Feynman. Nanosvět & kvantové počítání. vizionář: Pavel Cejnar Ústav částicové a jaderné fyziky MFF UK Praha. Přednášky z moderní fyziky, MFF UK 2018

Rozměr: px
Začít zobrazení ze stránky:

Download "Feynman. Nanosvět & kvantové počítání. vizionář: Pavel Cejnar Ústav částicové a jaderné fyziky MFF UK Praha. Přednášky z moderní fyziky, MFF UK 2018"

Transkript

1 Feynman 100 vizionář: Nanosvět & kvantové počítání Pavel Cejnar Ústav částicové a jaderné fyziky MFF UK Praha Přednášky z moderní fyziky, MFF UK 2018

2 Nano! (CC) Wikimedia US DOE

3 There is plenty of room at the bottom Feynmanova přednáška na banketu Americké fyzikální společnosti, Caltech, 29. prosince 1959 an invitation to enter a new field of physics

4 There is plenty of room at the bottom Feynmanova přednáška na banketu Americké fyzikální společnosti, Caltech, 29. prosince 1959 an invitation to enter a new field of physics Encyclopedia Brittanica na špendlíkové hlavičce: zmenšení x (tečka 1000 atomů). Lze využít taky vnitřek materiálu. Odhad, že na světě je 24 miliónů knih bitů. Při 100 atomech/bit by se všechny vešly do krychle (0,1 mm) 3. Biologické systémy jsou extrémně zhuštěné (v DNA 50 atomů/bit). Potřebujeme se na ně podívat lepší elektronové mikroskopy!

5 There is plenty of room at the bottom Feynmanova přednáška na banketu Americké fyzikální společnosti, Caltech, 29. prosince 1959 an invitation to enter a new field of physics Vypsal dvě ceny po $ 1000: 1. za přenesení informace 1 knižní stránky na plochu o straně 1/25000 x menší Cena vyplacena za 26 let Tomu Newmanovi (student Stanford Uni.) 1.stránka Dickensova Příběhu dvou měst vyleptaná elektronovým mikroskopem na čtverci (200 µm) 2

6 Elektronový mikroskop Vlnová délka elektronu λ = 2πħ p = 2πħc E 2 mc 2 2 ψ(x) E kin λ 1 ev 1.2 nm 10 ev 0.4 nm 100 ev 0.1 nm 1000 ev 0.04 nm ev 0.01 nm ev nm Feynmanovské dráhy P ~ e is A/ħ + e is B/ħ 2 Schrödingerovské vlny P ~ ψ A ( x) + ψ B ( x) 2 A A B B

7 (CC) Wikimedia Elektronový mikroskop Různé verze elektronového mikroskopu: Transmisní (TEM): průchod elektronů tenkou vrstvou materiálu, sestrojen 1931, od 1933 lepší rozlišení než optické mikroskopy, dnes rozlišení až 0,1 nm Skenovací (SEM): svazek elektronů fokusován na 1 bod, sestrojen 1937, dnešní rozlišení lepší než 1 nm Skenovací transmisní (STEM): kombinace SEM+TEM, sestrojen 1938, zásadní upgrade 1970s, dnes rozlišení až 0,1 nm Skenovací tunelový (STM): využívá kvantového tunelového jevu, sestrojen 1981, rozlišení 0,1 nm horizontálně a 0,01 nm vertikálně

8 Elektronový mikroskop Kapky lepidla na povrchu post-it lístku (CC) Wikimedia

9 Elektronový mikroskop Zrnka různých pylů různých rostlin (CC) Wikimedia

10 Elektronový mikroskop Červené krvinky Central Microscopy Research Facility, University of Iowa

11 Elektronový mikroskop Chřipkové viry Foto: BSIP/UIG via Getty Images 100 nm

12 (CC) Wikimedia Elektronový mikroskop Nanodutina v diamantu SuperSTEM Lab. Manchester

13 Elektronový mikroskop Rozhraní zrn krystalu yttrio-hlinitého granátu. SuperSTEM Lab. Manchaster & GFZ Postdam

14 Elektronový mikroskop Sraženina obsahující Cu a Al v hliníkové slitině SuperSTEM Lab. Manchaster & Norwegian Tech. Nat. Univ. Trondheim

15 Elektronový mikroskop Zkřížená dvojvrstva MoS 2 (úhel 6.8 ) demonstrace vysokého rozlišení použité zobrazovací metody Yi Jiang et al., Nature 559, 343 (2018) 0.3 nm

16 Ale prosím vás, už jste nějaký atom někdy viděl? Ernst Mach ( )

17

18 Kvantový mikroskop Figure 1: A photoionization microscope provides direct observation of the electron orbital of a hydrogen atom. The atom is placed in an electric field EE and excited by laser pulses (shown in blue). The ionized electron can escape from the atom along direct and indirect trajectories with respect to the detector (shown on the far right). The phase difference between these trajectories leads to an interference pattern, which is magnified by an electrostatic lens. [Credit: APS/Alan Stonebraker]

19 There is plenty of room at the bottom Feynmanova přednáška na banketu Americké fyzikální společnosti, Caltech, 29. prosince 1959 Vypsal dvě ceny po $ 1000: nejmenší veš 2. za funkční elektromotor umístěný v kostce o straně max. 1/64 palce ( 0.4 mm) Cena vyplacena za méně než rok Williamu McLellanovi (student Caltechu) Manipulace na mikroskopické úrovni: Malé mechanismy mikroautomobil ( aby roztoči mohli jezdit sem a tam ), mikroroboti ( spolkni chirurga ) an invitation to enter a new field of physics Zmenšení elektrických obvodů procesory počítačů, zrychlení výpočtů, zvětšení kapacity, rozšíření možností např. na rozeznávání obličejů ( ten malý počítač, co nosím v hlavě, je schopen to dělat úplně snadno ) Manipulace s jednotlivými atomy syntéza sloučenin na přání Do hry vstupují zákony kvantového světa. Věci tam dole jsou jiné!

