17 Konečná krystalová mřížka a její Fourierova transformace. Mřížková a tvarová amplituda

Rozměr: px
Začít zobrazení ze stránky:

Download "17 Konečná krystalová mřížka a její Fourierova transformace. Mřížková a tvarová amplituda"

Transkript

1 17 KONEČNÁ KRYSTALOVÁ MŘÍŽKA, MŘÍŽKOVÁ A TVAROVÁ AMPLITUDA 1 17 Konečná krystalová mřížka a její Fourierova transformace. Mřížková a tvarová amplituda Konečnou mřížku f x) pravidelně rozmístěný motiv f U x) elementární buňka) v konečné oblasti V N-rozměrného prostoru lze matematicky popsat dvěma formálně odlišnými způsoby: f x) = f U x) δ x x n ), n V f x) = f U x) δ x x n ) s x). n inf 1a) 1b) Výraz 1a) je přirozenější, neboť suma představuje součet konečného počtu sčítanců symbol n V vyjadřuje, že součet tvoří sčítanci, v nichž koncový bod mřížkového vektoru x n 182) patří do oblasti V ). Ve výrazu 1b) se naproti tomu vymezuje konečná oblast V z nekonečné mřížky sčítá se přes všechny hodnoty multiindexu n) pomocí tzv. tvarové funkce s x) charakteristické funkce oblasti V ): s x) = 1, když x V, s x) = 0, když x V. 2) Pokud předpokládáme, že konečná mřížka je tvořena jen kompletními elementárními buňkami, je výraz 1b) nezávislý na pořadí, v němž se provádí konvoluce a násobení a oba výrazy 1a) a 1b) jsou ekvivalentní. Ekvivalentní jsou i Fourierovy transformace obou výrazů 1). Jsou však vyjádřeny různými funkcemi. Fourierova transformace výrazu 1a) je podle 7.31) a 1.32) součinem F X) = F U X)G X), 3) v němž funkce G X) = n V exp ik X x n ) 4) je součtem konečného počtu fázorů, který Laue [1] nazval mřížkovou amplitudou. Je zřejmě periodickou funkcí s 2π k -násobnou periodicitou reciproké mřížky a poněvadž X h x n je celé číslo, je max G X) ) 2π = G X k h = V. 5) V U V Podíl V U je počet elementárních buněk tvořících konečnou mřížku. Fourierova transformace výrazu 1b) je podle 7.31), 7.33), a 4.317) dána výrazem kde F X) = 1 A N V U F U X) h inf S X) = FT {s x)} = A N δ X 2πk X h ) S X), 6)... V exp ik X x ) d N x. 7) Funkci S X) nazval Ewald [2] tvarovou amplitudou. Týmž termínem se označují i veličiny úměrné Fourierově transformaci tvarové funkce, zejména bezrozměrné veličiny S 1 X) = 1 A N V S X) a G 1 X) = 1 A N V U S X). 8) Je zřejmé, že pro X = 0 nabývají absolutní hodnoty těchto veličin maximálních hodnot

2 2 17 KONEČNÁ KRYSTALOVÁ MŘÍŽKA, MŘÍŽKOVÁ A TVAROVÁ AMPLITUDA S 0) = A N V, S 1 0) = 1, G 1 0) = V V U. 9) S použitím tvarové amplitudy G 1 lze přepsat Fourierovu transformaci 6) konečné mřížky do tvaru F X) = F U X) h inf δ X 2πk ) X h G 1 X), 10) jenž má přesně stejnou výstavbu jako výraz 1b) charakterizující konečnou mřížku. Fourierovu transformaci konečné mřížky tvoří tedy tvarové amplitudy G 1 X) rozmístěné v mřížkových bodech 2π k X h reciproké mřížky a násobené Fourierovou transformací F U X) elementární buňky. Tato analogie mezi konečnou mřížkou a její Fourierovou transformací je snad ještě zřejmější z výrazů, které se získají, když se v 1b) a 10) provede nejprve násobení a potom konvoluce: f x) = s x n ) f U x x n ), 11) n inf F X) = ) 2π F U X k h G 1 X 2π ) X k h. 12) h inf Obrázek 1: Fraunhoferova difrakce na dvojčetné Siemensově hvězdici. Hvězdice je vyobrazena v levém dolním rohu difrakčního obrazce. Ramena difrakčního obrazcce jsou kolmá na rovné úseky okraje hvězdice. Dvojčetné Siemensovy hvězdice je použito jako základního motivu, jehož translací vznikly mřížky na obr. 2. Jinými slovy a formálně nahlíženo, Fourierovou transformací konečné mřížky je opět konečná mřížka, v níž tvarové amplitudy G 1 hrají roli elementárních buněk f U a Fourierova transformace F U elementární buňky hraje roli tvarové funkce s a omezuje rozsah konečné mřížky v prostoru Fourierovy transformace srv. obrázky 2, 3 a 4). Lze v tom opět spatřovat projev reciprocity: Velkému v prostoru proměnné x odpovídá malé ve Fourierově prostoru proměné X a naopak. Věcně však není analogie mezi konečnou mřížkou a její Fourierovou transformací tak úplná jako formálně. Už proto, že konečná mřížka je prostorově vymezena tvarovou funkcí s x), jež nabývá nulové hodnoty skokem viz 2)), kdežto Fourierova transformace konečné mřížky je konečnou mřížkou ve Fourierově prostoru jen v tom smyslu, že je

