Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
|
|
- Julie Pospíšilová
- před 9 lety
- Počet zobrazení:
Transkript
1 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/ Šablona: III/2 Přírodovědné předměty Sada: 3 Matematika Číslo materiálu v sadě: 14 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
2 Název: Exponenciální rovnice Jméno autora: Mgr. Jana Masaryková Předmět: matematika Jazyk: čeština Klíčová slova: exponenciální rovnice, exponent, neekvivalentní úpravy, zlogaritmovat Cílová skupina: žák Stupeň a typ vzdělání: odborné vzdělání Očekávaný výstup: Pozná a umí řešit exponenciální rovnice
3 Metodický list/anotace Vytvořeno Prezentace je zaměřena na řešení exponenciálních rovnic, je vhodná k přímé výuce i samostudiu.
4 Exponenciální rovnice
5 Exponenciální rovnice jsou rovnice, ve kterých se neznámá x ϵ R vyskytuje v exponentu Obecně můžeme zapsat exponenciální rovnici takto : a f(x) = b g(x) kde a>0, b>0 např. je to rovnice 2 x = 8 2 x = 2 3 POZOR : Při řešení exponenciálních rovnic používáme neekvivalentní úpravy zkouška dosazením do původní rovnice je součástí řešení Důležitý je zápis množiny řešení ne každý kořen rovnice je řešením
6 Vztahy užitečné při řešení exponenciálních rovnic umocňování součinu: (a b) x = a x b x násobení čísel o stejném základu: a x a y = a x+y dělení čísel o stejném základu: = a x-y umocňování: (a x ) y = a x y převod odmocniny na exponent: = a převod exponenciálního tvaru na tvar zlomku: a -1 = kde a, b, x, y, m ϵ R, n ϵ N, a 0
7 Způsoby řešení Způsoby řešení odvodíme pomocí následujících příkladů: 1) Řešte rovnici 2 x-2 = 2 5x-6 Jak budeme postupovat?
8 Řešení Je zřejmé, že z rovnosti základů bude plynout rovnost jejich exponentů 2 x-2 = 2 5x-6 x-2 = 5x-6 x = 1 Výsledek ověříme pomocí zkoušky dosazením do zadání: L(1) = = 2-1 = P(1) = = 2-1 = L(1) = P(1) Zapíšeme množinu řešení: P = { 1 }
9 2) Řešte rovnici = 125 Jak budeme postupovat?
10 Řešení Pokusíme se získat na pravé straně rovnice také základ 5 převedeme číslo 125 jako 5 3 = 5 3 nyní převedeme tvar zlomku na exponenciální tvar 5 ( 3x 2) = 5 3 z rovnosti základů opět plyne rovnost jejich exponentů -(3x-2) = 3-3x + 2 = 3 x = výsledek ověříme zkouškou: L ( ) = = = 5 3 = 125 P ( ) = 125 L = P P = { }
11 Závěr 1. způsob řešení: Pro každá čísla x, y ϵ R a pro každé číslo a ϵ R, kde a 1 platí: jestliže a x = a y pak x = y porovnáme exponenty
12 3) Řešte rovnici 2 x + 1 = 6 Jak budeme postupovat?
13 Řešení nemáme stejné základy, pokusíme se tedy nejprve rovnici upravit pomocí vztahů mezi exponenty 2 x + 1 = 6 2 x 2 1 = 6 / :2 2 x = 3 dostáváme různé základy nelze porovnat jejich exponenty jediný způsob, jak řešit tento typ rovnice je celou rovnici zlogaritovat log 2 x = log 3 upravíme podle vzorce pro počítání s logaritmy x log 2 = log 3 x = 1, ZK. : L ( ) = 2 = 6 P ( ) = 6 L = P P = { }
14 4) Řešte rovnici 5 x + 1 = 5 x + 16 Jak budeme postupovat?
