8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic

Rozměr: px
Začít zobrazení ze stránky:

Download "8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic"

Transkript

1 8 REGULÁRNÍ LINEÁRNÍ TRANSFORMACE SOUŘADNIC 8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic Ze zkušenosti s Fraunhoferovými difrakčními jevy je dobře známo, že zdeformujeme-li v nějakém směru otvor v difrakčním stínítku, zdeformuje se difrakční obrazec nepřímo úměrně viz obr.. Kvantitativně tuto skutečnost formuluje věta, která udává vztah mezi Fourierovými transformacemi funkcí, jež lze ztotožnit lineární regulární transformací proměnných. Budeme vektor x považovat za sloupcovou matici a vektor X za řádkovou matici. Nechť čtvercová matice M m rs charakterizuje regulární tj. det M lineární transformaci souřadnic Pak inverzní transformaci charakterizuje inverzní matice M m rs M sr det M, x M x x. kde M sr je algebraický doplněk prvku m sr v determinantu det M a inverzní transformace má tvar x M x + x. 2 Obrázek : Fraunhoferova difrakce na kruhovém a elipsovitém otvoru. Elipsovitý otvor vznikl roztažením kruhového otvoru ve vodorovném směru. V důsledku toho je difrakční obrazec ve vodorovném směru v témž poměru zkrácen. 8. Věta Nechť funkce f x a f x spolu souvisejí vztahem f x f M x x. Pak jejich Fourierovy transformace spolu souvisejí vztahem F X det M exp ikx x F XM. 2 Důkaz je založen na pouhé substituci ve Fourierově integrálu:

2 2 8 REGULÁRNÍ LINEÁRNÍ TRANSFORMACE SOUŘADNIC F X A N f x exp ik X x d N x A N f M x x exp ik X x d N x A N f x exp [ ikx M x + x ] d N x det M det M exp ikx x A N f x exp ikxm x d N x det M exp ik X x F XM. Při důkazu jsme využili toho, že det M det M a že XM x XM x. Speciální tvar věty 2, kdy translace x a matice M je diagonální maticí, se v literatuře nazývá větou o podobnosti viz např. [2], str. 244, [3], str Diagonální matice charakterizuje transformaci kartézské soustavy souřadnic na obecnou ortogonální soustavu souřadnic s různou délkou jednotek podél os, tedy také např. čtverce na obdélník, krychle na kvádr atd., pokud souřadnicové osy jsou rovnoběžné se stranami čtverce, hranami krychle atd. Lineární regulární transformace 8 zahrnuje jako zvláštní případy translaci když M I M a x, rotaci, resp. zrcadlení když M je ortogonální maticí, tj. M M T, a x i lineární deformaci když M je obecnou regulární maticí. O translaci pojednáme v následující kapitole, o lineární deformaci pojednává celý zbytek této kapitoly. Zejména upozorňujeme na odst. 8.3, v němž použijeme věty 2 k dalšímu důkazu toho, že algebraicky definovaná reciproká mřížka je Fourierovou transformací původní mřížky. Nyní si všimneme pouze rotace resp. zrcadlení a využijeme dokázané věty k formulaci vlastnosti Fourierovy transformace, kterou většinou považujeme za samozřejmost. Protože v případě rotace resp. zrcadlení je matice M ortogonální, tj. M M T, tj. det M ± viz např. [], odst. 96, 97, vyplývá z věty 2 a z předpokladu f x f M x, že F X F XM T F M X T T. Otočení resp. zrcadlení funkce f i její Fourierovy transformace F charakterizuje tedy táž matice M. Pootočí-li se tedy nějak objekt, pootočí se stejným způsobem i Fourierova transformace objektu. Kromě toho, má-li objekt vlastnost symetrie související s rotací, tj. je-li f x fm x, má tutéž vlastnost i Fourierova transformace F X F M X T T. Totéž lze říci i o zrcadlení. Má-li f x zrcadlovou symetrii podle nějakého objektu přímky v E 2, roviny v E 3, má také její Fourierova transformace F X tuto zrcadlovou symetrii. Vyjádřeno formulí: Je li M M T, pak f x fm x F X F M X T T. 3 Ještě jinak řečeno, funkce f x je invariantní vůči nějaké ortogonální transformaci souřadnic, tehdy a jen tehdy, když je vůči této transformaci invariantní její Fourierova transformace F X. Poněvadž středovou symetrii f x f x lze považovat za speciální případ symetrie vzhledem k ortogonální transformaci, lze větu 6. považovat za speciální případ tvrzení 3. V případě, že funkce f x je reálná a má zrcadlovou symetrii, lze na základě věty 6.2 říci, že její Fourierova transformace F X je reálná v bodech přímky v E 2 resp. roviny v E 3 kolmé k přímce resp. rovině zrcadlení a procházející počátkem. To je dobré mít na paměti při kontrole výpočtů Fourierovy transformace reálných funkcí, které nemají středovou symetrii, ale mají zrcadlovou symetrii např. charakteristické funkce pravidelných 2l + úhelníků nebo charakteristická funkce pravidelného čtyřstěnu. 8.2 Příklad. Fourierova transformace charakteristické funkce rovnoběžníka Vypočítáme Fourierovu transformaci charakteristické funkce rovnoběžníku na obr. 2. Využijeme k tomu známé Fourierovy transformace charakteristické funkce čtverce o jednotkové straně viz.38,9: f x rect x rect, F X A 2 sinkx /2 kx /2 sinkx 2 /2. kx 2 /2