20 Manipulace s atomy 5 nm IBM (1989): 35 atomů Xe umístěných na Ni substrátu

21 Manipulace s atomy 5 nm IBM (1989): 35 atomů Xe umístěných na Ni substrátu IBM

22 Manipulace s atomy IBM (2013): film A Boy and His Atom 65 molekul CO na Cu substrátu, 242 obrázků

23 Molekulární motory a další udělátka

24 The Royal Swedish Academy of Sciences Molekulární motory a další udělátka Molekulární výtah Molekulární elektromotor

25 The Royal Swedish Academy of Sciences Molekulární motory a další udělátka Molekulární výtah Molekulární motor Molekulární autíčko

26 Nanomateriály Fulleren C 60

27 Nanomateriály Grafen (CC) Wikimedia

28 Fyzika počítačů Počítače fyziky Feynman se vždy zajímal (kromě všeho ostatního) o výpočetní aspekty fyziky, náročnost výpočtů atd. (již za války se podílel na vývoji prapočítačů ) V 80. letech vypisuje pravidelný přednáškový kurs The Physics of Computation na Caltechu Přednáší zpočátku společně J. Hopfieldem & C. Meadem. Náplň: výpočetní složitost, teorie informace, fyzikální & fundamentální limity počítání : těžké začátky, Feynman v nemocnici kvůli počínající rakovině, kurs není příliš úspěšný : stabilizace obsahu : Feynman poprvé vede celý kurs sám , : kurs nahráván 1988: měsíc před smrtí dává Feynman souhlas se vznikem knihy (publikována 1996)

29 Fyzika počítačů 1960: První úvahy o fyzikálních mezích miniaturizace výpočetních procesů 1961: Rolf Landauer ukázal, že každý ireverzibilní krok výpočtu produkuje entropii-teplo. Minimální teplo generované při vymazání 1 bitu informace: Q min = ln 2 k B T 1969: První návrh spinového počítače (kvantové vlastnosti chápány spíš jako omezení) 1973: Charles Benett předkládá koncept univerzálního reverzibilního počítače 1981: Edward Fredkin & Tommaso Toffoli demonstrují výpočetní reverzibilitu pomocí billiard ball computer Rolf Landauer ( ) (CC) Wikimedia Charles Benett (*1934) (*1943) Edward Fredkin

30 Kvantový bit = qubit, Q-bit, Qbit, q-bit, qbit, kvabit Realizace elementární jednotky informace pomocí kvantového spinu částice, např. elektronu 0 1

31 Kvantový bit = qubit, Q-bit, Qbit, q-bit, qbit, kvabit Realizace elementární jednotky informace pomocí kvantového spinu částice, např. elektronu 0 1 Podle kvantové mechaniky je spin popsán vlnovou funkcí, ψ ψ, ψ ψ 0, ψ 1 C ψ ψ 1 2 = 1 Qbit nemá jednoznačný informační obsah. Jeho vlnová funkce umožňuje současné nabývání obou logických hodnot 0 a 1. Pravděpodobnosti jejich naměření: P ψ 0 = ψ 0 2 P ψ (1) = ψ 1 2

32 Simulace kvantových systémů

33 Simulace kvantových systémů Příklad: N kvantových spinů Počet bázových konfigurací typu N je: d = 2 N (exponenciálně roste s N)

34 Simulace kvantových systémů Příklad: N kvantových spinů i j Počet bázových konfigurací typu N je: d = 2 N (exponenciálně roste s N) Dva nebo více spinů se mohou vyskytnout v kvantově provázaném stavu, kdy neexistují vlnové funkce jednotlivých spinů ale jen vlnová funkce celé skupiny: ψ ij ψ ij i j, ψ ij i j, ψ ij i j, ψ ij i j např. 0 ψ ij ψ i ψ i i, ψ i i ψ j ψ j j, ψ j j Právě díky takovýmto stavům se kvantová mechanika nedá reprezentovat lokální teorií klasického typu (důsledek tzv. Bellových nerovností z roku 1964). 0

35 Simulace kvantových systémů John Bell ( ) ukázal, že popis dvojice maximálně provázaných částic (myšlenkový experiment Einsteina- Podolského-Rosena z roku 1935) pomocí libovolné lokální teorie klasického typu (lokální teorie se skrytými parametry) implikuje splnění jistých nerovností, které kvantová mechanika porušuje. Pozdější opakované a zdokonalované experimenty daly za pravdu kvantové mechanice

36 Simulace kvantových systémů Paralelní simulace kvantového systému klasickým počítačem by vyžadovala nelokální interakce všech komponent Simulace musí být prováděna pomocí jiného kvantového systému idea univerzálního kvantového simulátoru Kvantové systémy se možná dají využít i k řešení těžkých nefyzikálních problémů (pokud problém lze vhodně namapovat na kvantovou mechaniku) m John Bell ( ) ukázal, že popis dvojice maximálně provázaných částic (myšlenkový experiment Einsteina- Podolského-Rosena z roku 1935) pomocí libovolné lokální teorie klasického typu (lokální teorie se skrytými parametry) implikuje splnění jistých nerovností, které kvantová mechanika porušuje. Pozdější opakované a zdokonalované experimenty daly za pravdu kvantové mechanice

37 L n /L(2) Faktorizace! Číslo N je součin 2 velkých prvočísel N = P Q Problém: Pro zadané N najdi P a Q Používá se při šifrování s veřejně dostupným klíčem Nejlepší klasický algoritmus má počet kroků n log 10 2 n L(n) e n = počet dec. cifer n

38 L n /L(2) Faktorizace! Číslo N je součin 2 velkých prvočísel N = P Q Problém: Pro zadané N najdi P a Q Používá se při šifrování s veřejně dostupným klíčem Nejlepší klasický algoritmus má počet kroků L(n) e n = počet dec. cifer V roce 1994 byl objeven kvantový algoritmus L n n 2 Kvantový Shorův algoritmus pro faktorizaci čísla 15 (= 3 5) na počítači s 5 Qbity {ψ 0, ψ 1 } {1,0} n log 10 2 n n Peter Shor (*1959) log 10 (n) log 10 (log 10 n) {1,0} {1,0} {1,0} {1,0} arxiv: [cs.et]

39 Kvantové algoritmy Kvantové algoritmy jsou založeny na jevu interference Obrázek: Fabrizio Logiurato/Google Earth

40 Kvantové algoritmy Příklad: Deutsch-Jozsův algoritmus pro 1-bitovou funkci Jediným voláním funkce jsme schopni zjistit její globální vlastnost! x = f (x) = const = const Hademardova transf. 1,0 {+ 1 2,+ 1 2 } 0,1 {+ 1 2, 1 2 } ψ 1 = {1,0} 1 H H 0 => f const 1 => f = const ψ 2 = {1,0} 2 Not transformace 1,0 {0,1} 0,1 {1,0} H f Výpočet funkce 1,0 1 1,0 2 1,0 1 f(0) 2 0,1 1 1,0 2 0,1 1 f(1) 2

41 Problém dekoherence Kvantové interferenční chování je citlivě závislé na interakcích s dalšími kvantovými objekty (vnějším prostředím, neměřenými stupni volnosti ) Objekt, např. atom, který monitoruje dráhu částice uvnitř přístroje (z jeho kvantového stavu se dá jednoznačně zjistit, kterou ze štěrbin částice prošla) A A B B

42 Možné realizace 1996: Seth Lloyd návrat k myšlence kvantového simulátoru: demonstrace kvantových principů, možné praktické využití v mnohočásticové fyzice (mřížové systémy, velké molekuly ) Atomy Ionty Elektrony optické mříže lineární řetízky kvantové tečky 1D dutiny 2D pasti soustavy supravodivých obvodů (SQUIDů) 2D dutiny (f) coulombické krystaly elektrony na povrchu kapalného He Georgescu, Ashhab, Nori, Rev. Mod. Phys. 86 (2014) 153

43 D Wave Možné realizace 1996: Seth Lloyd návrat k myšlence kvantového simulátoru: demonstrace kvantových principů, možné praktické využití v mnohočásticové fyzice (mřížové systémy, velké molekuly ) Atomy Ionty Elektrony optické mříže lineární řetízky kvantové tečky 1D dutiny T~15 mk R~μm, I~μA 2D pasti soustavy supravodivých obvodů (SQUIDů) Nb 2D dutiny (f) coulombické krystaly elektrony na povrchu kapalného He Georgescu, Ashhab, Nori, Rev. Mod. Phys. 86 (2014) 153

44 Intel IBM IBM Q

45 D Wave Piš, barde, střádej. Zdroj:

46 Splní se Feynmanův sen?

00/20. Kvantové počítání. Pavel Cejnar Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta UK, Praha IBM

00/20. Kvantové počítání. Pavel Cejnar Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta UK, Praha IBM IBM 00/20 Kvantové počítání Pavel Cejnar Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta UK, Praha přednáška JČMF, Praha, říjen 2018 Intel 01/20 IBM IBM Q D Wave Piš, barde, střádej. 02/20

Více

Kvantové počítání. Pavel Cejnar. Program: 1) Historie 2) Principy 3) Příklady 4) Realizace. ÚČJF MFF UK Praha mff.cuni.cz.

Kvantové počítání. Pavel Cejnar. Program: 1) Historie 2) Principy 3) Příklady 4) Realizace. ÚČJF MFF UK Praha mff.cuni.cz. Kvantové počítání Pavel Cejnar ÚČJF MFF UK Praha pavel.cejnar @ mff.cuni.cz Program: ) istorie ) Principy 3) Příklady 4) Realizace Nick Park Nové Strašecí, leden 6 Kvantové počítání ) istorie ) Principy

Více

Kvantová informatika pro komunikace v budoucnosti

Kvantová informatika pro komunikace v budoucnosti Kvantová informatika pro komunikace v budoucnosti Antonín Černoch Regionální centrum pokročilých technologií a materiálů Společná laboratoř optiky University Palackého a Fyzikálního ústavu Akademie věd

Více

Vlny. částice? nebo. Pavel Cejnar ÚČJF MFF UK FJDP 2018/19. Objevování kvantového světa

Vlny. částice? nebo. Pavel Cejnar ÚČJF MFF UK FJDP 2018/19. Objevování kvantového světa Objevování kvantového světa Pavel Cejnar ÚČJF MFF UK Vlny nebo částice? FJDP 2018/19 Entrée Sloupy stvoření oblaky chladného plynu a prachu v Orlí mlhovině NASA, ESA Hubble Space Telescope Vizualizace

Více

Kvantové provázání. Pavel Cejnar ÚČJF MFF UK Praha

Kvantové provázání. Pavel Cejnar ÚČJF MFF UK Praha Kvantové provázání Pavel Cejnar ÚČJF MFF UK Praha Seminář PřF UK Praha, listopad 2018 Kvantové provázání monopartitní tripartitní multipartitní Kanazawa, Japonsko bipartitní Zápasníci, Uffizi muzeum, Florencie

Více

Kvantová fyzika. Pavel Cejnar mff.cuni.cz. Jiří Dolejší mff.cuni.cz

Kvantová fyzika. Pavel Cejnar mff.cuni.cz. Jiří Dolejší mff.cuni.cz Kvantová fyzika Pavel Cejnar pavel.cejnar @ mff.cuni.cz Jiří Dolejší jiri.dolejsi @ mff.cuni.cz Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta UK Praha Světlo = vlny i částice! 19. století:

Více

Mikro a nano vrstvy. Technologie a vlastnosti tenkých vrstev, tenkovrstvé sensory - N444028

Mikro a nano vrstvy. Technologie a vlastnosti tenkých vrstev, tenkovrstvé sensory - N444028 Mikro a nano vrstvy 1 Co je nanotechnolgie? Slovo pochází z řečtiny = malost, trpaslictví. Z něj n j odvozen termín n nanotechnologie. Jako nanotechnologie je označov ována oblast vědy, jejímž cílem je

Více

Kvantová fyzika. Pavel Cejnar mff.cuni.cz. Jiří Dolejší mff.cuni.cz

Kvantová fyzika. Pavel Cejnar mff.cuni.cz. Jiří Dolejší mff.cuni.cz Kvantová fyzika Pavel Cejnar pavel.cejnar @ mff.cuni.cz Jiří Dolejší jiri.dolejsi @ mff.cuni.cz Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta UK Praha Dvouštěrbinový experiment A Fig.

Více

Pavel Cejnar. pavel.cejnar @ mff.cuni.cz. Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta University Karlovy v Praze

Pavel Cejnar. pavel.cejnar @ mff.cuni.cz. Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta University Karlovy v Praze Podivuhodná říše kvant Pavel Cejnar pavel.cejnar @ mff.cuni.cz Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta University Karlovy v Praze Hvězdárna a planetárium Brno, 22. 1. 2015 Podivuhodná

Více

Od kvantové mechaniky k chemii

Od kvantové mechaniky k chemii Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi

Více

Kvantové algoritmy a bezpečnost. Václav Potoček

Kvantové algoritmy a bezpečnost. Václav Potoček Kvantové algoritmy a bezpečnost Václav Potoček Osnova Úvod: Kvantové zpracování informace Shorův algoritmus Kvantová distribuce klíče Post-kvantové zabezpečení Úvod Kvantové zpracování informace Kvantový

Více

Podivuhodný grafen. Radek Kalousek a Jiří Spousta. Ústav fyzikálního inženýrství a CEITEC Vysoké učení technické v Brně. Čichnova 19. 9.

Podivuhodný grafen. Radek Kalousek a Jiří Spousta. Ústav fyzikálního inženýrství a CEITEC Vysoké učení technické v Brně. Čichnova 19. 9. Podivuhodný grafen Radek Kalousek a Jiří Spousta Ústav fyzikálního inženýrství a CEITEC Vysoké učení technické v Brně Čichnova 19. 9. 2014 Osnova přednášky Úvod Co je grafen? Trocha historie Některé podivuhodné

Více

Elektronová mikroskopie SEM, TEM, AFM

Elektronová mikroskopie SEM, TEM, AFM Elektronová mikroskopie SEM, TEM, AFM Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první

Více

VYPOUŠTĚNÍ KVANTOVÉHO DŽINA

VYPOUŠTĚNÍ KVANTOVÉHO DŽINA VYPOUŠTĚNÍ KVANTOVÉHO DŽINA ÚSPĚŠNÉ OMYLY V HISTORII KVANTOVÉ FYZIKY Pavel Cejnar Ústav částicové a jaderné fyziky MFF UK Praha Prosinec 2009 1) STARÁ KVANTOVÁ TEORIE Světlo jsou částice! (1900-1905) 19.

Více

I a II. Kvantová mechanika. JSF094 Akademický rok

I a II. Kvantová mechanika. JSF094 Akademický rok Kvantová mechanika JSF094 kademický rok 017-018 I a II Čas a místo Úterý 13:10-14:40 Středa 10:40-1:10 cvičení posluchárna ÚČJF3/945 Čtvrtek 10:40-1:10 Přednášející prof. Pavel Cejnar ÚČJF místnost: 934

Více

EXKURZE DO NANOSVĚTA aneb Výlet za EM a SPM. Pracovní listy teoretická příprava

EXKURZE DO NANOSVĚTA aneb Výlet za EM a SPM. Pracovní listy teoretická příprava EXKURZE DO NANOSVĚTA aneb Výlet za EM a SPM Pracovní listy teoretická příprava Úloha 1: První nahlédnutí do nanosvěta Novou část dějin mikroskopie otevřel německý elektroinženýr, laureát Nobelovy ceny

Více

Proč elektronový mikroskop?

Proč elektronový mikroskop? Elektronová mikroskopie Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop,, 1 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první komerční

Více

Úvod do kvantového počítání

Úvod do kvantového počítání Osnova Katedra počítačů, Fakulta elektrotechnická České vysoké učení technické v Praze 10. března 2005 O přednáškách Osnova Přehled k přednáškám Proč kvantové počítání a počítače 1 Úvod do kvantového počítaní

Více

Paradoxy kvantové mechaniky

Paradoxy kvantové mechaniky Paradoxy kvantové mechaniky Karel molek Ústav technické a experimentální fyziky, ČVUT Bezinterakční měření Mějme bombu, která je aktivována velmi citlivým mechanismem v podobě zrcátka, které je propojeno

Více

Komerční výrobky pro kvantovou kryptografii

Komerční výrobky pro kvantovou kryptografii Cryptofest 05 Katedra počítačů, Fakulta elektrotechnická České vysoké učení technické v Praze 19. března 2005 O čem bude řeč Kryptografie Kryptografie se zejména snaží řešit: autorizovanost přístupu autenticitu

Více

Přehled posledních experimentů skupiny kvantové a nelineární optiky v Olomouci

Přehled posledních experimentů skupiny kvantové a nelineární optiky v Olomouci Přehled posledních experimentů skupiny kvantové a nelineární optiky v Olomouci Jan Soubusta, Antonín Černoch, Karel Lemr, Karol Bartkiewicz, Radek Machulka, Společná laboratoř optiky Univerzity Palackého

Více

nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL

nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL Inovace a rozvoj studia nanomateriálů na TUL nano.tul.cz Tyto materiály byly vytvořeny v rámci projektu ESF OP VK: Inovace a rozvoj studia nanomateriálů na Technické univerzitě v Liberci Zdravotní rizika

Více

Principy počítačů I Perspektivní technologie, měření výkonnosti a spolehlivost

Principy počítačů I Perspektivní technologie, měření výkonnosti a spolehlivost Principy počítačů I Perspektivní technologie, měření výkonnosti a spolehlivost snímek 1 Principy počítačů Část XI Perspektivní technologie, měření výkonnosti a spolehlivost 1 snímek 2 1 cm 1 µm 50 nm 1

Více

Krystalografie a strukturní analýza

Krystalografie a strukturní analýza Krystalografie a strukturní analýza O čem to dneska bude (a nebo také nebude): trocha historie aneb jak to všechno začalo... jak a čím pozorovat strukturu látek difrakce - tak trochu jiný mikroskop rozptyl

Více

Věra Mansfeldová. vera.mansfeldova@jh-inst.cas.cz Ústav fyzikální chemie Jaroslava Heyrovského AV ČR, v. v. i.

Věra Mansfeldová. vera.mansfeldova@jh-inst.cas.cz Ústav fyzikální chemie Jaroslava Heyrovského AV ČR, v. v. i. Mikroskopie, která umožnila vidět Feynmanův svět Věra Mansfeldová vera.mansfeldova@jh-inst.cas.cz Ústav fyzikální chemie Jaroslava Heyrovského AV ČR, v. v. i. Richard P. Feynman 1918-1988 1965 - Nobelova

Více

Fotonické nanostruktury (nanofotonika)

Fotonické nanostruktury (nanofotonika) Základy nanotechnologií KEF/ZANAN Fotonické nanostruktury (nanofotonika) Jan Soubusta 4.11. 2015 Obsah 1. ÚVOD 2. POHLED DO MIKROSVĚTA 3. OD ELEKTRONIKY K FOTONICE 4. FYZIKA PRO NANOFOTONIKU 5. PERIODICKÉ

Více

Fotonické nanostruktury (alias nanofotonika)

Fotonické nanostruktury (alias nanofotonika) Základy nanotechnologií KEF/ZANAN Fotonické nanostruktury (alias nanofotonika) Jan Soubusta 27.10. 2017 Obsah 1. ÚVOD 2. POHLED DO MIKROSVĚTA 3. OD ELEKTRONIKY K FOTONICE 4. FYZIKA PRO NANOFOTONIKU 5.

Více

Fyzik potkává filmaře

Fyzik potkává filmaře Den otevřených dveří MFF UK, 23.11.2017 Tři setkání (nejen) s Einsteinem, aneb: Fyzik potkává filmaře Pavel Cejnar Ústav částicové a jaderné fyziky, MFF UK Praha Einstein v Praze: duben 1911 červen 1912

Více

EM, aneb TEM nebo SEM?