15 Řešení je zřejmé, že musíme rovnici nejprve upravit 5 x + 1 = 5 x x 5 1 = 5 x x = 5 x + 16 / - 5 x 4 5 x = 16 / : 4 5 x = 4 máme na obou stranách rovnice různé základy musíme celou rovnici zlogaritmovat log 5 x = log 4 x log 5 = log 4 x = 0,861 Zk. : L ( ) = = 20 P ( ) = = 20 L = P P = { }
16 Závěr 2. způsob řešení: Jediný způsob jak řešit exponenciální rovnice, které nelze převést na stejný základ. celou rovnici zlogaritmuji a f(x) = b g(x) log a f(x) = log b g(x) podle vzorců pro počítání s logaritmy dostáváme f(x) log a = g(x) log b Pozn. tento způsob můžeme použít i u předchozího typu rovnic
17 5) Řešte rovnici 5 2x 2 5 x + 1 = 0 Jak budeme postupovat?
18 Řešení Tento typ exponenciální rovnice budeme řešit pomocí substituce dosadíme za 5 x například neznámou t 5 x = t 5 2x 2 5 x + 1 = 0 t 2 2t +1 = 0 a řešíme jednoduchou kvadratickou rovnici t = 1 vrátíme se zpět k substituci a dosadíme za t = 1 5 x = 1 5 x = 5 0 x = 0 Zk.: L(0) = = = 0 P(0) = 0 L = P P = { 0 }
19 6) Řešte rovnici 4 2x x + 8 = 0 Jak budeme postupovat?
20 Řešení opět použijeme substituci dosadíme za 4 x neznámou t 4 2x x + 8 = 0 4 x = t t 2-6 t + 8 = 0 řešíme kvadratickou rovnici, kde D = b 2-4ac = = 4 = t 1 = 4 t 2 = 2 vrátíme se k substituci: 4 x = 4 x = 1 4 x = 2 4 x = 4 x = Zk.: L (1) = = = 0 P (1) = 0 L = P L ( ) = = = 0 P ( ) = 0 L = P P = { 1, }
21 Závěr 3. způsob řešení exponenciální rovnice, kde se nachází tvar kvadratické rovnice (především exponent 2x) řešíme pomocí substituce dosadíme do rovnice a získáme kvadratickou rovnici výsledné kořeny nejsou řešením exponenciální rovnice musíme dosadit zpět do zvolené substituce
22 Odkazy: POLÁK, J. Přehled středoškolské matematiky. 8. vyd. Praha : Prometheus, ISBN s JIRÁSEK, František a kol. Sbírka úloh z matematiky pro SOŠ a pro studijní obory SOU 1. část. Dotisk 5. vydání.praha : Prométheus, ISBN (*D)
Kvadratická rovnice. - koeficienty a, b, c jsou libovolná reálná čísla, a se nesmí rovnat 0
Kvadratické rovnice Kvadratická rovnice a + b + c = 0 a, b, c R a 0 - koeficienty a, b, c jsou libovolná reálná čísla, a se nesmí rovnat 0 - pokud by koeficient a byl roven nule, jednalo by se o rovnici
Logaritmická rovnice
Ročník:. Logaritmická rovnice (čteme: logaritmus z x o základu a) a základ logaritmu x argument logaritmu Vzorce Použití vzorců a principy počítání s logaritmy jsou stejné jako u logaritmů základních,
EXPONENCIÁLNÍ ROVNICE
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol EXPONENCIÁLNÍ
Soustavy lineárních a kvadratických rovnic o dvou neznámých
Soustavy lineárních a kvadratických rovnic o dvou neznámých obsah 1.a) x + y = 5 x 2 + y 2 = 13 3 b) x - y = 7 x 2 + y 2 = 65 5 c) x - y = 3 x 2 + y 2 = 5 6 3. a) x + 2y = 9 x. y = 10 12 b) x - 3y = 1
KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE
Pan Novák si vždy kupuje boty o velikosti 8,5 a každý den stráví
Číselné obory Seznamte se s jistým panem Novákem z Prahy. Je mu 48 let, má 2 děti a bydlí v domě s číslem popisným 157. Vidíte, že základní informace o panu Novákovi můžeme sdělit pomocí několika čísel,
Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné
Základy matematiky kombinované studium 714 0365/06
Základy matematiky kombinované studium 714 0365/06 1. Některé základní pojmy: číselné množiny, intervaly, operace s intervaly (sjednocení, průnik), kvantifikátory, absolutní hodnota čísla, vzorce: 2. Algebraické
Jednoduchá exponenciální rovnice
Jednoduchá exponenciální rovnice Z běžné rovnice se exponenciální stává, pokud obsahuje proměnnou v exponentu. Obecně bychom mohli exponenciální rovnici zapsat takto: a f(x) = b g(x), kde a, b > 0. Typickým
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.7/1.5./34.5 Šablona: III/ Přírodovědné předměty
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně egistrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné
Logaritmické a exponenciální funkce
Kapitola 4 Logaritmické a exponenciální funkce V této kapitole se budeme zabývat exponenciálními a logaritmickými funkcemi. Uvedeme si definice vlastnosti a vztah mezi nimi. 4.1 Exponenciální funkce Exponenciální
M - Příprava na 1. čtvrtletku - třída 3ODK
M - Příprava na 1. čtvrtletku - třída ODK Souhrnný studijní materiál k přípravě na čtvrtletní písemnou práci. Obsahuje učivo října až prosince 007. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven
Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,
E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................