3 8 REGULÁRNÍ LINEÁRNÍ TRANSFORMACE SOUŘADNIC 3 W 2-2 _ 2 _, W 2 _, 2 _ V 2 v 2, v 22 v 2 V v, v 2 w 2 w x v 2 v x W3 W4 f x rect x rect V 3 V 4 f x f M x Obrázek 2: Příklad funkcí, které lze na sebe transformovat regulární lineární transformací proměnných: jednotkový čtverec a obecný rovnoběžník. Protože rovnoběžník i čtverec mají střed v počátku, je x a platí f x f M x. 2 Ke stanovení čtyř prvků matice M resp. M využijeme vztahů mezi průvodiči v a w a v 2 a w 2 odpovídajících si vrcholů obou obrazců srov. obr. 2. Považujeme-li vektory v, v 2, w, w 2 za sloupcové matice, platí w M v, w 2 M v 2, resp. v M w, v 2 M w 2. 3 Vypočteme prvky m ik inverzní matice M, tj. použijeme druhé z obou možností 3, neboť je to počtářsky snazší. V souřadnicích představuje tato druhá možnost dvě soustavy dvou rovnic o dvou neznámých m ik : Odtud 2v m + m 2, 2v 2 m + m 2, 2v 2 m 2 + m 22, 2v 22 2v 2 m 2 + m 22. m v v 2, m 2 v + v 2, m 2, m 22 2v 2, takže M v v 2 v + v 2 2v 2, M v v 2 v+v2 2v 2v v 2 2v 2, 4 Všimněme si, že det M je roven ploše našeho rovnoběžníka. Charakteristická funkce rovnoběžníka má tedy tvar f x f M x rect a její Fourierova transformace je det M det M 2v 2v v 2. 5 x v v 2 v + v 2 2v 2 v v 2 x2 rect 2v 2 6

4 4 8 REGULÁRNÍ LINEÁRNÍ TRANSFORMACE SOUŘADNIC F X det M F XM A 2 2v 2 v v 2 sin [ k 2 X v v 2 ] sin { k 2 [X v + v 2 + X 2 2v 2 ] } k 2 X k v v 2 2 [X. 7 v + v 2 + X 2 2v 2 ] Obrázek 3: Fraunhoferovy difrakční obrazce na čtvercovém a kosodélníkovém otvoru. Rozložení intenzity charakterizují funkce F X 2 a F X 2, kde F X je výraz a F X je výraz 7. Představujeme-li si, že rovnoběžník vznikl deformací čtverce, je pro jeho difrakční obrazec příznačné, že ramena difrakčního obrazce zůstávají kolmá ke stranám rovnoběžníka tzv. Abbeova věta diskutovaná v odst..3. Z obr. 3 je vidět, že ramena Fraunhoferova difrakčního obrazce čtverce i rovnoběžníku jsou kolmá na přímkové okraje difrakčního stínítka. Jde o konkrétní ilustraci tzv. Abbeovy věty, o které pojednáme v kap. 3. Zde pouze uvedeme, co o tom vypovídají vztahy 6 a 7. Položíme-li argumenty funkcí rect v 6 rovny ±/2, dostaneme rovnice přímek, na nichž leží strany rovnoběžníka. Směrnice těchto přímek jsou k 2v 2 v + v 2, k 2. Položíme-li ve výrazu 7 argumenty sinů rovny nule, dostaneme rovnice přímek odpovídajících ramenům difrakčního obrazce. Jejich směrnice jsou k, k 2 v + v 2 2v 2. Z toho je vidět k /k 2, že ramena difrakčního obrazce jsou kolmá ke stranám rovnoběžníka. To je vhodné mít na paměti, potřebujeme-li správně navzájem orientovat snímek difrakčního obrazce a difrakčního stínítka. 8.3 Příklad: Jiný výpočet Fourierovy transformace obecné mřížkové funkce V odst. 4.3 jsme ukázali, že Fourierova transformace mřížkové funkce je úměrná mřížkové funkci reciproké mřížky. Důkaz tohoto tvrzení byl poměrně jednoduchý v případě mřížkové funkce jedné proměnné odst. 4.3., ale dosti komplikovaný v případě vícerozměrných mřížek. Věta 8. umožňuje jiný důkaz, jenž někomu může připadat jednodušší. Proto jej zde uvedeme. Podáme přitom další příklad toho, jak stanovit matici transformace M. Za funkci f x zvolíme mřížkovou funkci kubické mřížky s jednotkovým mřížkovým parametrem:

5 8 REGULÁRNÍ LINEÁRNÍ TRANSFORMACE SOUŘADNIC 5 f x x n. n inf Zde opět symbol značí, že složky n, n 2,..., n N multiindexu n nabývají všech celočíselných hodnot. Jediné, co převezmeme z odst. 4.3 je fakt, že mřížková funkce jedné proměnné má Fourierovu transformaci ve tvaru { F X FT n f x n x n } x n 2 B h X 2πk h, 3 jak plyne z 4.35 pro a. Využijeme toho k tomu, že vypočteme Fourierovu transformaci mřížkové funkce N proměnných. Každou Diracovu distribuci N proměnných v lze podle A.52 faktorizovat do tvaru součinu N Diracových distribucí jedné proměnné, takže f x x n n inf n inf r x r n r. 4 Záměnou pořadí sčítání a násobení lze N násobnou nekonečnou řadu mřížkové funkce napsat ve tvaru x n n inf r n r x r n r, 5 tj. jako součin N mřížkových funkcí jedné proměnné. Také jádro Fourierovy transformace lze faktorizovat, exp ik X x exp ikx r x r, r takže i Fourierovu transformaci mřížkové funkce lze vyjádřit ve faktorizovaném tvaru { F X } FT x r n r, 6 r n r tj. jako součin Fourierových transformací mřížkových funkcí jedné proměnné. S použitím 3 pak je F X r h r X r 2π k h r. 7 Opětná záměna pořadí sčítání a násobení dává Fourierově transformaci F X výsledný tvar F X h r r X r 2π k h r h inf X 2π k h, 8 To je ovšem ve shodě s 4.37 pro a r a + r, r, 2,..., N, V U a a 2 a N. Jak víme z 4. má obecná tj. neortogonální N rozměrná mřížka mřížkovou funkci ve tvaru f x x n a n 2 a 2 n N a N. 9 Její Fourierovu transformaci vypočteme pomocí věty 8. a výsledku 8. Je však třeba najít matici M deformace 8.. Abychom získali zkušenost s úpravami matematických výrazů, stanovíme nejprve tuto matici pro případ mřížkové funkce jednorozměrné mřížky s parametrem a

6 6 8 REGULÁRNÍ LINEÁRNÍ TRANSFORMACE SOUŘADNIC fx n x na. Takovou mřížku lze považovat za deformovanou mřížku s jednotkovým parametrem 2. Ve větě 8. matice M charakterizující deformaci násobí proměnnou x. Musíme tedy funkci upravit do tomu odpovídajícího tvaru: fx n x na n x a a n a n x a n x a f. a V případě obecné jednorozměrné mřížky je maticí M veličina a a+. Věta 8. pak říká, že Fourierovou transformací mřížkové funkce je F X F Xa B B a h h X 2π k ax 2πk h B h a h a X 2π k h a ve shodě s Podobně lze obecnou N rozměrnou mřížku považovat za deformovanou ortogonální mřížku s jednotkovým parametrem a matici M příslušné deformace nalezneme obdobným způsobem jako v jednorozměrném případě. Považujeme li stejně jako v odst. 4. multiindex nn, n 2,..., n N za sloupcovou matici a vytvoříme li čtvercovou matici A, jejíž řádky jsou souřadnice a rs bazálních vektorů a r v ortonormální bázi, můžeme provést následující úpravu mřížkové funkce 9: f x x n a n 2 a 2 n N a N x n a n 2 a 2 n N a N, n a 2 n 2 a 22 n N a N2,......, x N n a N n 2 a 2N n N a NN x A T n A T A T x n det A 2 A T x n det A f A T x. 3 Úlohu matice M tedy hraje matice A T A +, jejíž řádky tvoří souřadnice a + st bazálních vektorů a + s algebraicky definované reciproké mřížky srov. rovnice 4.2, Podle věty 8. a s použitím 8 má Fourierova transformace mřížkové funkce 9 tvar multiindex hh, h 2,..., h N považujeme stejně jako v odst. 4.3 za řádkovou matici a absolutní hodnota vnějšího součinu má podle 4.6 význam objemu elementární buňky, tj. det A V U F X F XA T det A det A V U XA T 2π k h X 2π k h A T A T X 2π k h A T X 2πk h A + X 2π h a + k + h 2 a h N a + N, 4

7 8 REGULÁRNÍ LINEÁRNÍ TRANSFORMACE SOUŘADNIC 7 2i 2 2i, V 2 _ 2 _ x 2a 2 a W 2 + a 2, 2 a 2 + a 22 2a x a b Obrázek 4: Jednotkový čtverec a a obecný rovnoběžník b specifikovaný průvodiči středů stran. což je výraz Podali jsme tedy druhý a nezávislý důkaz toho, že Fourierova transformace mřížkové funkce je úměrná s koeficientem V U mřížkové funkci reciproké mřížky s reciprokou konstantou K 2π k. 8.4 Fourierova transformace charakteristické funkce obecného N-rozměrného rovnoběžnostěnu Vypočítáme nyní Fourierovu transformaci charakteristické funkce N-rozměrného rovnoběžnostěnu. Může to být užitečné pro formulaci vzorkovacího teorému v E N, když je nezbytné vzorkovat v bodech, netvořících ortogonální síť. Nebudeme postupovat jako v odst. 8.2, kde jsme v deformaci čtverce na rovnoběžník využívali vrcholů. Nyní provedeme tuto deformaci pomocí středů stěn na obr. 4 středů stran. Dovolí nám to použít transformační matici M A T odvozenou v předcházejícím odstavci srov Obecný N rozměrný rovnoběžnostěn lze získat lineární deformací N rozměrné krychle o jednotkové hraně. Zvolíme tedy za funkci f x ve větě 8. charakteristickou funkci takové krychle se středem v počátku O souřadnic a orientované tak, že osy souřadnic x j procházejí středy stěn viz obr. 4a f x rect x j. j Její Fourierovou transformací je součin srov. odst..3.5 F X A N N sin j 2 kx j 2 kx j. 2 Označme ± 2 a j průvodiče středů stěn obecného rovnoběžnostěnu obr. 4b. Vektory a j, j, 2,..., N, tvoří bázi v E N a je zřejmé, že N rozměrná krychle přejde v uvažovaný rovnoběžnostěn touž lineární regulární transformací jako kartézská báze ı j, j, 2,..., N v bázi a j, j, 2,..., N. Vytvořme tedy stejným způsobem jako v předchozích odstavcích ze souřadnic vektorů a j matici A, vypočtěme matici A T A + jež je maticí deformace M a vytvořme reciproké vektory a + j. Charakteristickou funkcí f x obecného rovnoběžnostěnu je tedy podle 8.33 a součin f x f A + x f a + x, a + 2 x,..., a + N x N j rect a + j x. 3 Je to zřejmé i z názoru, neboť rovnice a + j x ± 2 jsou rovnicemi rovin, v nichž leží stěny rovnoběžnostěnu. Podle věty 8. je Fourierovou transformací charakteristické funkce 3 součin

8 8 8 REGULÁRNÍ LINEÁRNÍ TRANSFORMACE SOUŘADNIC F X det A F X A T A N V U F X a, X a 2,..., X a N A N V U N j sin 2 k X a j 2 k X. 4 a j Je z něj zřejmé, že s rostoucím X kvadrát modulu F X 2 nejpozvolněji klesá ve směrech X a j, tj. ve směrech kolmých k průvodičům středů stěn, a tím ke stěnám. Speciálně N 2, rovnoběžník znázorněný na obr. 4b s vektory a a, a 2, a 2 a 2, a 22, má charakteristickou funkci a22 x a 2 fx, rect rect a a 22 a 2 a 2 a2 x + a a a 22 a 2 a 2 Za vektory a + j v 3 jsme dosadili podle 4.25, 6. Její Fourierova transformace je F X, X 2 A 2 a a 22 a 2 a 2 sin [ 2 kx a + X 2 a 2 ] sin [ 2 kx a 2 + X 2 a 22 ] 2 kx a + X 2 a 2 2 kx. 5 a 2 + X 2 a 22 Výsledek 8.27 lze získat z 5 jako speciální případ, položíme-li v 5 a v v 2, a 2 v + v 2 a v 2 v 22. Reference [] Bydžovský B.: Úvod do teorie determinantů a matic a jejich užití. Jednota československých matematiků a fyziků, Praha 947. [2] Bracewell H. N.: The Fourier Transform and its Applications. 2nd ed. McGraw-Hill Book Company, New York 986. [3] Goodman J. W.: Introduction to Fourier Optics. 6nd ed. McGraw-Hill, New York 996..

Fourierovské metody v teorii difrakce a ve strukturní analýze

Fourierovské metody v teorii difrakce a ve strukturní analýze Osnova přednášky na 31 kolokviu Krystalografické společnosti Výpočetní metody v rtg a neutronové strukturní analýze Nové Hrady, 16 20 6 2003 Fourierovské metody v teorii difrakce a ve strukturní analýze

Více

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC .6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom

Více

17 Konečná krystalová mřížka a její Fourierova transformace. Mřížková a tvarová amplituda

17 Konečná krystalová mřížka a její Fourierova transformace. Mřížková a tvarová amplituda 17 KONEČNÁ KRYSTALOVÁ MŘÍŽKA, MŘÍŽKOVÁ A TVAROVÁ AMPLITUDA 1 17 Konečná krystalová mřížka a její Fourierova transformace. Mřížková a tvarová amplituda Konečnou mřížku f x) pravidelně rozmístěný motiv f

Více

6. Vektorový počet Studijní text. 6. Vektorový počet

6. Vektorový počet Studijní text. 6. Vektorový počet 6. Vektorový počet Budeme se pohybovat v prostoru R n, což je kartézská mocnina množiny reálných čísel R; R n = R R. Obvykle nám bude stačit omezení na případy n = 1, 2, 3; nicméně teorie je platná obecně.

Více

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika)

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Kartézská soustava souřadnic je dána počátkem O a uspořádanou trojicí bodů E x,

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

8 Matice a determinanty

8 Matice a determinanty M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou

Více

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29 Matematika 1 11. přednáška MA1 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika;... 11. přednáška (15.12.2010

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

Parametrická rovnice přímky v rovině

Parametrická rovnice přímky v rovině Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou

Více

Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA

Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA Rovinné přetvoření Rovinné přetvoření, neboli, jak se také často nazývá, geometrická transformace je vlastně lineární zobrazení v prostoru s nějakou soustavou souřadnic. Jde v něm o přepočet souřadnic

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Numerické metody a programování

Numerické metody a programování Projekt: Inovace výuky optiky se zaměřením na získání experimentálních dovedností Registrační číslo: CZ.1.7/2.2./28.157 Numerické metody a programování Lekce 4 Tento projekt je spolufinancován Evropským

Více

Figurální čísla, Pascalův trojúhelník, aritmetické posloupnost vyšších řádů

Figurální čísla, Pascalův trojúhelník, aritmetické posloupnost vyšších řádů Figurální čísla, Pascalův trojúhelník, aritmetické posloupnost vyšších řádů Jaroslav Zhouf, PedF UK, Praha Úvod Pascalův trojúhelník je schéma přirozených čísel, která má své využití např. v binomické

Více

MOORE-PENROSEOVA INVERZE MATICE A JEJÍ APLIKACE. 1. Úvod

MOORE-PENROSEOVA INVERZE MATICE A JEJÍ APLIKACE. 1. Úvod Kvaternion 1/2013, 7 14 7 MOORE-PENROSEOVA INVERZE MATICE A JEJÍ APLIKACE LADISLAV SKULA Abstrakt V článku je uvedena definice pseudoinverzní matice, ukázána její existence a jednoznačnost a zmíněny dvě

Více

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R} Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální

Více

Afinní transformace Stručnější verze

Afinní transformace Stručnější verze [1] Afinní transformace Stručnější verze je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím body a vektory: afinní prostor využití například v počítačové grafice a)

Více

7 Analytické vyjádření shodnosti

7 Analytické vyjádření shodnosti 7 Analytické vyjádření shodnosti 7.1 Analytická vyjádření shodných zobrazení v E 2 Osová souměrnost Osová souměrnost O(o) podle osy o s obecnou rovnicí o : ax + by + c =0: x = x 2a (ax + by + c) a 2 +

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2 Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy)

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy) Euklidovský prostor Euklidovy Základy (pohled do historie) dnešní definice kartézský souřadnicový systém vlastnosti rovin v E n speciální vlastnosti v E 3 (vektorový součin) a) eprostor, 16, b) P. Olšák,

Více

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová. [1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.

Více

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0. Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

ALGEBRA. Téma 4: Grupy, okruhy a pole

ALGEBRA. Téma 4: Grupy, okruhy a pole SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,

Více

1 Vektorové prostory.

1 Vektorové prostory. 1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které

Více

= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621

= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621 ŘEŠENÉ PŘÍKLADY Z MA+ULA ČÁST Příklad Bod má vůči souřadné soustavě souřadnice uvedené níže. Vypočtěte jeho souřadnice vzhledem k soustavě, která je vůči otočená dle zadání uvedeného níže. Výsledky zaokrouhlete

Více

Symetrické a kvadratické formy

Symetrické a kvadratické formy Symetrické a kvadratické formy Aplikace: klasifikace kvadrik(r 2 ) a kvadratických ploch(r 3 ), optimalizace(mpi) BI-LIN (Symetrické a kvadratické formy) 1 / 20 V celé přednášce uvažujeme číselné těleso

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy, Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Soustavy lineárních rovnic Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy 36 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ 2 1 2 1 1 y 1 2 Obráek 1.26: Průměrová rovina válcové plochy Věta: Je-li definována průměrová rovina sdružená s asymptotickým směrem, potom je s tímto směrem

Více

DEFINICE Z LINEÁRNÍ ALGEBRY

DEFINICE Z LINEÁRNÍ ALGEBRY DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

D ALGEBRAICKÁ VYJÁDŘENÍ TVAROVÉ AMPLITUDY MNOHOSTĚNU 1. D Algebraická vyjádření tvarové amplitudy mnohostěnu [1]

D ALGEBRAICKÁ VYJÁDŘENÍ TVAROVÉ AMPLITUDY MNOHOSTĚNU 1. D Algebraická vyjádření tvarové amplitudy mnohostěnu [1] D ALGEBRAICKÁ VYJÁDŘENÍ TVAROVÉ AMPLITUDY MNOHOSTĚNU 1 D Algebraická vyjádření tvarové amplitudy mnohostěnu [1] Tvarovou amplitudu mnohostěnu 177) trojrozměrného tělesa V S X) = A exp ikx x) d x, 1) V

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE V ROVINĚ ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii

Více

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika. 4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti

Více

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna Předmět: Matematika Náplň: Stereometrie, Analytická geometrie Třída: 3. ročník a septima Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor, učebnice Stereometrie Volné rovnoběžné promítání Zobrazí

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně 7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností

Více

3 Lineární kombinace vektorů. Lineární závislost a nezávislost

3 Lineární kombinace vektorů. Lineární závislost a nezávislost 3 Lineární kombinace vektorů. Lineární závislost a nezávislost vektorů. Obrázek 5: Vektor w je lineární kombinací vektorů u a v. Vektory u, v a w jsou lineárně závislé. Obrázek 6: Vektor q je lineární

Více

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz 1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině

Více

Substituce ve vícenásobném integrálu verze 1.1

Substituce ve vícenásobném integrálu verze 1.1 Úvod Substituce ve vícenásobném integrálu verze. Následující text popisuje výpočet vícenásobných integrálů pomocí věty o substituci. ěl by sloužit především studentům předmětu ATEAT k přípravě na zkoušku.

Více

Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Kružnice, kruh, tečny, obsahy, goniometrické funkce, integrace

Více

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n [1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem

Více

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem

Více

Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr

Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr Geometrické transformace v prostoru Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr Shodné transformace 1 Shodné transformace stejný přístup jako ve 2D shodné transformace (shodnosti,

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 2 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

Geometrické transformace pomocí matic

Geometrické transformace pomocí matic Geometrické transformace pomocí matic Pavel Strachota FJFI ČVUT v Praze 2. dubna 2010 Obsah 1 Úvod 2 Geometrické transformace ve 2D 3 Geometrické transformace ve 3D Obsah 1 Úvod 2 Geometrické transformace

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE

HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s

Více

Základní vlastnosti eukleidovského prostoru

Základní vlastnosti eukleidovského prostoru Kapitola 2 Základní vlastnosti eukleidovského prostoru 2.1 Eukleidovský prostor Eukleidovský prostor a jeho podprostory. Metrické vlastnosti, jako např. kolmost, odchylka, vzdálenost, obsah, objem apod.

Více

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů?

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů? Kapitola 9 Matice a počet koster Graf (orientovaný i neorientovaný) lze popsat maticí, a to hned několika různými způsoby. Tématem této kapitoly jsou incidenční matice orientovaných grafů a souvislosti

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

CVIČNÝ TEST 43. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 43. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 CVIČNÝ TEST 43 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 bod 1 Pro a, b R + určete hodnotu výrazu ( a b) 2 ( a + b) 2, víte-li,

Více

Číselné vektory, matice, determinanty

Číselné vektory, matice, determinanty Číselné vektory, matice, determinanty Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny

Více

Vzdělávací obor matematika

Vzdělávací obor matematika "Cesta k osobnosti" 6.ročník Hlavní okruhy Očekávané výstupy dle RVP ZV Metody práce (praktická cvičení) obor navázání na již zvládnuté ročník 1. ČÍSLO A Žák používá početní operace v oboru de- Dělitelnost

Více

1 Funkce dvou a tří proměnných

1 Funkce dvou a tří proměnných 1 Funkce dvou a tří proměnných 1.1 Pojem funkce více proměnných Definice Funkce dvou proměnných je předpis, který každému bodu z R 2 (tj. z roviny) přiřazuje jediné reálné číslo. z = f(x, y), D(f) R 2

Více

Soustava m lineárních rovnic o n neznámých je systém

Soustava m lineárních rovnic o n neznámých je systém 1 1.2. Soustavy lineárních rovnic Soustava lineárních rovnic Soustava m lineárních rovnic o n neznámých je systém a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2...

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad Nalezněte pomocí Laplaceovy transformace řešení dané Cauchyho úlohy lineární diferenciální rovnice prvního řádu s konstantními koeficienty v intervalu 0,, které vyhovuje

Více

7.2.12 Vektorový součin I

7.2.12 Vektorový součin I 7 Vektorový součin I Předpoklad: 708, 7 Při násobení dvou čísel získáváme opět číslo Skalární násobení vektorů je zcela odlišné, protože vnásobením dvou vektorů dostaneme číslo, ted něco jiného Je možné

Více

Kapitola 11: Vektory a matice:

Kapitola 11: Vektory a matice: Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i

Více

Témata ke státní závěrečné zkoušce z matematiky ARITMETIKA

Témata ke státní závěrečné zkoušce z matematiky ARITMETIKA Státní zkouška aritmetika Témata ke státní závěrečné zkoušce z matematiky ARITMETIKA Teoretická aritmetika 1. Prvky výrokové logiky - výrok, skládání výroků, abeceda výrokové logiky, výrokové formule,

Více

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová Tematický plán Vyučující: Ing. Joanna Paździorová 1. r o č n í k 5 h o d i n t ý d n ě, c e l k e m 1 7 0 h o d i n Téma- Tematický celek Z á ř í 1. Opakování a prohloubení učiva základní školy 18 1.1.

