M - Příprava na 4. zápočtový test - třídy 1DP, 1DVK

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "M - Příprava na 4. zápočtový test - třídy 1DP, 1DVK"

Transkript

1 M - Příprava na 4. zápočtový test - třídy 1DP, 1DVK Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je dovoleno pouze s uvedením odkazu na VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete na

2 ± Intervaly Intervaly, jejich zápis a znázornění Užití intervalů je široké a setkáme se s nimi nejen při řešení nerovnic. Rozdělení intervalů: 1. Uzavřený interval a x b (x je menší nebo rovno b a zároveň větší než a ) - zapisujeme též množinově: x Î <a; b> Grafickým znázorněním tohoto intervalu je úsečka se svými krajními body. 2. Otevřený interval a < x < b (x je menší než b a zároveň větší než a ) - zapisujeme též množinově: x Î (a; b) Grafickým znázorněním je úsečka bez krajních bodů. Poznámka: Zvláštním případem otevřeného intervalu je celá množina reálných čísel. Grafickým znázorněním je přímka. x Î (- ; + ) nebo jinak x Î R 3. Polootevřený (polouzavřený) interval a < x b (x je menší nebo rovno b a zároveň větší než a ) - zapisujeme též množinově: x Î (a; b> Grafickým znázorněním je úsečka s jedním krajním bodem. Takovýto interval někdy také nazýváme zprava uzavřený interval. Pozn.: Analogicky bychom mohli definovat zleva uzavřený interval. 4. Další typy intervalů x < a x Î (- ; a) 1 z 59

3 Analogicky by byl interval pro x > a x a x Î (- ; a> Opět analogicky by vypadal interval pro x ³ a ± Nerovnice Nerovnice Nerovnice je zápis nerovnosti dvou matematických výrazů. Nerovnice, podobně jako rovnice, může obsahovat jednu nebo více neznámých. Postup řešení nerovnic je obdobný, jako při řešení rovnic s tou výjimkou, že pokud násobíme nebo dělíme nerovnici záporným číslem, mění se znak nerovnosti v opačný. >... čteme větší <... čteme menší... čteme menší nebo rovno ³... čteme větší nebo rovno Výsledek řešení nerovnice zpravidla graficky znázorňujeme, zapisujeme intervalem a provádíme ověření správnosti řešení. Pozn.: Ověření správnosti, ne tedy zkouška, proto, že většinou je řešením celý interval a my nemáme možnost všechna čísla z daného intervalu dosadit. Ukázkové příklady: Příklad 1: Řešení: Celou nerovnici vynásobíme čtyřmi, což je kladné číslo, proto znak nerovnosti se nemění. 2x (x + 3) > 4 2x - 1-2x - 6 > 4-7 > 4 Výsledkem je nepravdivá rovnost, proto nerovnice nemá řešení. Příklad 2: 2 z 59

4 Řešení: Celou nerovnici vynásobíme dvanácti: 2. (7-2x) > 3x x > 3x - 7-7x > -21 V tomto případě budeme celou nerovnici dělit číslem (-7), což je číslo záporné, proto se znak nerovnosti změní v opačný: x < 3 Výsledek zapíšeme intervalem: x Î (- ; 3) Graficky znázorníme: Provedeme ověření správnosti řešení pro libovolné číslo z výsledného intervalu - např. pro x = 0: L = = 6 6 L > P Pokud by při řešení nerovnice vyšel závěr, kterým je pravdivá nerovnost, pak řešením je každé reálné číslo, které však nesmí odporovat podmínce řešitelnosti. ± Nerovnice - procvičovací příklady Každé reálné číslo Řešením je libovolné přirozené číslo. 3 z 59

5 z 59

6 ± Kvadratické rovnice Kvadratické rovnice Kvadratická rovnice je rovnice, která ve svém zápisu obsahuje neznámou ve druhé mocnině a zároveň neobsahuje neznámou v mocnině vyšší než druhé. Obecně lze kvadratickou rovnici zapsat: ax 2 + bx + c = 0, kde a ¹ 0 Podobně jako u kvadratické funkce, můžeme jednotlivé členy nazvat: ax 2... kvadratický člen bx... lineární člen c... absolutní člen Kvadratická rovnice má zpravidla dva kořeny x 1, x 2, může jich mít ale i méně. Zkoušku provádíme pro každý kořen zvlášť. Jakoukoliv kvadratickou rovnici můžeme řešit pomocí vzorce, v němž se vyskytuje tzv. diskriminant kvadratické rovnice. Tento postup si ukážeme později. Pokud totiž kvadratická rovnice neobsahuje všechny členy, můžeme většinou použít i postupy jednodušší. Každou kvadratickou rovnici, která obsahuje závorky, či zlomky, nejprve převedeme do tvaru ax 2 + bx + c = 0 Při řešení samozřejmě nezapomínáme na podmínky řešitelnosti, pro které platí stejná pravidla jako při řešení rovnic lineárních. 1. Kvadratická rovnice bez lineárního a bez absolutního členu Jedná se o rovnici zapsanou obecně: ax 2 = 0 Takovouto rovnici řešíme snadno tak, že v prvním kroku celou rovnici vydělíme koeficientem a. Můžeme to provést, protože z definice víme, že koeficient a je nenulový. Dostaneme tak: x 2 = 0 A odtud tedy: x 1,2= Ö0 x 1,2= 0 Protože vyšly oba kořeny shodné, hovoříme o tzv. dvojnásobném kořenu. Příklad 1: Řešte kvadratickou rovnici 3x 2 = 0 Řešení: 3x 2 = 0 :3 x 2 = 0 x 1,2= 0 5 z 59