V exponenciální rovnici se proměnná vyskytuje v exponentu. Obecně bychom mohli exponenciální rovnici zapsat takto:
Eponenciální rovnice V eponenciální rovnici se proměnná vyskytuje v eponentu. Obecně bychom mohli eponenciální rovnici zapsat takto: a ( ) f ( ) f kde a > 0, b > 0 b Příkladem velmi jednoduché eponenciální
Digitální učební materiál
Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_3_09 ŠVP Podnikání RVP 64-41-L/51
M - Kvadratické rovnice
M - Kvadratické rovnice Určeno jako učební tet pro studenty denního i dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné
Kapitola 7: Neurčitý integrál. 1/14
Kapitola 7: Neurčitý integrál. 1/14 Neurčitý integrál 2/14 Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f (x) x I nazýváme primitivní
CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT
Autor Mgr. Lenka Střelcová Tematický celek Posloupnosti Cílová skupina 3. ročník SŠ Anotace Materiál má podobu výkladového a pracovního listu s úlohami, pomocí nichž si žáci osvojí a procvičí využití geometrické
GONIOMETRICKÉ ROVNICE -
1 GONIOMETRICKÉ ROVNICE - Pois zůsobu oužití: teorie k samostudiu (i- learning) ro 3. ročník střední školy technického zaměření, teorie ke konzultacím dálkového studia Vyracovala: Ivana Klozová Datum vyracování:
Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009)
Střední průmyslová škola Jihlava tř. Legionářů 1572/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Strojírenství (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje
MO-ME-N-T MOderní MEtody s Novými Technologiemi
Projekt: Reg.č.: Operační program: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Škola: Hotelová škola, Vyšší odborná škola hotelnictví a turismu
Matematika pro všechny
Projekt OPVK - CZ.1.07/1.1.00/.007 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: Goniometrické rovnice Autor: Ondráčková
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
( ) ( ) ( ) ( ) Logaritmické rovnice III. Předpoklady: Př. 1: Vyřeš rovnici. Podmínky: Vnitřky logaritmů: x > 0.
.9. Logaritmické rovnice III Předpoklad: 90 Př. : Vřeš rovnici log log. + log + log Podmínk: Vnitřk logaritmů: > 0. Zlomk: + log 0 log 0,00 + log 0 log 0,00 00 Problém: Jednotlivé stran nemůžeme upravit
Jak pracovat s absolutními hodnotami
Jak pracovat s absolutními hodnotami Petr Matyáš 1 Co to je absolutní hodnota Absolutní hodnota čísla a, dále ji budeme označovat výrazem a, je jeho vzdálenost od nuly na ose x, tedy je to vždy číslo kladné.
MO-ME-N-T MOderní MEtody s Novými Technologiemi
Projekt: Reg.č.: Operační program: Škola: Tematický okruh: Jméno autora: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Hotelová škola, Vyšší
Práce s čísly. Klíčové pojmy: Základní matematické operace, zápis složitějších příkladů, mocniny, odmocniny, zkrácené operátory
Práce s čísly Cílem kapitoly je seznámit žáky se základy práce s čísly v programu python. Klíčové pojmy: Základní matematické operace, zápis složitějších příkladů, mocniny, odmocniny, zkrácené operátory
Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1.