EM, aneb TEM nebo SEM? EM, aneb TEM nebo SEM? Jiří Šperka Přírodovědecká fakulta, Masarykova univerzita, Brno 2. únor 2011 / Prezentace pro studentský seminář Jiří Šperka (Masarykova univerzita) SEM a TEM 2. únor 2011 1 / 21

Více

Difrakce elektronů v krystalech a zobrazení atomů

Difrakce elektronů v krystalech a zobrazení atomů Difrakce elektronů v krystalech a zobrazení atomů Ondřej Ticháček, PORG, ondrejtichacek@gmail.com Eva Korytiaková, Gymnázium Nové Zámky, korpal@pobox.sk Abstrakt: Jak vypadá vnitřek hmoty? Lze spatřit

Více

Vybrané podivnosti kvantové mechaniky

Vybrané podivnosti kvantové mechaniky Vybrané podivnosti kvantové mechaniky Pole působnosti kvantové mechaniky Středem zájmu KM jsou mikroskopické objekty Typické rozměry 10 10 až 10 16 m Typické energie 10 22 až 10 12 J Studované objekty:

Více

Optické kvantové zpracování informace

Optické kvantové zpracování informace Optické kvantové zpracování informace L. Čelechovská, M. Dušek, H. Fikerová, R. Filip, M. Gajdacz, M. Gavenda, Z. Hradil, M. Ježek, P. Marek, M. Mičuda, M. Miková, L. Mišta, T. Opatrný, L. Slodička, I.

Více

Lekce 4 Statistická termodynamika

Lekce 4 Statistická termodynamika Lekce 4 Statistická termodynamika Osnova 1. Co je statistická termodynamika 2. Mikrostav, makrostav a Gibbsův soubor 3. Příklady Gibbsových souborů 4. Souborové střední hodnoty 5. Časové střední hodnoty

Více

Karel Lemr. web: Karel Lemr Fotonové páry 1 / 26

Karel Lemr. web:     Karel Lemr Fotonové páry 1 / 26 Kvantové zpracování informace s fotonovými páry Karel Lemr Společná laboratoř optiky UP Olomouc a FzÚ AVČR web: http://jointlab.upol.cz/lemr email: lemr@jointlab.upol.cz Karel Lemr Fotonové páry 1 / 26

Více

Elektronový obal atomu

Elektronový obal atomu Elektronový obal atomu Vlnění o frekvenci v se může chovat jako proud částic (kvant - fotonů) o energii E = h.v Částice pohybující se s hybností p se může chovat jako vlna o vlnové délce λ = h/p Kde h

Více

Kvantová fyzika a náš svět

Kvantová fyzika a náš svět Kvantová fyzika a náš svět Miloslav Dušek Motto: Mě velmi těší, že se musíme uchýlit k tak podivným pravidlům a bizarnímu způsobu uvažování, abychom pochopili Přírodu, a baví mě o tom lidem vykládat.

Více

Jádro se skládá z kladně nabitých protonů a neutrálních neutronů -> nukleony

Jádro se skládá z kladně nabitých protonů a neutrálních neutronů -> nukleony Otázka: Atom a molekula Předmět: Chemie Přidal(a): Dituse Atom = základní stavební částice všech látek Skládá se ze 2 částí: o Kladně nabité jádro o Záporně nabitý elektronový obal Jádro se skládá z kladně

Více

školní vzdělávací program ŠKOLNÍ VZDĚLÁVACÍ PROGRAM DR. J. PEKAŘE V MLADÉ BOLESLAVI RVP G 8-leté gymnázium Fyzika II. Gymnázium Dr.

školní vzdělávací program ŠKOLNÍ VZDĚLÁVACÍ PROGRAM DR. J. PEKAŘE V MLADÉ BOLESLAVI RVP G 8-leté gymnázium Fyzika II. Gymnázium Dr. školní vzdělávací program PLACE HERE Název školy Adresa Palackého 211, Mladá Boleslav 293 80 Název ŠVP Platnost 1.9.2009 Dosažené vzdělání Střední vzdělání s maturitní zkouškou Název RVP Délka studia v

Více

Metody charakterizace

Metody charakterizace Metody y strukturní analýzy Metody charakterizace nanomateriálů I Význam strukturní analýzy pro studium vlastností materiálů Experimentáln lní metody využívan vané v materiálov lovém m inženýrstv enýrství:

Více

Princip metody Transport částic Monte Carlo v praxi. Metoda Monte Carlo. pro transport částic. Václav Hanus. Koncepce informatické fyziky, FJFI ČVUT

Princip metody Transport částic Monte Carlo v praxi. Metoda Monte Carlo. pro transport částic. Václav Hanus. Koncepce informatické fyziky, FJFI ČVUT pro transport částic Koncepce informatické fyziky, FJFI ČVUT Obsah Princip metody 1 Princip metody Náhodná procházka 2 3 Kódy pro MC Příklady použití Princip metody Náhodná procházka Příroda má náhodný

Více

Lasery RTG záření Fyzika pevných látek

Lasery RTG záření Fyzika pevných látek Lasery RTG záření Fyzika pevných látek Lasery světlo monochromatické koherentní malá rozbíhavost svazku lze ho dobře zfokusovat aktivní prostředí rezonátor fotony bosony laser stejný kvantový stav učební

Více

Struktura atomu. Beránek Pavel, 1KŠPA

Struktura atomu. Beránek Pavel, 1KŠPA Struktura atomu Beránek Pavel, 1KŠPA Co je to atom? Částice, kterou již nelze chemicky dělit Fyzikálně ji lze dělit na elementární částice Modely atomů Model z antického Řecka (Démokritos) Pudinkový model

Více

Úvod do nano a mikrotechnologií

Úvod do nano a mikrotechnologií Úvod do nano a mikrotechnologií 5. přednáška: Kvantová mechanika - Schrödingerova rovnice Tunelový jev a kvantové uvěznění Pásový diagram pevné látky a jeho závislost na struktuře materiálu Elektrofyzikální

Více

Za hranice současné fyziky

Za hranice současné fyziky Za hranice současné fyziky Zásadní změny na počátku 20. století Kvantová teorie (Max Planck, 1900) teorie malého a lehkého Teorie relativity (Albert Einstein) teorie rychlého (speciální relativita) Teorie

Více

Úvod do kvantového počítání

Úvod do kvantového počítání 2. přednáška Katedra počítačů, Fakulta elektrotechnická České vysoké učení technické v Praze 17. března 2005 Opakování Část I Přehled z minulé hodiny Opakování Alternativní výpočetní modely Kvantové počítače

Více

Fyzika atomového jádra

Fyzika atomového jádra Fyzika atomového jádra (NJSF064) František Knapp http://www.ipnp.cz/knapp/jf/ frantisek.knapp@mff.cuni.cz Literatura [1] S.G. Nilsson, I. Rangarsson: Shapes and shells in nuclear structure [2] R. Casten:

Více

Nekovalentní interakce

Nekovalentní interakce Nekovalentní interakce Jan Řezáč UOCHB AV ČR 3. listopadu 2016 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 3. listopadu 2016 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii

Více

Nekovalentní interakce

Nekovalentní interakce Nekovalentní interakce Jan Řezáč UOCHB AV ČR 31. října 2017 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 31. října 2017 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii 4 Výpočty

Více

Fyzika IV. g( ) Vibrace jader atomů v krystalové mříži

Fyzika IV. g( ) Vibrace jader atomů v krystalové mříži Vibrace jader atomů v krystalové mříži v krystalu máme N základních buněk, v každé buňce s atomů, které kmitají kolem rovnovážných poloh výchylky kmitů jsou malé (Taylorův rozvoj): harmonická aproximace

Více

Materiálový výzkum na ústavu anorganické chemie. Ondřej Jankovský

Materiálový výzkum na ústavu anorganické chemie. Ondřej Jankovský Materiálový výzkum na ústavu anorganické chemie Ondřej Jankovský ÚSTAV ANORGANICKÉ CHEMIE Koordinační chemie Materiály pro fotoniku Oxidové materiály Polovodiče a nanomateriály Teoretická chemie Vedoucí

Více

10/21/2013. K. Záruba. Chování a vlastnosti nanočástic ovlivňuje. velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita

10/21/2013. K. Záruba. Chování a vlastnosti nanočástic ovlivňuje. velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita Chování a vlastnosti nanočástic ovlivňuje velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita K. Záruba Optická mikroskopie Elektronová mikroskopie (SEM, TEM) Fotoelektronová

Více

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu. Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.

Více

Kvantová kryptografie

Kvantová kryptografie PEF MZLU v Brně 18. listopadu 2009 Úvod V dnešní době se používá pro bezpečnou komunikaci asymetrická kryptografie. Jde o silnou šifrovací metodu, která je v dnešní době s použitím současných technologií

Více

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník VLNOVÁ OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník Vlnová optika Světlo lze chápat také jako elektromagnetické vlnění. Průkopníkem této teorie byl Christian Huyghens. Některé jevy se dají

Více

SLO/PGSZZ Státní doktorská zkouška Sdz Z/L. Povinně volitelné předměty 1 - jazyková průprava (statut bloku: B)

SLO/PGSZZ Státní doktorská zkouška Sdz Z/L. Povinně volitelné předměty 1 - jazyková průprava (statut bloku: B) 1 Studijní program: P0533D110002 Aplikovaná fyzika Akademický rok: 2019/2020 Studijní obor: Studium: Studijní plán: Aplikovaná fyzika prezenční/kombinované AFYZ 1. ročník IA18 Specializace: 00 Verze: 2019

Více

Úvod do fyziky tenkých vrstev a povrchů. Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál

Úvod do fyziky tenkých vrstev a povrchů. Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál Úvod do fyziky tenkých vrstev a povrchů Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál ty i hlavní typy nepružných srážkových proces pr chodu energetických

Více

Co je litografie? - technologický proces sloužící pro vytváření jemných struktur (obzvláště mikrostruktur a nanostruktur)

Co je litografie? - technologický proces sloužící pro vytváření jemných struktur (obzvláště mikrostruktur a nanostruktur) Co je litografie? - technologický proces sloužící pro vytváření jemných struktur (obzvláště mikrostruktur a nanostruktur) -přenesení dané struktury na povrch strukturovaného substrátu Princip - interakce

Více

Difrakce elektronů v krystalech, zobrazení atomů

Difrakce elektronů v krystalech, zobrazení atomů Difrakce elektronů v krystalech, zobrazení atomů T. Sýkora 1, M. Lanč 2, J. Krist 3 1 Gymnázium Českolipská, Českolipská 373, 190 00 Praha 9, tomas.sykora@email.cz 2 Gymnázium Otokara Březiny a SOŠ Telč,

Více

VYUŽITÍ NANOMATERIÁLŮ K VÝROBĚ POTRAVIN SOUČASNÝ STAV V EU

VYUŽITÍ NANOMATERIÁLŮ K VÝROBĚ POTRAVIN SOUČASNÝ STAV V EU Přednáška v rámci Mezinárodní konference k novým potravinám, Praha, 20. 6. 2018 VYUŽITÍ NANOMATERIÁLŮ K VÝROBĚ POTRAVIN SOUČASNÝ STAV V EU Vladimír Ostrý, doc., MVDr., CSc. Státní zdravotní ústav Centrum

Více

1 Tepelné kapacity krystalů

1 Tepelné kapacity krystalů Kvantová a statistická fyzika 2 Termodynamika a statistická fyzika) 1 Tepelné kapacity krystalů Statistická fyzika dokáže vysvětlit tepelné kapacity látek a jejich teplotní závislosti alespoň tehdy, pokud

Více

Proč by se průmysl měl zabývat výzkumem nanomateriálů

Proč by se průmysl měl zabývat výzkumem nanomateriálů Proč by se průmysl měl zabývat výzkumem nanomateriálů Měření velikost částic Jak vnímat nanomateriály Pigmenty x nanopigmenty Nové vlastnosti? Proč se věnovat studiu nanomateriálů Velikost (cm) 10-1000

Více

NANOTECHNOLOGIE. pro začátečníky. České Budějovice

NANOTECHNOLOGIE. pro začátečníky. České Budějovice NANOTECHNOLOGIE pro začátečníky České Budějovice 16. 2. 2019 The work presented in this document is supported by the European Commission s FP7 programme project Scientix 2 (Grant agreement N. 337250).

Více

Laboratorní úloha č. 7 Difrakce na mikro-objektech

Laboratorní úloha č. 7 Difrakce na mikro-objektech Laboratorní úloha č. 7 Difrakce na mikro-objektech Úkoly měření: 1. Odhad rozměrů mikro-objektů z informací uváděných výrobcem. 2. Záznam difrakčních obrazců (difraktogramů) vzniklých interakcí laserového

Více

Nanotechnologie v medicíně. Předmět: Lékařská přístrojová technika

Nanotechnologie v medicíně. Předmět: Lékařská přístrojová technika Nanotechnologie v medicíně Předmět: Lékařská přístrojová technika Molekulární nanotechnologie (MNT) µ Nanomedicína Definice: nanomedicína může být definována jako sledování lidského organismu, reparace

Více

Fyzika IV. -ezv -e(z-zv) kov: valenční elektrony vodivostní elektrony. Elektronová struktura pevných látek model volných elektronů

Fyzika IV. -ezv -e(z-zv) kov: valenční elektrony vodivostní elektrony. Elektronová struktura pevných látek model volných elektronů Elektronová struktura pevných látek model volných elektronů 1897: J.J. Thomson - elektron jako částice 1900: P. Drude: kinetická teorie plynů - kov jako plyn elektronů Drudeho model elektrony se mezi srážkami

Více

Kvantové tečky. a jejich využití v bioanalýze. Jiří Kudr SPOLEČNĚ PRO VÝZKUM, ROZVOJ A INOVACE CZ/FMP.17A/0436

Kvantové tečky. a jejich využití v bioanalýze. Jiří Kudr SPOLEČNĚ PRO VÝZKUM, ROZVOJ A INOVACE CZ/FMP.17A/0436 SPOLEČNĚ PRO VÝZKUM, ROZVOJ A INOVACE CZ/FMP.17A/0436 Kvantové tečky a jejich využití v bioanalýze Jiří Kudr Datum: 9.4.2015 Hvězdárna Valašské Meziříčí, p.o, Vsetínská 78, Valašské Meziříčí, Nanotechnologie

Více

ATOM VÝVOJ PŘEDSTAV O SLOŽENÍ A STRUKTUŘE ATOMU

ATOM VÝVOJ PŘEDSTAV O SLOŽENÍ A STRUKTUŘE ATOMU Předmět: Ročník: Vytvořil: Datum: CHEMIE PRVNÍ Mgr. Tomáš MAŇÁK 20. říjen 202 Název zpracovaného celku: ATOM VÝVOJ PŘEDSTAV O SLOŽENÍ A STRUKTUŘE ATOMU Leukippos, Démokritos (5. st. př. n. l.; Řecko).

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: Lasery - druhy

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: Lasery - druhy Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Lasery - druhy Laser je tvořen aktivním prostředím, rezonátorem a zdrojem energie. Zdrojem energie, který může

Více

Zdroje optického záření

Zdroje optického záření Metody optické spektroskopie v biofyzice Zdroje optického záření / 1 Zdroje optického záření tepelné výbojky polovodičové lasery synchrotronové záření Obvykle se charakterizují zářivostí (zářivý výkon

Více

Úvod do laserové techniky

Úvod do laserové techniky Úvod do laserové techniky Látka jako soubor kvantových soustav Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze petr.koranda@gmail.com 18. září 2018 Světlo jako elektromagnetické

Více

Laserová technika prosince Katedra fyzikální elektroniky.

Laserová technika prosince Katedra fyzikální elektroniky. Laserová technika 1 Aktivní prostředí Šíření rezonančního záření dvouhladinovým prostředím Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program

Více

Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je:

Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je: Přijímací zkouška na navazující magisterské studium - 16 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Jak dlouho bude padat

Více

Dualismus vln a částic

Dualismus vln a částic Dualismus vln a částic Filip Horák 1, Jan Pecina 2, Jiří Bárdoš 3 1 Mendelovo gymnázium, Opava, Horaksro@seznam.cz 2 Gymnázium Jeseník, pecinajan.jes@mail.com 3 Gymnázium Teplice, jiri.bardos@post.gymtce.cz

Více

VAROVÁNÍ Přemýšlení o kvantové mechanice způsobuje nespavost

VAROVÁNÍ Přemýšlení o kvantové mechanice způsobuje nespavost VAROVÁNÍ Přemýšlení o kvantové mechanice způsobuje nespavost Od atomů (a molekul) ke kvantové mechanice Vojtěch Kapsa 1 Od atomů (a molekul) ke kvantové mechanice Od atomů (a molekul) ke kvantové mechanice

Více

Mikroskopie se vzorkovací sondou. Pavel Matějka

Mikroskopie se vzorkovací sondou. Pavel Matějka Mikroskopie se vzorkovací sondou Pavel Matějka Mikroskopie se vzorkovací sondou 1. STM 1. Princip metody 2. Instrumentace a příklady využití 2. AFM 1. Princip metody 2. Instrumentace a příklady využití

Více

VŠB Technical University of Ostrava, Faculty of Mechanical engineering, 17. Listopadu 15, Ostrava Poruba, Czech Republic

VŠB Technical University of Ostrava, Faculty of Mechanical engineering, 17. Listopadu 15, Ostrava Poruba, Czech Republic SIMULACE PROTLAČOVÁNÍ SLITIN Al NÁSTROJEM ECAP S UPRAVENOU GEOMETRIÍ A POROVNÁNÍ S EXPERIMENTY Abstrakt Jan Kedroň, Stanislav Rusz, Stanislav Tylšar VŠB Technical University of Ostrava, Faculty of Mechanical

Více

Přírodovědecká fakulta bude mít elektronový mikroskop

Přírodovědecká fakulta bude mít elektronový mikroskop Přírodovědecká fakulta bude mít elektronový mikroskop Přístroj v hodnotě několika milionů korun zapůjčí Přírodovědecké fakultě Masarykovy univerzity (MU) společnost FEI Czech Republic, výrobce elektronových

Více

ÈÁST VII - K V A N T O V Á F Y Z I K A

ÈÁST VII - K V A N T O V Á F Y Z I K A Kde se nacházíme? ÈÁST VII - K V A N T O V Á F Y Z I K A 29 Èásticové vlastnosti elektromagnetických vln 30 Vlnové vlastnosti èástic 31 Schrödingerova formulace kvantové mechaniky Kolem roku 1900-1915

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Seminář chemie (SCH) Náplň: Obecná chemie, anorganická chemie, chemické výpočty, základy analytické chemie Třída: 3. ročník a septima Počet hodin: 2 hodiny týdně Pomůcky: Vybavení odborné učebny,

Více

F7030 Rentgenový rozptyl na tenkých vrstvách

F7030 Rentgenový rozptyl na tenkých vrstvách F7030 Rentgenový rozptyl na tenkých vrstvách O. Caha PřF MU Prezentace k přednášce Numerické simulace Příklady experimentů Vybrané vztahy Sylabus Elementární popis vlnového pole: Rtg vlna ve vakuu; Greenova

Více

Atomová fyzika - literatura

Atomová fyzika - literatura Atomová fyzika - literatura Literatura: D.Halliday, R. Resnick, J. Walker: Fyzika (Část 5: Moderní fyzika), I. Úlehla, M. Suk, Z. Trnka: Atomy, jádra, částice, Akademia, Praha, 1990. A. Beiser: Úvod do

Více

Mikroskopie rastrující sondy

Mikroskopie rastrující sondy Mikroskopie rastrující sondy Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Metody mikroskopie rastrující sondy SPM (scanning( probe Microscopy) Metody mikroskopie rastrující sondy soubor

Více

Dynamika systémů s proměnnou hmotností. Vojtěch Patočka Univerzita Karlova - MFF

Dynamika systémů s proměnnou hmotností. Vojtěch Patočka Univerzita Karlova - MFF Dynamika systémů s proměnnou hmotností Buquoyovy úlohy Práce a energie v řešení Buquoyových úloh Mnohočásticové modely Problém rakety Pružné a nepružné srážky Fundemtální zákon vs. kinematická podmínka

Více

Některé poznatky z charakterizace nano železa. Marek Šváb Tereza Nováková Martina Müllerová Jan Šubrt Karel Závěta Eva Gregorová

Některé poznatky z charakterizace nano železa. Marek Šváb Tereza Nováková Martina Müllerová Jan Šubrt Karel Závěta Eva Gregorová Některé poznatky z charakterizace nano železa Marek Šváb Tereza Nováková Martina Müllerová Jan Šubrt Karel Závěta Eva Gregorová Nanotechnologie 60. a 70. léta 20. st.: období miniaturizace 90. léta 20.

Více

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno 1 Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Struktura

Více

Inovace výuky prostřednictvím šablon pro SŠ

Inovace výuky prostřednictvím šablon pro SŠ Název projektu Číslo projektu Název školy Autor Název šablony Název DUMu Stupeň a typ vzdělávání Vzdělávací oblast Vzdělávací obor Tematický okruh Inovace výuky prostřednictvím šablon pro SŠ CZ.1.07/1.5.00/34.0748

Více

Analýza vrstev pomocí elektronové spektroskopie a podobných metod

Analýza vrstev pomocí elektronové spektroskopie a podobných metod 1/23 Analýza vrstev pomocí elektronové a podobných metod 1. 4. 2010 2/23 Obsah 3/23 Scanning Electron Microscopy metoda analýzy textury povrchu, chemického složení a krystalové struktury[1] využívá svazek

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Fyzika atomu - model atomu struktura elektronového obalu atomu z hlediska energie atomu - stavba atomového jádra; základní nukleony

Více

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II FOTOELEKTRICKÝ JEV VNĚJŠÍ FOTOELEKTRICKÝ JEV na intenzitě záření závisí jen množství uvolněných elektronů, ale nikoliv energie jednotlivých elektronů energie elektronů

Více

Vazby v pevných látkách

Vazby v pevných látkách Vazby v pevných látkách Hlavní body 1. Tvorba pevných látek 2. Van der Waalsova vazba elektrostatická interakce indukovaných dipólů 3. Iontová vazba elektrostatická interakce iontů 4. Kovalentní vazba

Více

Pozitronový mikroskop

Pozitronový mikroskop rychlé pozitrony z b + radioizotopu prostorové rozlišení 1 mm nedestruktivní mapování rozložení defektů mapování rozložení defektů mikrotvrdost dislokace (work hardening) D hranice zrn (Hall-Petch) 1/

Více

Fyzikální vlastnosti materiálů FX001

Fyzikální vlastnosti materiálů FX001 Fyzikální vlastnosti materiálů FX001 1. Vazba v pevné látce, elastické a tepelné vlastnosti materiálů 2. Elektrické vlastnosti materiálů 3. Optické vlastnosti materiálů 4. Magnetické vlastnosti materiálů

Více

2. Elektrotechnické materiály

2. Elektrotechnické materiály . Elektrotechnické materiály Předpokladem vhodného využití elektrotechnických materiálů v konstrukci elektrotechnických součástek a zařízení je znalost jejich vlastností. Elektrické vlastnosti materiálů

Více

Chování látek v nanorozměrech

Chování látek v nanorozměrech Univerzita J.E. Purkyně v Ústí nad Labem Chování látek v nanorozměrech Pavla Čapková Přírodovědecká fakulta Univerzita J.E. Purkyně v Ústí nad Labem Březen 2014 Chování látek v nanorozměrech: Co se děje

Více

Optika a nanostruktury na KFE FJFI

Optika a nanostruktury na KFE FJFI Optika a nanostruktury na KFE FJFI Marek Škereň 28. 11. 2012 www: email: marek.skeren@fjfi.cvut.cz tel: 221 912 825 mob: 608 181 116 Skupina optické fyziky Fakulta jaderná a fyzikálně inženýrská České

Více

Diskutujte, jak široký bude pás spojený s fosforescencí versus fluorescencí. Udělejte odhad v cm -1.

Diskutujte, jak široký bude pás spojený s fosforescencí versus fluorescencí. Udělejte odhad v cm -1. S použitím modelu volného elektronu (=částice v krabici) spočtěte vlnovou délku a vlnočet nejdlouhovlnějšího elektronového přechodu u molekuly dekapentaenu a oktatetraenu. Diskutujte polohu absorpčního

Více

Budoucnost mikroelektroniky ve hvězdách.... spintronika jednou z možných cest

Budoucnost mikroelektroniky ve hvězdách.... spintronika jednou z možných cest Budoucnost mikroelektroniky ve hvězdách... spintronika jednou z možných cest Transistor Transistor 1:1 1:0.000001 1. transistor z roku 1947..dnes s velikostí hradla pod 20 nm a vzdáleností 2 nm od polovodivého

Více

Vlnová délka světla je cca 0,4 µm => rozlišovací schopnost cca. 0,2 µm 1000 x víc než oko

Vlnová délka světla je cca 0,4 µm => rozlišovací schopnost cca. 0,2 µm 1000 x víc než oko VŠCHT - Forenzní analýza, 2012 RNDr. M. Kotrlý, KUP Mikroskopie Rozlišovací schopnost lidského oka cca 025 0,25mm Vlnová délka světla je cca 0,4 µm => rozlišovací schopnost cca. 0,2 µm 1000 x víc než oko

Více

Fyzika I (mechanika a molekulová fyzika NOFY021)

Fyzika I (mechanika a molekulová fyzika NOFY021) Fyzika I (mechanika a molekulová fyzika NOFY01) Jakub Čížek katedra fyziky nízkých teplot Tel: 1 91 788 jakub.cizek@mff.cuni.cz http://www.kfnt.mff.cuni.cz výuka Fyzika I (mechanika a molekulová fyzika)

Více

Ultrazvuková defektoskopie. Vypracoval Jan Janský

Ultrazvuková defektoskopie. Vypracoval Jan Janský Ultrazvuková defektoskopie Vypracoval Jan Janský Základní principy použití vysokých akustických frekvencí pro zjištění vlastností máteriálu a vad typické zařízení: generátor/přijímač pulsů snímač zobrazovací

Více