3 17 KONEČNÁ KRYSTALOVÁ MŘÍŽKA, MŘÍŽKOVÁ A TVAROVÁ AMPLITUDA 3 Obrázek 2: Dvojrozměrné čtvercové mřížky v levém sloupci jsou tvořeny translací různě orientovaných dvojčetných Siemensových hvězdic. Fraunhoferovy difrakční jevy v pravém sloupci ukazují, že difrakční obrazec na mřížce je vymezen difrakcí na motivu vytvářejícím mřížku v difrakčních obrazcích jsou ramena kolmá k rovným okrajům Siemensovy hvězdice).

4 4 17 KONEČNÁ KRYSTALOVÁ MŘÍŽKA, MŘÍŽKOVÁ A TVAROVÁ AMPLITUDA Obrázek 3: Vliv vnějšího tvaru konečné mřížky na tvar difrakčních stop [5]. a),b) dvojrozměrné mřížky s touž strukturou čtverečnou), avšak s různými vnějšími okraji. c), e) a d), f) Fraunhoferova difrakce z a) a b): c),d) celá střední část difrakčního obrazce, e), f) detail ukazující tvar difrakčních stop čtverec modulu mřížkové amplitudy G X)).Vedlejší maxima uprostřed buněk reciproké mřížky zřetelná v f) zanikají s rostoucí velikostí mřížky. Jejich intenzita je úměrná počtu rozptylových center, kdežto intenzita hlavních maxim roste s kvadrátem počtu rozptylových center.)

5 17 KONEČNÁ KRYSTALOVÁ MŘÍŽKA, MŘÍŽKOVÁ A TVAROVÁ AMPLITUDA 5 Obrázek 4: Fraunhoferova difrakce na konečné dvojrozměrné mřížce. V horní části obrázku je dvojrozměrná mřížka téhož vnějšího tvaru tvořená jednou kruhovými, jednou obdélníkovými otvory. Ve střední části obrázku jsou celé Fraunhoferovy difrakční obrazce těchto mřížek. Ukazují, že difrakční obrazec jako celek je vymezen tvarem odpovídajícím difrakci na motivu vytvářejícím mřížku rotačně symetrický Airyho difrakční obrazec představuje difrakci na kruhovém otvoru, kříž s rameny kolmými na strany představuje difrakci na obdélníkovém otvoru). V dolní části obrázku jsou zvětšené centrální části difrakčních obrazců. Jsou téměř stejné, neboť obě difrakční mřížky mají touž strukturu. Hlavní maxima tvoří reciprokou mřížku k difrakční mřížce.

6 6 17 KONEČNÁ KRYSTALOVÁ MŘÍŽKA, MŘÍŽKOVÁ A TVAROVÁ AMPLITUDA vymezena Fourierovou transformací F U X) elementární buňky, jež jde k nule pouze asymptoticky, když X. Fourierovu transformaci konečné mřížky lze tedy vyjádřit dvěma formálně různými výrazy: Jednak výrazem 3) prostřednictvím mřížkové amplitudy 4), jednak výrazem 10), resp. 12) prostřednictvím tvarové amplitudy 8). Mohlo by se zdát, že k výpočtu Fourierovy transformace konečné mřížky je vždy výhodnější použít výrazu 3), který je součinem dvou zdánlivě jednoduchých funkcí, než výrazu 10) nebo 12), které představují N-násobné nekonečné řady. Lze však uvést aspoň tři důvody, které vysvětlují, proč tomu bývá právě naopak: i) Mřížkovou amplitudu G X) bývá obtížné vypočítat podle definice 4). Je-li totiž vnější tvar mřížky poněkud komplikovanější, bývá obtížné specifikovat meze součtu 4). Proto může být užitečný vztah, který se získá porovnáním 3) a 10): G X) = h inf G 1 X) δ X 2πk ) X h = G 1 X 2π ) X k h. 13) h inf Vyjadřuje mřížkovou amplitudu G X) periodická funkce) superpozicí tvarových amplitud G 1 X) neperiodická funkce). ii) Je-li konečná mřížka tvořena velkým počtem elementárních buněk v každém směru, má modul tvarové amplitudy G1 X) velmi ostré maximum v počátku, tj. G1 X) V U V = S 1 X) se výrazněji liší od nuly jen v blízkosti počátku. V důsledku toho v blízkosti bodů X = 2π k X h platí G X). = G 1 X 2π k X h ), pokud X 2π X k h 2π a + k r, 14) neboť příspěvky všech ostatních členů řady 13) jsou zanedbatelné. Tvarovou amplitudu G 1 X 2π ) k X h lze tedy použít jako lokální aproximaci mřížkové amplitudy G X) v okolí bodů X = 2π k X h. To byl také původní podnět ke studiu tvarové amplitudy, když v r Laue [3] aproximoval součet 4) integrálem vyjadřujícím tvarovou amplitudu G 1. Dobrá lokální aproximace mřížkové amplitudy G tvarovou amplitudou G 1 v okolí bodů 2π k X h je dobře patrná na příkladu konečné jednorozměrné mřížky tvořené 2n+1) body: fx) = n j= n δx ja). Mřížková amplituda takové mřížky je GX) = n j= n exp ikxja ) = sin[ kx2n + 1)a/2 ] sin kxa/2 ) 15) a tvarová amplituda G 1 X) = 2n+1)a/2 2n+1)a/2 exp ikxa ) dx = sin[ kx2n + 1)a/2 ] kxa/2. 16) Dobrá aproximace mřížkové amplitudy 15) tvarovou amplitudou 16) v okolí mřížkového bodu X = 0 je zřejmá z algebraického vyjádření obou funkcí. Obrázek 5 ilustruje tuto skutečnost pro případ mřížky tvořené devíti body. iii) Konečná mřížka má vždy tvar nějakého N-rozměrného mnohostěnu polygonu v E 2, mnohostěnu v E 3 ). Tvarové amplitudy mnohostěnů lze poměrně snadno vypočítat, neboť jak bylo uvedeno v odst integrál 7) je vždy možné vypočíst analyticky, a tím vyjádřit tvarovou amplitudu algebraicky. V trojrozměrném případě na to upozornil Laue již v r [3] a doporučoval využít k výpočtu integrálu 7) Abbeovy transformace viz [5] a též dodatek D těchto přednášek). V r Patterson [4] počítal tvarové amplitudy některých mnohostěnů tak, že rozložil mnohostěn na čtyřstěny, vypočetl tvarovou amplitudu obecného čtyřstěnu a tvarovou amplitudu mnohostěnu vyjádřil součtem tvarových amplitud čtyřstěnů. Algebraické formule pro tvarové amplitudy obecných mnohoúhelníků a mnohostěnů odvozené pomocí Abbeovy transformace 11.12) byly publikovány v roce 1988 [5]. S jejich pomocí lze tvarovou amplitudu mnohostěnů resp. mnohoúhelníků bez obtíží vypočítat srov. odst. 11.2, dodatek D a publikace [6], [7]) a Fourierovu transformaci konečné mřížky je proto výhodné počítat podle vztahu 12). Přitom je vzhledem k 14) možné v okolí bodů X = 2π k X h nahradit nekonečnou řadu 12) jen několika jejími sčítanci, často téměř vždy dokonce jediným, jak to ilustruje obrázek 5.

7 17 KONEČNÁ KRYSTALOVÁ MŘÍŽKA, MŘÍŽKOVÁ A TVAROVÁ AMPLITUDA 7 Reference [1] Laue M. v.: Materiewellen und ihre Interferenzen. 2. Auflage. Akademische Verlagsgesellschaft, Geest & Portig, Leipzig [2] Ewald P. P.: X-ray diffraction by finite and imperfect crystal lattices. The Proceedings of the Physical Society London) ), [3] Laue M. v.: Die äussere Form der Kristalle in ihrem Einfluss auf die Interferenzerscheinungen an Raumgittern. Annalen der Physik. 5. Folge ), [4] Patterson A. L.: The Diffraction of X-Rays by Small Crystalline Particles. Phys. Rev ), [5] Komrska J.: Algebraic expressions of shape amplitudes of polygons and polyhedra. Optik ), [6] Komrska J., Neumann W.: Crystal Shape Amplitudes of Platonic Polyhedra. I. General Aspects and the Shape Amplitudes of the Tetrahedron, Cube and Octahedron. phys. stat. sol. a) ), [7] Neumann W., Komrska J.: Crystal Shape Amplitudes of Platonic Polyhedra. II. The Regular Pentagonal Dodecahedron and the Icosahedron. phys. stat. sol. a) ),

8 8 17 KONEČNÁ KRYSTALOVÁ MŘÍŽKA, MŘÍŽKOVÁ A TVAROVÁ AMPLITUDA Obrázek 5: Mřížková amplituda GX) = sin sin ) sin 9kXa/2 kxa/2 9kXa/2 kxa/2 ) ) plná čára) a tvarová amplituda G 1 X) = tečkovaně) jednorozměrné mřížky tvořené devíti body. Z grafů je vidět, že tvarová amplituda G 1 X) dobře aproximuje mřížkovou amplitudu GX) v okolí mřížkového bodu X = 0, tj. když X 2π ka.

Fourierovské metody v teorii difrakce a ve strukturní analýze

Fourierovské metody v teorii difrakce a ve strukturní analýze Osnova přednášky na 31 kolokviu Krystalografické společnosti Výpočetní metody v rtg a neutronové strukturní analýze Nové Hrady, 16 20 6 2003 Fourierovské metody v teorii difrakce a ve strukturní analýze

Více

18 Podmínky pro směry hlavních difrakčních maxim při difrakci na mřížkách

18 Podmínky pro směry hlavních difrakčních maxim při difrakci na mřížkách 18 SMĚRY HLAVNÍCH DIFRAKČNÍCH MAXIM PŘI DIFRAKCI NA MŘÍŽKÁCH 1 18 Podmínky pro směry hlavních difrakčních maxim při difrakci na mřížkách V odst. 2.1 bylo vysvětleno že vlnová funkce záření difraktovaného

Více

D ALGEBRAICKÁ VYJÁDŘENÍ TVAROVÉ AMPLITUDY MNOHOSTĚNU 1. D Algebraická vyjádření tvarové amplitudy mnohostěnu [1]

D ALGEBRAICKÁ VYJÁDŘENÍ TVAROVÉ AMPLITUDY MNOHOSTĚNU 1. D Algebraická vyjádření tvarové amplitudy mnohostěnu [1] D ALGEBRAICKÁ VYJÁDŘENÍ TVAROVÉ AMPLITUDY MNOHOSTĚNU 1 D Algebraická vyjádření tvarové amplitudy mnohostěnu [1] Tvarovou amplitudu mnohostěnu 177) trojrozměrného tělesa V S X) = A exp ikx x) d x, 1) V

Více

8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic

8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic 8 REGULÁRNÍ LINEÁRNÍ TRANSFORMACE SOUŘADNIC 8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic Ze zkušenosti s Fraunhoferovými difrakčními

Více

11 Abbeova transformace a Abbeova věta

11 Abbeova transformace a Abbeova věta 11 ABBEOVA TRANSFORMACE A ABBEOVA VĚTA 1 11 Abbeova transformace a Abbeova věta Abbeova transformace i Abbeova věta jsou významné pro teorii difrakce jak v optice, tak ve strukturní analýze. Abbeova transformace

Více

4 Příklady Fraunhoferových difrakčních jevů

4 Příklady Fraunhoferových difrakčních jevů 47 4 Příklady Fraunhoferových difrakčních jevů 4.1 Fraunhoferova difrakce na obdélníkovém otvoru 4.2 Fraunhoferova difrakce na stěrbině 4.3 Fraunhoferova difrakce na kruhovém otvoru 4.4 Fraunhoferova difrakce

Více

MATEMATICKÉ ZÁKLADY KINEMATICKÉ TEORIE DIFRAKCE. Jiří Komrska

MATEMATICKÉ ZÁKLADY KINEMATICKÉ TEORIE DIFRAKCE. Jiří Komrska MATEMATICKÉ ZÁKLADY KINEMATICKÉ TEORIE DIFRAKCE Jiří Komrska Ústav fyzikálního inženýrství, Fakulta strojního inženýrství, VUT Brno, Technická 2, 616 69 Brno Přednášky pro doktorský studijní program 1

Více

Poznámky k Fourierově transformaci

Poznámky k Fourierově transformaci Poznámky k Fourierově transformaci V těchto poznámkách jsou uvedeny základní vlastnosti jednorozměrné Fourierovy transformace a její aplikace na jednoduché modelové případy. Pro určitost jsou sdružené

Více

Krystalografie a strukturní analýza

Krystalografie a strukturní analýza Krystalografie a strukturní analýza O čem to dneska bude (a nebo také nebude): trocha historie aneb jak to všechno začalo... jak a čím pozorovat strukturu látek difrakce - tak trochu jiný mikroskop rozptyl

Více

15 Fourierova transformace v hypersférických souřadnicích

15 Fourierova transformace v hypersférických souřadnicích 15 HYPERSFÉRICKÉ SOUŘADNICE 1 15 Fourierova transformace v hypersférických souřadnicích 151 Definice hypersférických souřadnic r, ϑ N,, ϑ 1, ϕ v E N Hypersférické souřadnice souvisejí s kartézskými souřadnicemi

Více

Bakalářská matematika I

Bakalářská matematika I 1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,

Více

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015 Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární

Více

0.1 Úvod do matematické analýzy

0.1 Úvod do matematické analýzy Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Pojem funkce Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost

Více

Úvod do zpracování signálů

Úvod do zpracování signálů 1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování

Více

Matematika I (KMI/PMATE)

Matematika I (KMI/PMATE) Přednáška první aneb Úvod do matematické analýzy Funkce a její vlastnosti Úvod do matematické analýzy Osnova přednášky pojem funkce definice funkce graf funkce definiční obor funkce obor hodnot funkce

Více

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim.

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim. PRIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi

Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi 2.2. Cíle Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi Předpokládané znalosti Předpokladem zvládnutí

Více

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE PIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

2. Numerické výpočty. 1. Numerická derivace funkce

2. Numerické výpočty. 1. Numerická derivace funkce 2. Numerické výpočty Excel je poměrně pohodlný nástroj na provádění různých numerických výpočtů. V příkladu si ukážeme možnosti výpočtu a zobrazení diferenciálních charakteristik analytické funkce, přičemž

Více

MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH. Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky

MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH. Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky Při návrhu elektroakustických soustav, ale i jiných systémů, je vhodné nejprve

Více

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c )

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c ) 3.3 Řešené příklady Příklad 1: Pro nosník na obrázku vyšetřete a zakreslete reakce, T (x) a M(x). Dále určete M max a proveďte dimenzování pro zadaný průřez. Dáno: a = 0.5 m, b = 0.3 m, c = 0.4 m, d =

Více

#(, #- #(!!$!#$%!! [2], studiu difraktivních. #!$$&$.( &$/#$$ oblasti holografie a difraktivní!# '!% #!!$#!'0!!*#!(#!! #!!! $ % *! $! (!

#(, #- #(!!$!#$%!! [2], studiu difraktivních. #!$$&$.( &$/#$$ oblasti holografie a difraktivní!# '!% #!!$#!'0!!*#!(#!! #!!! $ % *! $! (! . Úvod!"!!!#$%!!!&'!!#$%!!!& # vlnovým!!*!!#$*$! #!!&!!!$%!# #!!$ % '!!&!&!!#$!!!$!!!$ s #!!!*! '! $ #, #- #!!$!#$%!! [], studiu difraktivních #!$$&$. &$/#$$ oblasti holografie a difraktivní!# '!% #!!$#!'0!!*#!#!!

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

Matematika (KMI/PMATE)

Matematika (KMI/PMATE) Úvod do matematické analýzy Funkce a její vlastnosti Funkce a její vlastnosti Veličina Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Funkce a její

Více

0.1 Úvod do matematické analýzy

0.1 Úvod do matematické analýzy Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Limita a spojitost funkce Lineární funkce Lineární funkce je jedna z nejjednodušších a možná i nejpoužívanějších funkcí. f(x) = kx + q D(f)

Více

V této kapitole si zobecníme dříve probraný pojem limita posloupnosti pro libovolné funkce.

V této kapitole si zobecníme dříve probraný pojem limita posloupnosti pro libovolné funkce. Kapitola 7 Limita funkce V této kapitole budeme studovat pojem ita funkce, který lze zařadit mezi základní pojmy matematiky, speciálně pak matematické analýzy Využití ity funkce je široké Pomocí ity lze

Více

LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií)

LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií) LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií) RHEED (Reflection High-Energy Electron Diffraction difrakce elektronů s vysokou energií na odraz) Úvod Zkoumání povrchů pevných

Více

Funkce komplexní proměnné a integrální transformace

Funkce komplexní proměnné a integrální transformace Funkce komplexní proměnné a integrální transformace Fourierovy řady I. Marek Lampart Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na

Více

2 Význam Fourierovy transformace v teorii difrakce

2 Význam Fourierovy transformace v teorii difrakce 1 2 Význam Fourierovy transformace v teorii difrakce Studium struktury látek založené na difrakci nějakého záření se většinou provádí tak, že na zkoumanou látku dopadá rovnoběžný svazek záření a ve vzdálenosti

Více

Booleovská algebra. Booleovské binární a unární funkce. Základní zákony.

Booleovská algebra. Booleovské binární a unární funkce. Základní zákony. Booleovská algebra. Booleovské binární a unární funkce. Základní zákony. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz

Více

0.1 Funkce a její vlastnosti

0.1 Funkce a její vlastnosti 0.1 Funkce a její vlastnosti Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost (m) čas (t) výše úrokové sazby v bance (i) cena

Více

Význam a výpočet derivace funkce a její užití

Význam a výpočet derivace funkce a její užití OPAKOVÁNÍ ZÁKLADŮ MATEMATIKY Metodický list č. 1 Význam a výpočet derivace funkce a její užití 1. dílčí téma: Výpočet derivace přímo z definice a pomocí základních vzorců. K tomuto tématu je třeba zopakovat

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Matematika I A ukázkový test 1 pro 2014/2015

Matematika I A ukázkový test 1 pro 2014/2015 Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)

Více

18 Fourierovy řady Úvod, základní pojmy

18 Fourierovy řady Úvod, základní pojmy M. Rokyta, MFF UK: Aplikovaná matematika III kap. 18: Fourierovy řady 7 18 Fourierovy řady 18.1 Úvod, základní pojmy Otázka J. Fouriera: Lze každou periodickou funkci napsat jako součet nějakých "elementárních"

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Příloha č. 1. amplitudová charakteristika filtru fázová charakteristika filtru / frekvence / Hz. 1. Určení proudové hustoty

Příloha č. 1. amplitudová charakteristika filtru fázová charakteristika filtru / frekvence / Hz. 1. Určení proudové hustoty Příloha č. 1 Při hodnocení expozice nízkofrekvenčnímu elektromagnetickému poli (0 Hz 10 MHz) je určující veličinou modifikovaná proudová hustota J mod indukovaná v tělesné tkáni. Jak je uvedeno v nařízení

Více

4 Integrální počet funkcí více reálných proměnných

4 Integrální počet funkcí více reálných proměnných Dvojné integrály - 61-4 ntegrální počet funkcí více reálných proměnných 4.1 Dvojné a dvojnásobné integrály Dvojné a dvojnásobné integrály na intervalech z Pod uzavřeným intervalem z rozumíme kartézský

Více

SIGNÁLY A LINEÁRNÍ SYSTÉMY

SIGNÁLY A LINEÁRNÍ SYSTÉMY SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz, Kamenice 3, 4. patro, dv.č.424 INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz IV. FREKVENČNÍ TRASFORMACE SPOJITÉ

Více

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně 7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností

Více

Matematika (KMI/PMATE)

Matematika (KMI/PMATE) Matematika (KMI/PMATE) Přednáška druhá aneb Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) 1 / 30 Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam

Více

Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy

Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy funkcí, průběh funkce) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 5. přednáška z AMA1 Michal Fusek (fusekmi@feec.vutbr.cz)

Více

Zimní semestr akademického roku 2014/ prosince 2014

Zimní semestr akademického roku 2014/ prosince 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 2. prosince 2014 Předmluva

Více

V. Riemannův(dvojný) integrál

V. Riemannův(dvojný) integrál V. Riemannův(dvojný) integrál Obsah 1 Základní pojmy a definice 2 2 Podmínky existence dvojného integrálu 4 3 Vlastnosti dvojného integrálu 4 4 Výpočet dvojného integrálu; převod na dvojnásobný integrál

Více

2 Spojité modely rozhodování

2 Spojité modely rozhodování 2 Spojité modely rozhodování Jak již víme z přednášky, diskrétní model rozhodování lze zapsat ve tvaru úlohy hodnocení variant: f(a i ) max, a i A = {a 1, a 2,... a p }, kde f je kriteriální funkce a A

Více

Kvantová mechanika - model téměř volných elektronů. model těsné vazby

Kvantová mechanika - model téměř volných elektronů. model těsné vazby Kvantová mechanika - model téměř volných elektronů model těsné vazby Částice (elektron) v periodickém potenciálu- Blochův teorém Dále už nebudeme považovat elektron za zcela volný (Sommerfeld), ale připustíme

Více

Měření rozložení optické intenzity ve vzdálené zóně

Měření rozložení optické intenzity ve vzdálené zóně Rok / Year: Svazek / Volume: Číslo / Number: 1 1 5 Měření rozložení optické intenzity ve vzdálené zóně Measurement of the optial intensity distribution at the far field Jan Vitásek 1, Otakar Wilfert, Jan

Více

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa 2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace

Více

Semestrální projekt. Vyhodnocení přesnosti sebelokalizace VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Fakulta elektrotechniky a komunikačních technologií

Semestrální projekt. Vyhodnocení přesnosti sebelokalizace VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Fakulta elektrotechniky a komunikačních technologií VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta elektrotechniky a komunikačních technologií Semestrální projekt Vyhodnocení přesnosti sebelokalizace Vedoucí práce: Ing. Tomáš Jílek Vypracovali: Michaela Homzová,

Více

Přijímací zkouška na navazující magisterské studium Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy

Přijímací zkouška na navazující magisterské studium Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy Přijímací zkouška na navazující magisterské studium 013 Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy Studijní program Učitelství pro základní školy - obor Učitelství fyziky

Více

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021 Maturitní témata MATEMATIKA 1. Funkce a jejich základní vlastnosti. Definice funkce, def. obor a obor hodnot funkce, funkce sudá, lichá, monotónnost funkce, funkce omezená, lokální a globální extrémy funkce,

Více

1 Skalární vlna a její matematický popis

1 Skalární vlna a její matematický popis 7 1 Skalární vlna a její matematický popis 1.1 Vlna a vlnová rovnice 1. Rovinné vlny 1. Kulové vlny 1.4 Harmonické vlny 1.5 Komplexní notace harmonických vln 1.6 Intenzita vlnění a výpočet intenzity harmonických

Více

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:

Více

Transformace obrazu Josef Pelikán KSVI MFF UK Praha

Transformace obrazu Josef Pelikán KSVI MFF UK Praha Transformace obrazu 99725 Josef Pelikán KSVI MFF UK Praha email: Josef.Pelikan@mff.cuni.cz WWW: http://cgg.ms.mff.cuni.cz/~pepca/ Transformace 2D obrazu dekorelace dat potlačení závislosti jednotlivých

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2, Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se

Více

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Neideální plyny. Z e dr dr dr. Integrace přes hybnosti. Neideální chování

Neideální plyny. Z e dr dr dr. Integrace přes hybnosti. Neideální chování eideální plyny b H Q(, V, T )... e dp 3... dpdr... dr! h Integrace přes hybnosti QVT (,, ) pmkt! h 3 / e dr dr dr /... U kt... eideální chování p kt r B ( T) r B ( T) r 3 3 Vyšší koeficinety velice složité

Více

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: 3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...

Více

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

Praktická statistika. Petr Ponížil Eva Kutálková

Praktická statistika. Petr Ponížil Eva Kutálková Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo

Více

Petr Hasil

Petr Hasil Základy Vyšší Matematiky Petr Hasil hasil@mendelu.cz Poznámka 1. Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny

Více

Vybrané kapitoly z matematiky

Vybrané kapitoly z matematiky Vybrané kapitoly z matematiky VŠB-TU Ostrava 2017-2018 Vybrané kapitoly z matematiky 2017-2018 1 / 19 Základní informace předmět: 714-0513, 5 kreditů přednáší: Radek Kučera kontakt: radek.kucera@vsb.cz,

Více

Charakterizace rozdělení

Charakterizace rozdělení Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf

Více

2. Difrakce elektronů na krystalu

2. Difrakce elektronů na krystalu 2. Difrakce elektronů na krystalu Interpretace pozorování v TEM faktory ovlivňující interakci e - v krystalu 2 způsoby náhledu na interakci e - s krystalem Rozptyl x difrakce částice x vlna Difrakce odchýlení

Více

(Následující odstavce jsou zde uvedeny jen pro zájemce.) , sin2π, (2)

(Následující odstavce jsou zde uvedeny jen pro zájemce.) , sin2π, (2) Studium difrakčních jevů TEORIE doplněk: Odvození výrazů pro difrakční maxima (popř. minima) na štěrbině, dvojštěrbině a mřížce jsou zpravidla uvedena na středoškolské úrovni, což je založeno na vhodném

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

INTEGRÁLY S PARAMETREM

INTEGRÁLY S PARAMETREM INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy

Více

Impedanční děliče - příklady

Impedanční děliče - příklady Impedanční děliče - příklady Postup řešení: Vyznačení impedancí, tvořících dělič Z Z : podélná impedance, mezi svorkami a Z : příčná impedance, mezi svorkami a ' ' Z ' Obecné vyjádření impedancí nebo admitancí

Více

CVIČNÝ TEST 41. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 41. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 41 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán magický čtverec, pro nějž platí,

Více

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar Řešte v : má rovnice tvar takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar takže rovnice v zadání má v tomto případě opět jedno řešení. Sjednocením obou případů dostaneme úplné

Více

13 Fourierova transformace v polárních souřadnicích. Hankelovy transformace

13 Fourierova transformace v polárních souřadnicích. Hankelovy transformace 13 FOURIEROVA TRANSFORMACE V POLÁRNÍCH SOUŘADNICÍCH 1 13 Fourierova transformace v polárních souřadnicích. Hankelovy transformace 13.1 Základní výrazy Při výpočtech Fourierovy transformace funkcí (dvou

Více

IB112 Základy matematiky

IB112 Základy matematiky IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic

Více

Úvod do strukturní analýzy farmaceutických látek

Úvod do strukturní analýzy farmaceutických látek Úvod do strukturní analýzy farmaceutických látek Garant předmětu: Vyučující: doc. Ing. Bohumil Dolenský, Ph.D. prof. RNDr. Pavel Matějka, Ph.D., A136, linka 3687, matejkap@vscht.cz doc. Ing. Bohumil Dolenský,

Více

Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení.

Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení. Předmět: MA4 Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení. Literatura: Kapitola 2 a)-c) a kapitola 4 a)-c) ze skript Karel Rektorys: Matematika 43, ČVUT,

Více

16 Fourierovy řady Úvod, základní pojmy

16 Fourierovy řady Úvod, základní pojmy M. Rokyta, MFF UK: Aplikovaná matematika IV kap. 16: Fourierovy řady 1 16 Fourierovy řady 16.1 Úvod, základní pojmy Otázka J. Fouriera: Lze každou periodickou funkci napsat jako součet nějakých "elementárních"

Více

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0 Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud

Více

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu.

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu. 6. NÁHODNÝ VEKTOR Průvodce studiem V počtu pravděpodobnosti i v matematické statistice se setkáváme nejen s náhodnými veličinami, jejichž hodnotami jsou reálná čísla, ale i s takovými, jejichž hodnotami

Více

Plošný integrál Studijní text, 16. května Plošný integrál

Plošný integrál Studijní text, 16. května Plošný integrál Plošný integrál tudijní text, 16. května 2011 Plošný integrál Jednoduchý integrál jsme rozšířili zavedením křivkového integrálu. Rozlišovali jsme dva druhy integrálu, přičemž křivkový integrál 2. druhu

Více

Přednáška 3: Limita a spojitost

Přednáška 3: Limita a spojitost 3 / 1 / 17, 1:38 Přednáška 3: Limita a spojitost Limita funkce Nejdříve je potřeba upřesnit pojmy, které přesněji popisují (topologickou) strukturu množiny reálných čísel, a to zejména pojem okolí 31 Definice

Více

3.2 Rovnice postupné vlny v bodové řadě a v prostoru

3.2 Rovnice postupné vlny v bodové řadě a v prostoru 3 Vlny 3.1 Úvod Vlnění můžeme pozorovat například na vodní hladině, hodíme-li do vody kámen. Mechanické vlnění je děj, při kterém se kmitání šíří látkovým prostředím. To znamená, že například zvuk, který

Více

KTE / PPEL Počítačová podpora v elektrotechnice

KTE / PPEL Počítačová podpora v elektrotechnice KTE / PPEL Počítačová podpora v elektrotechnice Ing. Lenka Šroubová, Ph.D. email: lsroubov@kte.zcu.cz http://home.zcu.cz/~lsroubov 3. 10. 2012 Základy práce s výpočetními systémy opakování a pokračování

Více

Otázky k ústní zkoušce, přehled témat A. Číselné řady

Otázky k ústní zkoušce, přehled témat A. Číselné řady Otázky k ústní zkoušce, přehled témat 2003-2004 A Číselné řady Vysvětlete pojmy částečný součet řady, součet řady, řadonverguje, řada je konvergentní Formulujte nutnou podmínku konvergence řady a odvoďte

Více

VEKTORY. Obrázek 1: Jediný vektor. Souřadnice vektoru jsou jeho průměty do souřadných os x a y u dvojrozměrného vektoru, AB = B A

VEKTORY. Obrázek 1: Jediný vektor. Souřadnice vektoru jsou jeho průměty do souřadných os x a y u dvojrozměrného vektoru, AB = B A VEKTORY Vektorem se rozumí množina všech orientovaných úseček, které mají stejnou velikost, směr a orientaci, což vidíme na obr. 1. Jedna konkrétní orientovaná úsečka se nazývá umístění vektoru na obr.

Více

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1 9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom

Více

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI DIFRAKČNÍCH JEVŮ V OPTICE

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI DIFRAKČNÍCH JEVŮ V OPTICE VÝUKOVÝ SOFTWRE RO NLÝZU VIZULIZCI DIFRKČNÍCH JEVŮ V OTICE J. Novák,. Novák Katedra fyziky, Fakulta stavební, České vysoké učení technické v raze bstrakt Difrakcí se rozumí ty odchylky v chování elektromagnetického

Více

Diskrétní náhodná veličina. November 12, 2008

Diskrétní náhodná veličina. November 12, 2008 Diskrétní náhodná veličina November 12, 2008 (Náhodná veličina (náhodná proměnná)) Náhodná veličina (nebo též náhodná proměnná) je veličina X, jejíž hodnota je jednoznačně určena výsledkem náhodného pokusu.

Více

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Téma 2: Pravděpodobnostní vyjádření náhodných veličin 0.05 0.0 0.05 0.0 0.005 Nominální napětí v pásnici Std Mean 40 60 80 00 0 40 60 Std Téma : Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).

Více

3.4.2 Rovnováha Rovnováha u centrální rovinné silové soustavy nastává v případě, že výsledná síla nahrazující soustavu je rovna nule. Tedy. Obr.17.

3.4.2 Rovnováha Rovnováha u centrální rovinné silové soustavy nastává v případě, že výsledná síla nahrazující soustavu je rovna nule. Tedy. Obr.17. Obr.17. F F 1x = F.cos α1,..., Fnx = F. cos 1y = F.sin α1,..., Fny = F. sin α α n n. Původní soustava je nyní nahrazena děma soustavami sil ve směru osy x a ve směru osy y. Tutu soustavu nahradíme dvěma

Více

CVIČNÝ TEST 48. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 48. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 48 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán konvexní čtyřúhelník, jehož vnitřní

Více

Kapitola 1: Reálné funkce 1/13

Kapitola 1: Reálné funkce 1/13 Kapitola 1: Reálné funkce 1/13 Číselné množiny N, N 0, Z, Q, I, R, C Definice: Kartézský součin M N množin M a N je množina všech uspořádaných dvojic, ve kterých je první složka prvkem množiny M a druhá

Více

sin(x) x lim. pomocí mocninné řady pro funkci sin(x) se středem x 0 = 0. Víme, že ( ) k=0 e x2 dx.

sin(x) x lim. pomocí mocninné řady pro funkci sin(x) se středem x 0 = 0. Víme, že ( ) k=0 e x2 dx. Použití mocniných řad Nejprve si ukážeme dvě jednoduchá použití Taylorových řad. Příklad Spočtěte následující limitu: ( ) sin(x) lim. x x ( ) Najdeme lim sin(x) x x pomocí mocninné řady pro funkci sin(x)

Více

6. ANALYTICKÁ GEOMETRIE

6. ANALYTICKÁ GEOMETRIE Vektorová algebra 6. ANALYTICKÁ GEOMETRIE Pravoúhlé souřadnice bodu v prostoru Poloha bodu v prostoru je vzhledem ke třem osám k sobě kolmým určena třemi souřadnicemi, které tvoří uspořádanou trojici reálných

Více