Eponenciální rovnice Eponenciální rovnice jsou rovnice, ve kterých se neznámá vsktuje v eponentu. Řešíme je v závislosti na tpu rovnice několika základními metodami. A. Metoda převedení na stejný základ
M - Kvadratické rovnice a kvadratické nerovnice
M - Kvadratické rovnice a kvadratické nerovnice Určeno jako učební tet pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase.
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV.2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.2.1 Algebraické výrazy, výrazy s mocninami
Cvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.7. listopadu 9 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ..07/.5.00/.005 Šablona: III/ Přírodovědné předměty
Rovnice v oboru komplexních čísel
Rovnice v oboru komplexních čísel Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu Šablona CZ.1.07/1.5.00/34.0218 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Čerm_01a
2.7.17 Nerovnice s neznámou pod odmocninou
.7.7 Nerovnice s neznámou pod odmocninou Předpoklady: 05, 75 Pedagogická poznámka: Tato hodina patří mezi největší masakry během celého studia. Její obtížnost spočítává hlavně ve dvou věcech: a) Je nutné,
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.0/1.5.00/34.080 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/ Inovace a zkvalitnění výuky prostřednictvím
14. Exponenciální a logaritmické rovnice
@148 14. Exponenciální a logaritmické rovnice Rovnicím, které obsahují exponencielu resp. logaritmus, říkáme exponenciální resp. logaritmické rovnice. Při řešení exponenciálních a logaritmických rovnic
MO-ME-N-T MOderní MEtody s Novými Technologiemi
Projekt: Reg.č.: Operační program: Škola: Tematický okruh: Jméno autora: MO-ME-N-T MOderní MEtody s Novými Technoiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Hotelová škola, Vyšší odborná
Goniometrické rovnice
Goniometrické rovnice Funkce Existují čtyři goniometrické funkce sinus, kosinus, tangens a kotangens. Výraz číslo, ze kterého je daná funkce v obecném tvaru je to x se nazývá argument. Argument může u
Algebraické výrazy - řešené úlohy
Algebraické výrazy - řešené úlohy Úloha č. 1 Určete jeho hodnotu pro =. Určete, pro kterou hodnotu proměnné je výraz roven nule. Za proměnnou dosadíme: = a vypočteme hodnotu výrazu. Nejprve zapíšeme rovnost,
Anotace: Digitální učební materiály slouží k zopakování a k testování získaných znalostí a dovedností.
Tematická oblast: (VY_32_INOVACE_04 1 M1) Autor: RNDr. Yvetta Bartáková, Mgr. Petra Drápelová, Mgr. Jaroslava Vrbková, Mgr. Jarmila Zelená Vytvořeno: 2013-2014 Anotace: Digitální učební materiály slouží
Přírodovědecká fakulta Masarykovy univerzity. na rovnice a nerovnice
Přírodovědecká fakulta Masarykovy univerzity Řešení složitějších úloh na rovnice a nerovnice Bakalářská práce BRNO 006 Hana Kotulková Prohlašuji, že jsem tuto práci vypracovala sama a čerpala jsem pouze
INTERNETOVÉ ZKOUŠKY NANEČISTO - VŠE: UKÁZKOVÁ PRÁCE
INTERNETOVÉ ZKOUŠKY NANEČISTO - VŠE: UKÁZKOVÁ PRÁCE. Součin 5 4 je roven číslu: a) 4, b), c), d), e) žádná z předchozích odpovědí není správná. 5 5 5 5 + + 5 5 5 5 + + 4 9 9 4 Správná odpověď je a) Počítání
Nerovnice. Vypracovala: Ing. Stanislava Kaděrková
Nerovnice Vypracovala: Ing. Stanislava Kaděrková Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace žáků ke studiu technických předmětů
6. F U N K C E 6.1 F U N K C E. Sbírka úloh z matematiky pro SOU a SOŠ RNDr. Milada Hudcová, Mgr. Libuše Kubičíková 181/1 190/24 25
6. F U N K C E 6.1 F U N K C E Funkce (definice, značení) Způsoby zadání funkce (tabulka, funkční předpis, slovní popis, graf) 181/1 190/24 25 80/1 2 82/3 6.2 D E F I N I Č N Í O B O R, O B O R H O D N
CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT
Autor Mgr. Lenka Střelcová Tematický celek Rovnice Cílová skupina 1. ročník SŠ Anotace Materiál má podobu pracovního s úlohami, pomocí nichž žáci využijí své znalosti o rovnicích ve slovních úlohách. Materiál
Funkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou
Funkce jedné reálné proměnné lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou lineární y = ax + b Průsečíky s osami: Px [-b/a; 0] Py [0; b] grafem je přímka (získá se pomocí
Úvod do řešení lineárních rovnic a jejich soustav
Úvod do řešení lineárních rovnic a jejich soustav Rovnice je zápis rovnosti dvou výrazů, ve kterém máme najít neznámé číslo (neznámou). Po jeho dosazení do rovnice musí platit rovnost. Existuje-li takové
Definiční obor funkce, obor hodnot funkce. Funkce. Mgr. Tomáš Pavlica, Ph.D. Gymnázium Uherské Hradiště. Digitální učební materiály, 2012-14
Funkce Definiční obor funkce, obor hodnot funkce Mgr. Tomáš Pavlica, Ph.D. Gymnázium Uherské Hradiště Digitální učební materiály, 01-14 Obsah 1 Definiční obor funkce příklady na určení oboru hodnot funkce
VZDĚLÁVACÍ OBLAST: MATEMATIKA A JEJÍ APLIKACE VZDĚLÁVACÍ OBOR: MATEMATIKA A JEJÍ APLIKACE PŘEDMĚT: MATEMATIKA 8
VZDĚLÁVACÍ OBLAST: MATEMATIKA A JEJÍ APLIKACE VZDĚLÁVACÍ OBOR: MATEMATIKA A JEJÍ APLIKACE PŘEDMĚT: MATEMATIKA 8 Poznámky Opakování-číselné obory N, Z Opakování-číselné obory Q Opakování-jednotky Opakování-poměr,
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV..1 Algebraické výrazy, výrazy s mocninami
Logaritmické rovnice a nerovnice
Přírodovědecká fakulta Masarykovy univerzity Logaritmické rovnice a nerovnice Bakalářská práce Brno 008 Lenka Balounová Prohlašuji, že jsem tuto práci vypracovala sama a čerpala jsem pouze z materiálů
Matematika I pracovní listy
Matematika I pracovní listy Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny
Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné
URČI HODNOTU VÝRAZU. A) Urči hodnotu výrazu 3 2 5 VYPOČÍTEJ 3 2 5 = 6 5 = 1. B) Urči hodnotu výrazu 4( x + 3) pro x = -1
URČI HODNOTU VÝRAZU Kolik to je? A) Urči hodnotu výrazu 3 2 5 VYPOČÍTEJ 3 2 5 = 6 5 = 1 určit (vy)počítat dosadit hodnota výrazu (urči) (vypočítej) (dosaď) B) Urči hodnotu výrazu 4( x + 3) pro x = -1 DOSAĎ
II. 3. Speciální integrační metody
48 II. Integrální počet funkcí jedné proměnné II.. Speciální integrační metody Integrály typu f ( x, r x, r x,..., r k x ), tj. integrály obsahující proměnnou x pod odmocninou, kde k N a r,..., r k jsou
MO-ME-N-T MOderní MEtody s Novými Technologiemi
Projekt: Reg.č.: Operační program: Škola: Tematický okruh: Jméno autora: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.7/1.5./34.93 Vzdělávání pro konkurenceschopnost Hotelová škola, Vyšší odborná
3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90
ROVNICE A NEROVNICE 8 Lineární rovnice 8 Kvdrtické rovnice 8 Rovnice s bsolutní hodnotou 88 Ircionální rovnice 90 Eponenciální rovnice 9 Logritmické rovnice 9 7 Goniometrické rovnice 98 8 Nerovnice 0 Úlohy
SBÍRKA ÚLOH PRO PŘÍPRAVU NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY NA VŠ EKONOMICKÉHO SMĚRU
SBÍRKA ÚLOH PRO PŘÍPRAVU NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY NA VŠ EKONOMICKÉHO SMĚRU Tento materiál vznikl v rámci realizace projektu: Globální vzdělávání pro udržitelný rozvoj v sítí spolupracujících škol,
Kvadratické rovnice pro učební obory
Variace 1 Kvadratické rovnice pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jkaékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratické
Obsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce
Neurčitý integrál Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Primitivní funkce, neurčitý integrál Základní vlastnosti a vzorce Základní integrační metody Úpravy integrandu Integrace racionálních
Digitální učební materiál
Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_3_07 ŠVP Podnikání RVP 64-41-L/51
3.3. EXPONENCIÁLNÍ A LOGARITMICKÁ ROVNICE A NEROVNICE
3.3. EXPONENCIÁLNÍ A LOGARITMICKÁ ROVNICE A NEROVNICE V této kapitole se dozvíte: jak je definována eponenciální a logaritmická rovnice a nerovnice a jaká je základní strategie jejich řešení. Klíčová slova
Kapitola 7: Integrál. 1/17
Kapitola 7: Integrál. 1/17 Neurčitý integrál - Motivační příklad 2/17 Příklad: Necht se bod pohybuje po přímce rychlostí a) v(t) = 3 [m/s] (rovnoměrný přímočarý pohyb), b) v(t) = 2t [m/s] (rovnoměrně zrychlený
Rovnice a nerovnice v podílovém tvaru
Rovnice a nerovnice v podílovém tvaru Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
. je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy platit = 0
Příklad 1 Určete definiční obor funkce: a) = b) = c) = d) = e) = 9 f) = Řešení 1a Máme určit definiční obor funkce =. Výraz je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy
2. Určete kolik z následujících čtyř bodů a 1 = -1; a 2 = 1; a 3 = 0,5; a 4 = 0 patří do definičního oboru
Ř E Š E N Í M I N I T E S T Ů JčU Cvičení z matematiky pro zemědělské obory (doc. RDNr. Nýdl, CSc & spol.) Minitest MT5. Jsou dány funkce f : y = 4x 9, f 2 : y = 6 x 3, f 3 : y = log(4x + 64). Potom pro
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice
15. KubickÈ rovnice a rovnice vyööìho stupnï
15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice
INTEGRÁLY S PARAMETREM
INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity
KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE
POŽADAVKY pro přijímací zkoušky z MATEMATIKY
TU v LIBERCI FAKULTA MECHATRONIKY POŽADAVKY pro přijímací zkoušky z MATEMATIKY Tematické okruhy středoškolské látky: Číselné množiny N, Z, Q, R, C Body a intervaly na číselné ose Absolutní hodnota Úpravy
Sada 2 - MS Office, Excel
S třední škola stavební Jihlava Sada 2 - MS Office, Excel 08. Excel 2007. Matematické funkce (2) Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284
obecná rovnice kružnice a x 2 b y 2 c x d y e=0 1. Napište rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A[-3;2].
Kružnice množina bodů, které mají od středu stejnou vzdálenost pojmy: bod na kružnici X [x, y]; poloměr kružnice r pro střed S[0; 0]: SX =r x 0 2 y 0 2 =r x 2 y 2 =r 2 pro střed S[m; n]: SX =r x m 2 y
4.3.8 Vzorce pro součet goniometrických funkcí. π π. π π π π. π π. π π. Předpoklady: 4306
..8 Vzorce pro součet goniometrických funkcí Předpoklady: 06 Vzorce pro součet goniometrických funkcí: sin + sin y = sin cos sin sin y = cos sin cos + cos y = cos cos cos cos y = sin sin Na první pohled
kuncova/, 2x + 3 (x 2)(x + 5) = A x 2 + B Přenásobením této rovnice (x 2)(x + 5) dostaneme rovnost
. cvičení http://www.karlin.mff.cuni.cz/ kuncova/, kytaristka@gmail.com Příklady Najděte primitivní funkce k následujícím funkcím na maimální možné podmnožině reálných čísel a tuto množinu určete.. f()
c ÚM FSI VUT v Brně 20. srpna 2007
20. srpna 2007 1. 3 arctg x 1+x 2 dx 2. (x 2 + 2x + 17)e x dx 3. 1 x 3 x dx Vypočtěte integrál: 3 arctg x 1 + x 2 dx Příklad 1. Řešení: Použijeme substituci: arctg x = t 3 arctg x dx = 1 dx = dt 1+x 2
1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:
Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky
Funkce. Mgr. Jarmila Zelená. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Funkce Mg. Jmil Zelená Gymnázium, SOŠ VOŠ Ledeč nd Sázvou Eponenciální ovnice VY INOVACE_05 M Gymnázium, SOŠ VOŠ Ledeč nd Sázvou Eponenciální ovnice = ovnice, ve kteých se neznámá vyskytuje v eponentu