Více

a a

a a 1.. Cíle V této kapitole se naučíme určovat zejména celočíselné kořeny některých polynomů. Výklad Při výpočtu hodnoty polynomu n k p( x) = ak x n-tého stupně n 1 v bodě x 0 C k = 0 musíme provést ( n 1)

Více

1 Analytická geometrie

1 Analytická geometrie 1 Analytická geometrie 11 Přímky Necht A E 3 a v R 3 je nenulový Pak p = A + v = {X E 3 X = A + tv, t R}, je přímka procházející bodem A se směrovým vektorem v Rovnici X = A + tv, t R, říkáme bodová rovnice

Více

Maturitní témata profilová část

Maturitní témata profilová část Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1 9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky

Více

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava

Více

1 Soustavy lineárních rovnic

1 Soustavy lineárních rovnic 1 Soustavy lineárních rovnic 1.1 Základní pojmy Budeme uvažovat soustavu m lineárních rovnic o n neznámých s koeficienty z tělesa T (potom hovoříme o soustavě m lineárních rovnic o n neznámých nad tělesem

Více

Euklidovský prostor Stručnější verze

Euklidovský prostor Stručnější verze [1] Euklidovský prostor Stručnější verze definice Eulidovského prostoru kartézský souřadnicový systém vektorový součin v E 3 vlastnosti přímek a rovin v E 3 a) eprostor-v2, 16, b) P. Olšák, FEL ČVUT, c)

Více

stránkách přednášejícího.

stránkách přednášejícího. Předmět: MA 4 Dnešní látka Iterační metoda Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Superrelaxační metoda (metoda SOR) Metoda sdružených gradientů Četba: Text o lineární algebře v Příručce

Více

M - Příprava na 12. zápočtový test

M - Příprava na 12. zápočtový test M - Příprava na 1. zápočtový test Určeno pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY

3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY 3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY V této kapitole se dozvíte: jak popsat bod v rovině a v prostoru; vzorec na výpočet vzdálenosti dvou bodů; základní tvary rovnice přímky

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

Požadavky ke zkoušce. Ukázková písemka

Požadavky ke zkoušce. Ukázková písemka Požadavky ke zkoušce Zkouška z předmětu MATEMATIKA 1 má dvě části Písemná část: Písemná část se ještě dále rozděluje na praktickou část písemku a teoretickou část test. Písemka trvá 90 minut a je v ní

Více

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.

Více

Vektorové prostory R ( n 1,2,3)

Vektorové prostory R ( n 1,2,3) n Vektorové prostory R ( n 1,2,) (Velikonoční doplněk ke cvičení LAG) Prvky kartézské mocniny R RR R jsou uspořádané trojice reálných čísel, které spolu s operacemi ( a1, a2, a) ( b1, b2, b) ( a1b1, a2

Více

Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla.

Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla. Lineární funkce Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla. Číslo b je hodnota funkce f v bodě 0. Definičním oborem lineární funkce je množina

Více

6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH

6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Funkce více proměnných 6 DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Ve čtvrté kapitole jsme studovali vlastnosti funkcí jedné nezávisle proměnné K popisu mnoha reálných situací však s jednou nezávisle

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory Kapitola 11 Vlastní čísla a vlastní vektory Základní motivace pro studium vlastních čísel a vektorů pochází z teorie řešení diferenciálních rovnic Tato teorie říká, že obecné řešení lineární diferenciální

Více

INTEGRÁLY S PARAMETREM

INTEGRÁLY S PARAMETREM INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity

Více

Matematika 3. Úloha 1. Úloha 2. Úloha 3

Matematika 3. Úloha 1. Úloha 2. Úloha 3 Matematika 3 Úloha 1 Co lze říci o funkci imaginární část komplexního čísla která každému komplexnímu číslu q přiřazuje číslo Im(q)? a. Je to funkce mnohoznačná. b. Je to reálná funkce komplexní proměnné.

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNCKÁ NVEZTA V LBEC Fakulta mechatroniky, informatiky a mezioborových studií Základy spojitého řízení Analýza elektrického obvodu čební text Josef J a n e č e k Liberec 010 Materiál vznikl v rámci projektu

Více