 1. stupeň ZŠ, 4. Ročník Didaktika matematiky s praxí I. Téma: Jedeme na hory (slovní úlohy)

Klára Kochová, Norbert Rybář PedF UK, Učitelství pro 1. stupeň ZŠ, 4. Ročník Didaktika matematiky s praxí I. Téma: Jedeme na hory (slovní úlohy) Téma: Jedeme na hory (slovní úlohy) 1/ Představení 2/ Seznámení s průběhem hodiny: Otázka Kdo jezdí rád na hory? Kam jezdíte? Kdo umí lyžovat? V lednu se chystáme na hory. Nejdřív si musíme všichni pořídit

Více

Ústí nad Labem-Klíše, dne 12.8. 2012. Vážení fotbaloví přátelé,

Ústí nad Labem-Klíše, dne 12.8. 2012. Vážení fotbaloví přátelé, Ústí nad Labem-Klíše, dne 12.8. 2012 Vážení fotbaloví přátelé, dovolte mi vás jménem fotbalového klubu FK Ústí nad Labem a.s. pozvat na další setkání série turnajů Partners Cup, kde hlavní cenou bude opět

Více

výška (cm) počet žáků

výška (cm) počet žáků Statistika 1) Ve školním roce 1997/119 bylo v Brně 3 základních škol, ve kterých bylo celkem 1 tříd. Tyto školy navštěvovalo 11 5 žáků. Určete a) kolik tříd průměrně měla jedna ZŠ, b) kolik žáků průměrně

Více

Chemie paliva a maziva cvičení, pracovní sešit, (II. část).

Chemie paliva a maziva cvičení, pracovní sešit, (II. část). Chemie paliva a maziva cvičení, pracovní sešit, (II. část). Ing. Eliška Glovinová Ph.D. Tato publikace je spolufinancována z Evropského sociálního fondu a státního rozpočtu České republiky. Byla vydána

Více

Slovní úlohy. o pohybu

Slovní úlohy. o pohybu Slovní úloy o poybu Slovní úloy o poybu Na začátek zopakujme z fyziky vzorec pro výpočet průměrné ryclosti: v v je průměrná ryclost v / (m/s) s je ujetá dráa v (m) t je čas potřebný k ujetí dráy s v odinác

Více

Určování hustoty materiálů

Určování hustoty materiálů Určování hustoty materiálů 31 V řadě případů se nám dostanou ke zkoušení předměty, které nelze zkoušet na kameni bez poškození. Na XRF analyzátoru zase nejsme schopni zjistit složení základního materiálu,

Více

Oběžný majetek. Peníze Materiál Nedokončená výroba Hotové výrobky Pohledávky Peníze. Plánování a normování materiálových zásob.

Oběžný majetek. Peníze Materiál Nedokončená výroba Hotové výrobky Pohledávky Peníze. Plánování a normování materiálových zásob. Součástí oběžného majetku jsou: zásoby oběžný finanční majetek pohledávky Oběžný majetek Charakteristickým rysem oběžného majetku je jednorázová spotřeba, v procesu výroby mění svoji formu. Tato změna

Více

Doprava cukrovky z meziskladů do cukrovaru

Doprava cukrovky z meziskladů do cukrovaru Doprava cukrovky z meziskladů do cukrovaru Restrukturalizace českého cukrovarnictví probíhající v posledních letech podstatně snížila počet cukrovarů v České republice. Zatímco v roce 1979 bylo v České

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

Kategorie: U 1 pro žáky 1. ročníků učebních oborů

Kategorie: U 1 pro žáky 1. ročníků učebních oborů Kategorie: U 1 pro žáky 1. ročníků učebních oborů 1) Řešte rovnici, určete podmínky řešení a proveďte zkoušku: 1 1 1 1 1 ) Ze dvou podobných trojúhelníků má jeden obvod 48 cm, strany druhého jsou po řadě

Více

MATEMATIKA 9. TŘÍDA. 0,5 b. Umocnění výrazu (x 2) 2 : 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5

MATEMATIKA 9. TŘÍDA. 0,5 b. Umocnění výrazu (x 2) 2 : 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5 MATEMATIKA 9. TŘÍDA 1. Nechť M je součet druhých mocnin prvních tří přirozených čísel a N součet těchto tří přirozených čísel. Které z následujících tvrzení je pravdivé? (A) M + N = 17 (B) M = 4N (C) M