M - Příprava na čtvrtletní písemnou práci
M - Příprava na čtvrtletní písemnou práci Určeno pro třídu 1ODK. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete
Logaritmy a věty o logaritmech
Variace 1 Logaritmy a věty o logaritmech Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Logaritmy Definice
MATEMATICKÁ ANALÝZA A LINEÁRNÍ ALGEBRA PŘÍPRAVA NA ZKOUŠKU PRO SAMOUKY
MATEMATICKÁ ANALÝZA A LINEÁRNÍ ALGEBRA PŘÍPRAVA NA ZKOUŠKU PRO SAMOUKY POMNĚNKA prase Pomni, abys nezapomněl na Pomněnku MSc. Catherine Morris POMNĚNKA Verze ze dne: 14. října 01 Materiál je v aktuální
MO-ME-N-T MOderní MEtody s Novými Technologiemi
Projekt: Reg.č.: Operační program: Škola: Tematický okruh: Jméno autora: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Hotelová škola, Vyšší
Funkce. Logaritmická funkce. Mgr. Tomáš Pavlica, Ph.D. Digitální učební materiály, Gymnázium Uherské Hradiště
Funkce Logaritmická funkce Mgr. Tomáš Pavlica, Ph.D. Gymnázium Uherské Hradiště Digitální učební materiály, 01-1 Obsah Logaritmická funkce 1 Logaritmická funkce předpis funkce a ukázky grafů srovnání grafů
Cvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................
Finanční. matematika pro každého. f inance. 8. rozšířené vydání. věcné a matematické vysvětlení základních finančních pojmů
Finanční matematika pro každého 8. rozšířené vydání J. Radová, P. Dvořák, J. Málek věcné a matematické vysvětlení základních finančních pojmů metody pro praktické rozhodování soukromých osob i podnikatelů
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
MAT_303 Název: VY_32_INOVACE_01_MAT_303_OZŠ_reálná_čísla_II.docx. MAT_304 Název: VY_32_INOVACE_01_MAT_304_OZŠ_zlomky.docx
Název školy: SPŠ Ústí nad Labem, středisko Resslova Číslo projektu: CZ.1.07/1.5.00/34.10.1036 Klíčová aktivita: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Digitální učební materiály Autor:
Inovace a zkvalitnění výuky prostřednictvím ICT
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Téma: Název: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Funkce Funkce a její vlastnosti Ing. Vacková Věra
Rozklad na součin vytýkáním
Rozklad na součin vytýkáním 1. Rozložte na součin prvočísel číslo: 165 = 210 = 546 = 2. Rozložte na součin mocnin prvočísel číslo: 96 = 432 = B. Rozklad na součin vytýkáním 1. Rozložte na součin vytýkáním:
Číselné množiny Vypracovala: Mgr. Iva Hálková
Číselné množiny Vypracovala: Mgr. Iva Hálková Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace žáků ke studiu technických předmětů
Příprava na 1. čtvrtletní písemku pro třídu 1EB
Variace 1 Příprava na 1. čtvrtletní písemku pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Číselné
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV.2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.2.1 Algebraické výrazy, výrazy s mocninami
Kvadratické rovnice. Řešení kvadratických rovnic. Kvadratická rovnice bez lineárního členu. Příklad 1:
Kvadratické rovnice V zadání lineární rovnice se může vyskytovat neznámá ve vyšší než první mocnině. Vždy ale při úpravě tato neznámá ve vyšší než první mocnině zmizí, odečte se, protože se vyskytuje na
Matematika I (KMI/5MAT1)
Přednáška první aneb Úvod do algebry (opakování ze SŠ a možná i ZŠ) Seznámení s předmětem Osnova přednášky seznámení s předmětem množiny pojem množiny operace s množinami číselné obory intervaly mocniny
Úpravy algebraických výrazů
Úpravy algebraických výrazů Jméno autora: RNDr. Ivana Dvořáková VY_32_INOVACE_MAT_181 Období vytvoření: listopad 2012 Ročník: 1. ročník střední odborné školy Tematická oblast: Matematické vzdělávání Předmět: