8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic

Rozměr: px
Začít zobrazení ze stránky:

Download "8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic"

Transkript

1 8 REGULÁRNÍ LINEÁRNÍ TRANSFORMACE SOUŘADNIC 8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic Ze zkušenosti s Fraunhoferovými difrakčními jevy je dobře známo, že zdeformujeme-li v nějakém směru otvor v difrakčním stínítku, zdeformuje se difrakční obrazec nepřímo úměrně viz obr.. Kvantitativně tuto skutečnost formuluje věta, která udává vztah mezi Fourierovými transformacemi funkcí, jež lze ztotožnit lineární regulární transformací proměnných. Budeme vektor x považovat za sloupcovou matici a vektor X za řádkovou matici. Nechť čtvercová matice M m rs charakterizuje regulární tj. det M lineární transformaci souřadnic Pak inverzní transformaci charakterizuje inverzní matice M m rs M sr det M, x M x x. kde M sr je algebraický doplněk prvku m sr v determinantu det M a inverzní transformace má tvar x M x + x. 2 Obrázek : Fraunhoferova difrakce na kruhovém a elipsovitém otvoru. Elipsovitý otvor vznikl roztažením kruhového otvoru ve vodorovném směru. V důsledku toho je difrakční obrazec ve vodorovném směru v témž poměru zkrácen. 8. Věta Nechť funkce f x a f x spolu souvisejí vztahem f x f M x x. Pak jejich Fourierovy transformace spolu souvisejí vztahem F X det M exp ikx x F XM. 2 Důkaz je založen na pouhé substituci ve Fourierově integrálu:

2 2 8 REGULÁRNÍ LINEÁRNÍ TRANSFORMACE SOUŘADNIC F X A N f x exp ik X x d N x A N f M x x exp ik X x d N x A N f x exp [ ikx M x + x ] d N x det M det M exp ikx x A N f x exp ikxm x d N x det M exp ik X x F XM. Při důkazu jsme využili toho, že det M det M a že XM x XM x. Speciální tvar věty 2, kdy translace x a matice M je diagonální maticí, se v literatuře nazývá větou o podobnosti viz např. [2], str. 244, [3], str Diagonální matice charakterizuje transformaci kartézské soustavy souřadnic na obecnou ortogonální soustavu souřadnic s různou délkou jednotek podél os, tedy také např. čtverce na obdélník, krychle na kvádr atd., pokud souřadnicové osy jsou rovnoběžné se stranami čtverce, hranami krychle atd. Lineární regulární transformace 8 zahrnuje jako zvláštní případy translaci když M I M a x, rotaci, resp. zrcadlení když M je ortogonální maticí, tj. M M T, a x i lineární deformaci když M je obecnou regulární maticí. O translaci pojednáme v následující kapitole, o lineární deformaci pojednává celý zbytek této kapitoly. Zejména upozorňujeme na odst. 8.3, v němž použijeme věty 2 k dalšímu důkazu toho, že algebraicky definovaná reciproká mřížka je Fourierovou transformací původní mřížky. Nyní si všimneme pouze rotace resp. zrcadlení a využijeme dokázané věty k formulaci vlastnosti Fourierovy transformace, kterou většinou považujeme za samozřejmost. Protože v případě rotace resp. zrcadlení je matice M ortogonální, tj. M M T, tj. det M ± viz např. [], odst. 96, 97, vyplývá z věty 2 a z předpokladu f x f M x, že F X F XM T F M X T T. Otočení resp. zrcadlení funkce f i její Fourierovy transformace F charakterizuje tedy táž matice M. Pootočí-li se tedy nějak objekt, pootočí se stejným způsobem i Fourierova transformace objektu. Kromě toho, má-li objekt vlastnost symetrie související s rotací, tj. je-li f x fm x, má tutéž vlastnost i Fourierova transformace F X F M X T T. Totéž lze říci i o zrcadlení. Má-li f x zrcadlovou symetrii podle nějakého objektu přímky v E 2, roviny v E 3, má také její Fourierova transformace F X tuto zrcadlovou symetrii. Vyjádřeno formulí: Je li M M T, pak f x fm x F X F M X T T. 3 Ještě jinak řečeno, funkce f x je invariantní vůči nějaké ortogonální transformaci souřadnic, tehdy a jen tehdy, když je vůči této transformaci invariantní její Fourierova transformace F X. Poněvadž středovou symetrii f x f x lze považovat za speciální případ symetrie vzhledem k ortogonální transformaci, lze větu 6. považovat za speciální případ tvrzení 3. V případě, že funkce f x je reálná a má zrcadlovou symetrii, lze na základě věty 6.2 říci, že její Fourierova transformace F X je reálná v bodech přímky v E 2 resp. roviny v E 3 kolmé k přímce resp. rovině zrcadlení a procházející počátkem. To je dobré mít na paměti při kontrole výpočtů Fourierovy transformace reálných funkcí, které nemají středovou symetrii, ale mají zrcadlovou symetrii např. charakteristické funkce pravidelných 2l + úhelníků nebo charakteristická funkce pravidelného čtyřstěnu. 8.2 Příklad. Fourierova transformace charakteristické funkce rovnoběžníka Vypočítáme Fourierovu transformaci charakteristické funkce rovnoběžníku na obr. 2. Využijeme k tomu známé Fourierovy transformace charakteristické funkce čtverce o jednotkové straně viz.38,9: f x rect x rect, F X A 2 sinkx /2 kx /2 sinkx 2 /2. kx 2 /2

3 8 REGULÁRNÍ LINEÁRNÍ TRANSFORMACE SOUŘADNIC 3 W 2-2 _ 2 _, W 2 _, 2 _ V 2 v 2, v 22 v 2 V v, v 2 w 2 w x v 2 v x W3 W4 f x rect x rect V 3 V 4 f x f M x Obrázek 2: Příklad funkcí, které lze na sebe transformovat regulární lineární transformací proměnných: jednotkový čtverec a obecný rovnoběžník. Protože rovnoběžník i čtverec mají střed v počátku, je x a platí f x f M x. 2 Ke stanovení čtyř prvků matice M resp. M využijeme vztahů mezi průvodiči v a w a v 2 a w 2 odpovídajících si vrcholů obou obrazců srov. obr. 2. Považujeme-li vektory v, v 2, w, w 2 za sloupcové matice, platí w M v, w 2 M v 2, resp. v M w, v 2 M w 2. 3 Vypočteme prvky m ik inverzní matice M, tj. použijeme druhé z obou možností 3, neboť je to počtářsky snazší. V souřadnicích představuje tato druhá možnost dvě soustavy dvou rovnic o dvou neznámých m ik : Odtud 2v m + m 2, 2v 2 m + m 2, 2v 2 m 2 + m 22, 2v 22 2v 2 m 2 + m 22. m v v 2, m 2 v + v 2, m 2, m 22 2v 2, takže M v v 2 v + v 2 2v 2, M v v 2 v+v2 2v 2v v 2 2v 2, 4 Všimněme si, že det M je roven ploše našeho rovnoběžníka. Charakteristická funkce rovnoběžníka má tedy tvar f x f M x rect a její Fourierova transformace je det M det M 2v 2v v 2. 5 x v v 2 v + v 2 2v 2 v v 2 x2 rect 2v 2 6

4 4 8 REGULÁRNÍ LINEÁRNÍ TRANSFORMACE SOUŘADNIC F X det M F XM A 2 2v 2 v v 2 sin [ k 2 X v v 2 ] sin { k 2 [X v + v 2 + X 2 2v 2 ] } k 2 X k v v 2 2 [X. 7 v + v 2 + X 2 2v 2 ] Obrázek 3: Fraunhoferovy difrakční obrazce na čtvercovém a kosodélníkovém otvoru. Rozložení intenzity charakterizují funkce F X 2 a F X 2, kde F X je výraz a F X je výraz 7. Představujeme-li si, že rovnoběžník vznikl deformací čtverce, je pro jeho difrakční obrazec příznačné, že ramena difrakčního obrazce zůstávají kolmá ke stranám rovnoběžníka tzv. Abbeova věta diskutovaná v odst..3. Z obr. 3 je vidět, že ramena Fraunhoferova difrakčního obrazce čtverce i rovnoběžníku jsou kolmá na přímkové okraje difrakčního stínítka. Jde o konkrétní ilustraci tzv. Abbeovy věty, o které pojednáme v kap. 3. Zde pouze uvedeme, co o tom vypovídají vztahy 6 a 7. Položíme-li argumenty funkcí rect v 6 rovny ±/2, dostaneme rovnice přímek, na nichž leží strany rovnoběžníka. Směrnice těchto přímek jsou k 2v 2 v + v 2, k 2. Položíme-li ve výrazu 7 argumenty sinů rovny nule, dostaneme rovnice přímek odpovídajících ramenům difrakčního obrazce. Jejich směrnice jsou k, k 2 v + v 2 2v 2. Z toho je vidět k /k 2, že ramena difrakčního obrazce jsou kolmá ke stranám rovnoběžníka. To je vhodné mít na paměti, potřebujeme-li správně navzájem orientovat snímek difrakčního obrazce a difrakčního stínítka. 8.3 Příklad: Jiný výpočet Fourierovy transformace obecné mřížkové funkce V odst. 4.3 jsme ukázali, že Fourierova transformace mřížkové funkce je úměrná mřížkové funkci reciproké mřížky. Důkaz tohoto tvrzení byl poměrně jednoduchý v případě mřížkové funkce jedné proměnné odst. 4.3., ale dosti komplikovaný v případě vícerozměrných mřížek. Věta 8. umožňuje jiný důkaz, jenž někomu může připadat jednodušší. Proto jej zde uvedeme. Podáme přitom další příklad toho, jak stanovit matici transformace M. Za funkci f x zvolíme mřížkovou funkci kubické mřížky s jednotkovým mřížkovým parametrem:

5 8 REGULÁRNÍ LINEÁRNÍ TRANSFORMACE SOUŘADNIC 5 f x x n. n inf Zde opět symbol značí, že složky n, n 2,..., n N multiindexu n nabývají všech celočíselných hodnot. Jediné, co převezmeme z odst. 4.3 je fakt, že mřížková funkce jedné proměnné má Fourierovu transformaci ve tvaru { F X FT n f x n x n } x n 2 B h X 2πk h, 3 jak plyne z 4.35 pro a. Využijeme toho k tomu, že vypočteme Fourierovu transformaci mřížkové funkce N proměnných. Každou Diracovu distribuci N proměnných v lze podle A.52 faktorizovat do tvaru součinu N Diracových distribucí jedné proměnné, takže f x x n n inf n inf r x r n r. 4 Záměnou pořadí sčítání a násobení lze N násobnou nekonečnou řadu mřížkové funkce napsat ve tvaru x n n inf r n r x r n r, 5 tj. jako součin N mřížkových funkcí jedné proměnné. Také jádro Fourierovy transformace lze faktorizovat, exp ik X x exp ikx r x r, r takže i Fourierovu transformaci mřížkové funkce lze vyjádřit ve faktorizovaném tvaru { F X } FT x r n r, 6 r n r tj. jako součin Fourierových transformací mřížkových funkcí jedné proměnné. S použitím 3 pak je F X r h r X r 2π k h r. 7 Opětná záměna pořadí sčítání a násobení dává Fourierově transformaci F X výsledný tvar F X h r r X r 2π k h r h inf X 2π k h, 8 To je ovšem ve shodě s 4.37 pro a r a + r, r, 2,..., N, V U a a 2 a N. Jak víme z 4. má obecná tj. neortogonální N rozměrná mřížka mřížkovou funkci ve tvaru f x x n a n 2 a 2 n N a N. 9 Její Fourierovu transformaci vypočteme pomocí věty 8. a výsledku 8. Je však třeba najít matici M deformace 8.. Abychom získali zkušenost s úpravami matematických výrazů, stanovíme nejprve tuto matici pro případ mřížkové funkce jednorozměrné mřížky s parametrem a

6 6 8 REGULÁRNÍ LINEÁRNÍ TRANSFORMACE SOUŘADNIC fx n x na. Takovou mřížku lze považovat za deformovanou mřížku s jednotkovým parametrem 2. Ve větě 8. matice M charakterizující deformaci násobí proměnnou x. Musíme tedy funkci upravit do tomu odpovídajícího tvaru: fx n x na n x a a n a n x a n x a f. a V případě obecné jednorozměrné mřížky je maticí M veličina a a+. Věta 8. pak říká, že Fourierovou transformací mřížkové funkce je F X F Xa B B a h h X 2π k ax 2πk h B h a h a X 2π k h a ve shodě s Podobně lze obecnou N rozměrnou mřížku považovat za deformovanou ortogonální mřížku s jednotkovým parametrem a matici M příslušné deformace nalezneme obdobným způsobem jako v jednorozměrném případě. Považujeme li stejně jako v odst. 4. multiindex nn, n 2,..., n N za sloupcovou matici a vytvoříme li čtvercovou matici A, jejíž řádky jsou souřadnice a rs bazálních vektorů a r v ortonormální bázi, můžeme provést následující úpravu mřížkové funkce 9: f x x n a n 2 a 2 n N a N x n a n 2 a 2 n N a N, n a 2 n 2 a 22 n N a N2,......, x N n a N n 2 a 2N n N a NN x A T n A T A T x n det A 2 A T x n det A f A T x. 3 Úlohu matice M tedy hraje matice A T A +, jejíž řádky tvoří souřadnice a + st bazálních vektorů a + s algebraicky definované reciproké mřížky srov. rovnice 4.2, Podle věty 8. a s použitím 8 má Fourierova transformace mřížkové funkce 9 tvar multiindex hh, h 2,..., h N považujeme stejně jako v odst. 4.3 za řádkovou matici a absolutní hodnota vnějšího součinu má podle 4.6 význam objemu elementární buňky, tj. det A V U F X F XA T det A det A V U XA T 2π k h X 2π k h A T A T X 2π k h A T X 2πk h A + X 2π h a + k + h 2 a h N a + N, 4

7 8 REGULÁRNÍ LINEÁRNÍ TRANSFORMACE SOUŘADNIC 7 2i 2 2i, V 2 _ 2 _ x 2a 2 a W 2 + a 2, 2 a 2 + a 22 2a x a b Obrázek 4: Jednotkový čtverec a a obecný rovnoběžník b specifikovaný průvodiči středů stran. což je výraz Podali jsme tedy druhý a nezávislý důkaz toho, že Fourierova transformace mřížkové funkce je úměrná s koeficientem V U mřížkové funkci reciproké mřížky s reciprokou konstantou K 2π k. 8.4 Fourierova transformace charakteristické funkce obecného N-rozměrného rovnoběžnostěnu Vypočítáme nyní Fourierovu transformaci charakteristické funkce N-rozměrného rovnoběžnostěnu. Může to být užitečné pro formulaci vzorkovacího teorému v E N, když je nezbytné vzorkovat v bodech, netvořících ortogonální síť. Nebudeme postupovat jako v odst. 8.2, kde jsme v deformaci čtverce na rovnoběžník využívali vrcholů. Nyní provedeme tuto deformaci pomocí středů stěn na obr. 4 středů stran. Dovolí nám to použít transformační matici M A T odvozenou v předcházejícím odstavci srov Obecný N rozměrný rovnoběžnostěn lze získat lineární deformací N rozměrné krychle o jednotkové hraně. Zvolíme tedy za funkci f x ve větě 8. charakteristickou funkci takové krychle se středem v počátku O souřadnic a orientované tak, že osy souřadnic x j procházejí středy stěn viz obr. 4a f x rect x j. j Její Fourierovou transformací je součin srov. odst..3.5 F X A N N sin j 2 kx j 2 kx j. 2 Označme ± 2 a j průvodiče středů stěn obecného rovnoběžnostěnu obr. 4b. Vektory a j, j, 2,..., N, tvoří bázi v E N a je zřejmé, že N rozměrná krychle přejde v uvažovaný rovnoběžnostěn touž lineární regulární transformací jako kartézská báze ı j, j, 2,..., N v bázi a j, j, 2,..., N. Vytvořme tedy stejným způsobem jako v předchozích odstavcích ze souřadnic vektorů a j matici A, vypočtěme matici A T A + jež je maticí deformace M a vytvořme reciproké vektory a + j. Charakteristickou funkcí f x obecného rovnoběžnostěnu je tedy podle 8.33 a součin f x f A + x f a + x, a + 2 x,..., a + N x N j rect a + j x. 3 Je to zřejmé i z názoru, neboť rovnice a + j x ± 2 jsou rovnicemi rovin, v nichž leží stěny rovnoběžnostěnu. Podle věty 8. je Fourierovou transformací charakteristické funkce 3 součin

8 8 8 REGULÁRNÍ LINEÁRNÍ TRANSFORMACE SOUŘADNIC F X det A F X A T A N V U F X a, X a 2,..., X a N A N V U N j sin 2 k X a j 2 k X. 4 a j Je z něj zřejmé, že s rostoucím X kvadrát modulu F X 2 nejpozvolněji klesá ve směrech X a j, tj. ve směrech kolmých k průvodičům středů stěn, a tím ke stěnám. Speciálně N 2, rovnoběžník znázorněný na obr. 4b s vektory a a, a 2, a 2 a 2, a 22, má charakteristickou funkci a22 x a 2 fx, rect rect a a 22 a 2 a 2 a2 x + a a a 22 a 2 a 2 Za vektory a + j v 3 jsme dosadili podle 4.25, 6. Její Fourierova transformace je F X, X 2 A 2 a a 22 a 2 a 2 sin [ 2 kx a + X 2 a 2 ] sin [ 2 kx a 2 + X 2 a 22 ] 2 kx a + X 2 a 2 2 kx. 5 a 2 + X 2 a 22 Výsledek 8.27 lze získat z 5 jako speciální případ, položíme-li v 5 a v v 2, a 2 v + v 2 a v 2 v 22. Reference [] Bydžovský B.: Úvod do teorie determinantů a matic a jejich užití. Jednota československých matematiků a fyziků, Praha 947. [2] Bracewell H. N.: The Fourier Transform and its Applications. 2nd ed. McGraw-Hill Book Company, New York 986. [3] Goodman J. W.: Introduction to Fourier Optics. 6nd ed. McGraw-Hill, New York 996..

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC .6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Numerické metody a programování

Numerické metody a programování Projekt: Inovace výuky optiky se zaměřením na získání experimentálních dovedností Registrační číslo: CZ.1.7/2.2./28.157 Numerické metody a programování Lekce 4 Tento projekt je spolufinancován Evropským

Více

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R} Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621

= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621 ŘEŠENÉ PŘÍKLADY Z MA+ULA ČÁST Příklad Bod má vůči souřadné soustavě souřadnice uvedené níže. Vypočtěte jeho souřadnice vzhledem k soustavě, která je vůči otočená dle zadání uvedeného níže. Výsledky zaokrouhlete

Více

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy, Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání

Více

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy 36 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ 2 1 2 1 1 y 1 2 Obráek 1.26: Průměrová rovina válcové plochy Věta: Je-li definována průměrová rovina sdružená s asymptotickým směrem, potom je s tímto směrem

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

ALGEBRA. Téma 4: Grupy, okruhy a pole

ALGEBRA. Téma 4: Grupy, okruhy a pole SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,

Více

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0. Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační

Více

D ALGEBRAICKÁ VYJÁDŘENÍ TVAROVÉ AMPLITUDY MNOHOSTĚNU 1. D Algebraická vyjádření tvarové amplitudy mnohostěnu [1]

D ALGEBRAICKÁ VYJÁDŘENÍ TVAROVÉ AMPLITUDY MNOHOSTĚNU 1. D Algebraická vyjádření tvarové amplitudy mnohostěnu [1] D ALGEBRAICKÁ VYJÁDŘENÍ TVAROVÉ AMPLITUDY MNOHOSTĚNU 1 D Algebraická vyjádření tvarové amplitudy mnohostěnu [1] Tvarovou amplitudu mnohostěnu 177) trojrozměrného tělesa V S X) = A exp ikx x) d x, 1) V

Více

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy)

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy) Euklidovský prostor Euklidovy Základy (pohled do historie) dnešní definice kartézský souřadnicový systém vlastnosti rovin v E n speciální vlastnosti v E 3 (vektorový součin) a) eprostor, 16, b) P. Olšák,

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr

Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr Geometrické transformace v prostoru Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr Shodné transformace 1 Shodné transformace stejný přístup jako ve 2D shodné transformace (shodnosti,

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika. 4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Kružnice, kruh, tečny, obsahy, goniometrické funkce, integrace

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Základní vlastnosti eukleidovského prostoru

Základní vlastnosti eukleidovského prostoru Kapitola 2 Základní vlastnosti eukleidovského prostoru 2.1 Eukleidovský prostor Eukleidovský prostor a jeho podprostory. Metrické vlastnosti, jako např. kolmost, odchylka, vzdálenost, obsah, objem apod.

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

Vzdělávací obor matematika

Vzdělávací obor matematika "Cesta k osobnosti" 6.ročník Hlavní okruhy Očekávané výstupy dle RVP ZV Metody práce (praktická cvičení) obor navázání na již zvládnuté ročník 1. ČÍSLO A Žák používá početní operace v oboru de- Dělitelnost

Více

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad Nalezněte pomocí Laplaceovy transformace řešení dané Cauchyho úlohy lineární diferenciální rovnice prvního řádu s konstantními koeficienty v intervalu 0,, které vyhovuje

Více

Témata ke státní závěrečné zkoušce z matematiky ARITMETIKA

Témata ke státní závěrečné zkoušce z matematiky ARITMETIKA Státní zkouška aritmetika Témata ke státní závěrečné zkoušce z matematiky ARITMETIKA Teoretická aritmetika 1. Prvky výrokové logiky - výrok, skládání výroků, abeceda výrokové logiky, výrokové formule,

Více

HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE

HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

Maturitní témata profilová část

Maturitní témata profilová část Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,

Více

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky

Více

7.2.12 Vektorový součin I

7.2.12 Vektorový součin I 7 Vektorový součin I Předpoklad: 708, 7 Při násobení dvou čísel získáváme opět číslo Skalární násobení vektorů je zcela odlišné, protože vnásobením dvou vektorů dostaneme číslo, ted něco jiného Je možné

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Euklidovský prostor Stručnější verze

Euklidovský prostor Stručnější verze [1] Euklidovský prostor Stručnější verze definice Eulidovského prostoru kartézský souřadnicový systém vektorový součin v E 3 vlastnosti přímek a rovin v E 3 a) eprostor-v2, 16, b) P. Olšák, FEL ČVUT, c)

Více

Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr

Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr Geometrické transformace v rovině Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr Shodné transformace 1 Shodné transformace shodné transformace (shodnosti, izometrie) převádějí objekt

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory Kapitola 11 Vlastní čísla a vlastní vektory Základní motivace pro studium vlastních čísel a vektorů pochází z teorie řešení diferenciálních rovnic Tato teorie říká, že obecné řešení lineární diferenciální

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Optimální výrobní program Radka Zahradníková e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Obsah 1 Lineární programování 2 Simplexová metoda 3 Grafická metoda 4 Optimální výrobní program Řešení

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

POŽADAVKY pro přijímací zkoušky z MATEMATIKY

POŽADAVKY pro přijímací zkoušky z MATEMATIKY TU v LIBERCI FAKULTA MECHATRONIKY POŽADAVKY pro přijímací zkoušky z MATEMATIKY Tematické okruhy středoškolské látky: Číselné množiny N, Z, Q, R, C Body a intervaly na číselné ose Absolutní hodnota Úpravy

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

Afinní zobrazení, jeho regularita a (totální) singularita. Asociovaný homomorfismus. Analytické

Afinní zobrazení, jeho regularita a (totální) singularita. Asociovaný homomorfismus. Analytické Slezská univerzita v Opavě Matematický ústav v Opavě Na Rybníčku 1 746 01 Opava Tel. 553 684 661 ANALYTICKÁ GEOMETRIE Téma 3. Afinní zobrazení Opakování Dělicí poměr; Homomorfismus vektorových prostorů,

Více

Vzorce počítačové grafiky

Vzorce počítačové grafiky Vektorové operace součet vektorů rozdíl vektorů opačný vektor násobení vektoru skalárem úhel dvou vektorů velikost vektoru a vzdálenost dvojice bodů v rovině (v prostoru analogicky) u = B A= b a b a u

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

Lineární algebra. Matice, operace s maticemi

Lineární algebra. Matice, operace s maticemi Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

MĚSÍC MATEMATIKA GEOMETRIE

MĚSÍC MATEMATIKA GEOMETRIE 3. ročník Bod, přímka ZÁŘÍ Násobení a dělení Aplikační úlohy (nakupujeme) Bod, přímka Úsečka Násobení a dělení ŘÍJEN Procvičování Pamětné sčítání a odčítání, aplikační úlohy Polopřímka Modelování polopřímek

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

1 Rozdělení mechaniky a její náplň

1 Rozdělení mechaniky a její náplň 1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace p. 2/35 Matice a maticové operace 1. Aritmetické vektory 2. Operace s aritmetickými vektory 3. Nulový a opačný

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

MATEMATIKA PRO PŘÍRODNÍ VĚDY LINEÁRNÍ ALGEBRA, DIFERENCIÁLNÍ POČET MPV, LADP TUL, ZS 2009/10

MATEMATIKA PRO PŘÍRODNÍ VĚDY LINEÁRNÍ ALGEBRA, DIFERENCIÁLNÍ POČET MPV, LADP TUL, ZS 2009/10 1 MATEMATIKA PRO PŘÍRODNÍ VĚDY LINEÁRNÍ ALGEBRA, DIFERENCIÁLNÍ POČET 2 koncepce/slides: Jan Picek přednášející: Jiří Veselý KAP, tel. 485352290, budova H konzul. hodiny: dle úmluvy e-mail: jvesely@karlin.mff.cuni.cz

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

Algebraické struktury s jednou binární operací

Algebraické struktury s jednou binární operací 16 Kapitola 1 Algebraické struktury s jednou binární operací 1.1 1. Grupoid, pologrupa, monoid a grupa Chtěli by jste vědět, co jsou to algebraické struktury s jednou binární operací? No tak to si musíte

Více

Matematika I pracovní listy

Matematika I pracovní listy Matematika I pracovní listy Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 7. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace provádí početní operace v oboru celých a racionálních čísel zaokrouhluje, provádí odhady

Více

Funkce - pro třídu 1EB

Funkce - pro třídu 1EB Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0 Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = +

Více

Rovnice matematické fyziky cvičení pro akademický školní rok 2013-2014

Rovnice matematické fyziky cvičení pro akademický školní rok 2013-2014 Harmonogram výuky předmětu Rovnice matematické fyziky cvičení pro akademický školní rok 2013-2014 Vedoucí cvičení: ing. Václav Klika, Ph.D. & MSc. Karolína Korvasová & & ing. Matěj Tušek, Ph.D. Katedra