Více

A3RIP Řízení projektů. 8. seminář 3. 5. 11. 2014

A3RIP Řízení projektů. 8. seminář 3. 5. 11. 2014 A3RIP Řízení projektů 8. seminář 3. 5. 11. 2014 Obsah 1. výpočet čisté mzdy 2. co by měl rozpočet (v seminární práci) obsahovat 3. rozpočet vzorový úkol 4. bonusový úkol 1. výpočet čisté mzdy zákonné pojištění

Více

Florbalový turnaj. Malý projekt. Rybák Luděk. Rok 2009/10. Fakulta textilní Technická univerzita v Liberci Stránka 1

Florbalový turnaj. Malý projekt. Rybák Luděk. Rok 2009/10. Fakulta textilní Technická univerzita v Liberci Stránka 1 Florbalový turnaj Malý projekt Rybák Luděk Rok 2009/10 Fakulta textilní Technická univerzita v Liberci Stránka 1 Obsah Úvod...3 Popis projektu...3 Cíle projektu...3 Strom cílů...4 Časový harmonogram...5

Více

ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů

ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů Autor Mgr. Vladimír Hradecký Číslo materiálu 8_F_1_02 Datum vytvoření 2. 11. 2011 Druh učebního materiálu

Více

Průvodce zpracováním dat pro účely výpočtu množství obalů. Informační materiál pro klienty společnosti EKO-KOM, a.s.

Průvodce zpracováním dat pro účely výpočtu množství obalů. Informační materiál pro klienty společnosti EKO-KOM, a.s. Průvodce zpracováním dat pro účely výpočtu množství Obsah Úvod Přehled používaných způsobů výpočtu množství Příklady používaných způsobů výpočtu množství Příklad nastavení výpočtu množství v aplikaci MS

Více

3 Jaké číslo nosil Jaromír Jágr na dresu v sezóně 1988 1989 (HC Poldi Kladno) A 68 B 15 C 8

3 Jaké číslo nosil Jaromír Jágr na dresu v sezóně 1988 1989 (HC Poldi Kladno) A 68 B 15 C 8 1 leš Valenta získal zlatou na OH 2002 ve sportu akrobatické lyžování hokej skoky na lyžích 2 mistr Evropy z roku 1976 ntonín Panenka byl hokejista florbalista fotbalista 3 Jaké číslo nosil Jaromír Jágr

Více

Příklad : Zákazník zaplatil za konzervy po 12.- Kč a 15.- Kč celkem 324 Kč. Kolik koupil levnějších a kolik dražších konzerv?

Příklad : Zákazník zaplatil za konzervy po 12.- Kč a 15.- Kč celkem 324 Kč. Kolik koupil levnějších a kolik dražších konzerv? . Soustavy lineárních rovnic se dvěma neznámými.. Slovní úloha na lineární rovnici se dvěma neznámými Příklad : Zákazník zaplatil za konzervy po.- Kč a 5.- Kč celkem 4 Kč. Kolik koupil levnějších a kolik

Více

Převody jednotek Vedlejší jednotky objemu

Převody jednotek Vedlejší jednotky objemu Převody jednotek Vedlejší jednotky objemu Pár užitečných rad, jak postupovat při převádění jednotek objemu. Zopakujme si již známé jednotky objemu: Základní jednotka: metr krychlový ( kubík značka m Odvozené

Více

Technický list Chameleon, VHM-E

Technický list Chameleon, VHM-E Obsah Teorie... - 2-1.1 Stanovení optimálního výkonu tepelného čerpadla... - 2-1.2 Rozdělení tepelných čerpadel TC MACH... - 2-1.2.1 Typové řady... - 3-1.2.2 Hmotnost tepelných čerpadel... - 4-1.2.3 Hmotnost

Více

Produkce vybrané zemědělské komodity ve světě

Produkce vybrané zemědělské komodity ve světě UNIVERZITA KARLOVA Přírodovědecká fakulta Produkce vybrané zemědělské komodity ve světě (cvičení z ekonomické geografie) 2005/2006 Pavel Břichnáč 1.roč. Ge-Ka Zadání: Zhodnoťte vývoj a regionální rozdíly

Více

Poznámka...zvýšený objem produkce je podnik schopen pokrýt lepším využitím stávající výrobní kapacity.

Poznámka...zvýšený objem produkce je podnik schopen pokrýt lepším využitím stávající výrobní kapacity. Příklad na řízení pohledávek Podnik má roční objem realizace 18 mil. Kč, náklady na prodané zboží činí celkem 16 mil. Kč, z toho - fixní náklady...6 mil. Kč, - variabilní náklady...10 mil. Kč. Podnik poskytuje

Více

MATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám

MATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám MATEMATIKA DIDAKTICKÝ TEST MAHZD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického

Více