Více

CVIČENÍ č. 7 BERNOULLIHO ROVNICE

CVIČENÍ č. 7 BERNOULLIHO ROVNICE CVIČENÍ č. 7 BERNOULLIHO ROVNICE Výtok z nádoby, Průtok potrubím beze ztrát Příklad č. 1: Určete hmotnostní průtok vody (pokud otvor budeme považovat za malý), která vytéká z válcové nádoby s průměrem

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

3.2 OBJEMY A POVRCHY TĚLES

3.2 OBJEMY A POVRCHY TĚLES . OBJEMY A POVRCHY TĚLES Krychle, kvádr, hranol Dochované matematické texty ze starého Egypta obsahují několik úloh na výpočet objemu čtverhranných obilnic tvaru krychle; lze předpokládat, že stejným způsobem

Více

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1 Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1 Funkce pro UO 1 Co je to matematická funkce? Mějme dvě množiny čísel. Množinu A a množinu B, které jsou neprázdné. Jestliže přiřadíme

Více

11 Analýza hlavních komponet

11 Analýza hlavních komponet 11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/1 BA06 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2014 1 (1) Určete rovnici kručnice o

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického

Více

Regulární matice. Věnujeme dále pozornost zejména čtvercovým maticím.

Regulární matice. Věnujeme dále pozornost zejména čtvercovým maticím. Regulární matice Věnujeme dále pozornost zejména čtvercovým maticím. Věta. Pro každou čtvercovou matici A = (a ij ) řádu n nad tělesem (T, +, ) jsou následující podmínky ekvivalentní: (i) Řádky matice

Více

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY Bakalářský studijní program B1101 (studijní obory - Aplikovaná matematika, Matematické metody v ekonomice, Aplikovaná matematika pro řešení krizových situací)

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic 7 Matice. Determinant Soustavy lineárních rovnic 7.1 Matice Definice 1. Matice typu (m, n) jesoustavam n reálných čísel uspořádaných do m řádků a n sloupců a 11, a 12, a 13,..., a 1n a 21, a 22, a 23,...,

Více

Lineární algebra nad obecným Z m, lineární kódy

Lineární algebra nad obecným Z m, lineární kódy Lineární algebra nad obecným Z m, lineární kódy Jiří Velebil: X01DML 19. listopadu 2010: Lineární algebra a kódy 1/19 Minule: soustavy lineárních rovnic nad Z p, p prvočíslo, stejně jako nad R. Dále nad

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

2 Spojité modely rozhodování

2 Spojité modely rozhodování 2 Spojité modely rozhodování Jak již víme z přednášky, diskrétní model rozhodování lze zapsat ve tvaru úlohy hodnocení variant: f(a i ) max, a i A = {a 1, a 2,... a p }, kde f je kriteriální funkce a A

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky 1. Lineární rovnice a nerovnice a) Rovnice a nerovnice s absolutní hodnotou absolutní hodnota reálného čísla definice, geometrický význam, srovnání řešení rovnic s abs. hodnotou

Více

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011

MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011 MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011 1. Výroková logika a teorie množin Výrok, pravdivostní hodnota výroku, negace výroku; složené výroky(konjunkce, disjunkce, implikace, ekvivalence);

Více

V. Riemannův(dvojný) integrál

V. Riemannův(dvojný) integrál V. Riemannův(dvojný) integrál Obsah 1 Základní pojmy a definice 2 2 Podmínky existence dvojného integrálu 4 3 Vlastnosti dvojného integrálu 4 4 Výpočet dvojného integrálu; převod na dvojnásobný integrál

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

Josef Janyška Anna Sekaninová ANALYTICKÁ TEORIE KUŽELOSEČEK A KVADRIK

Josef Janyška Anna Sekaninová ANALYTICKÁ TEORIE KUŽELOSEČEK A KVADRIK Josef Janyška Anna Sekaninová ANALYTICKÁ TEORIE KUŽELOSEČEK A KVADRIK Obsah 1 KOMPLEXNÍ ROZŠÍŘENÍ PROSTORU 7 1 Komplexní rozšíření vektorového prostoru........... 7 Komplexní rozšíření reálného afinního

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více