7 Můžeme tedy vyslovit jednoduchý závěr: Každá kvadratická rovnice bez lineárního a bez absolutního členu má jeden dvojnásobný kořen, a tím je Kvadratická rovnice bez lineárního členu Jedná se o rovnici zapsanou obecně: ax 2 + c = 0 Rovnici řešíme tak, že v prvním kroku převedeme číslo c na pravou stranu: Dostaneme: ax 2 = - c Dále rovnici vydělíme koeficientem a: Dostaneme: x 2 = -c/a Nyní rovnici odmocníme. Pokud ale řešíme v oboru reálných čísel, můžeme tento krok provést pouze tehdy, že v případě, že je číslo a kladné, musí být číslo c záporné (a tedy -c kladné). Druhou odmocninu totiž můžeme v oboru reálných čísel provádět pouze z nezáporných čísel (číslo 0 už jsme ale rozebrali v předcházejícím odstavci) Dostaneme: x 1,2= ±Ö(-c/a) Znamená to tedy, že x 1 = +Ö(-c/a) x 2 = -Ö(-c/a) Příklad 2: Řešte kvadratickou rovnici -3x = 0 v oboru reálných čísel. Řešení: -3x = 0 :(-1) 3x 2-27 = 0 3x 2 = 27 :3 x 2 = 9 x 1,2= ±Ö9 x 1 = 3 x 2 = -3 Příklad 3: V oboru reálných čísel řešte kvadratickou rovnici 3x = 0 Řešení: 3x 2 = -6 x 2 = -2 V tomto případě nemá rovnice v oboru reálných čísel řešení. Příklad 4: V oboru reálných čísel řešte kvadratickou rovnici 3x 2-6 = 0 Řešení: 3x 2 = 6 x 2 = 2 x 1,2= ±Ö2 x 1 = +Ö2 x 2 = -Ö2 3. Kvadratická rovnice bez absolutního členu Jedná se o rovnici, kterou můžeme zapsat obecně rovnicí ax 2 + bx = 0 Při řešení v prvním kroku na levé straně rozložíme na součin vytknutím x: Dostaneme: x.(ax + b) = 0 Nyní využijeme vlastnosti, že součin je roven nule tehdy, když alespoň jeden z činitelů je roven nule. 6 z 59

8 Může tedy nastat, že x 1 = 0 nebo (ax + b) = 0 a odtud: x 2 = -b/a Příklad 5: V oboru reálných čísel řešte kvadratickou rovnici 2x 2 + 6x = 0 Řešení: x 2 + 3x = 0 x.(x + 3) = 0 x 1 = 0 x 2 = -3 Můžeme vyslovit jednoduchý závěr, že kvadratická rovnice bez absolutního členu má jeden kořen vždy roven nule. 4. Obecná kvadratická rovnice Jedná se o rovnici obecně zapsanou ax 2 + bx + c = 0 Samozřejmě předpokládáme, že už jsme zadanou rovnici převedli do výše uvedeného základního tvaru, tzn. odstranili jsme běžným způsobem závorky a zlomky. Tento typ rovnice řešíme podle vzorce: x 1,2 - b ± = 2 b - 4ac 2a Pokud je číslo b sudé, můžeme výhodně použít i vzorec pro poloviční hodnoty: x 1,2 b - ± 2 = Příklad 6: æ b ö ç è 2 ø a 2 - ac V oboru reálných čísel řešte kvadratickou rovnici x 2 + 4x - 60 = 0 Řešení: a = 1 b = 4 c = -60 Vzhledem k tomu, že b je sudé, použijeme vzorec pro poloviční hodnoty: x 1,2 b - ± 2 = æ b ö ç è 2 ø a ac 4 æ 4 ö - ± ç -1.(- 60) 2 è 2 ø - 2 ± x1,2 = = = -2 ± 1 1 x 1,2= -2 ± 8 x 1 = 6 x 2 = z 59

9 Příklad 7: V oboru reálných čísel řešte kvadratickou rovnici 3x 2-5x + 8 = 0 Řešení: a = 3 b = -5 c = 8 x x 1,2 1,2 - b ± = - = 2 b - 4ac 2a (- 5) ± (- 5) ± = ± = V tomto případě nemá kvadratická rovnice v oboru reálných čísel řešení, protože v oboru reálných čísel nemůžeme vypočítat druhou odmocninu ze záporného čísla. Pozn.: Výraz b 2-4ac, který se vyskytuje ve vzorci pro výpočet kvadratické rovnice pod odmocninou, nazýváme diskriminant kvadratické rovnice. Pro tento diskriminant, označovaný také D, platí: Je-li D > 0... kvadratická rovnice má dva reálné různé kořeny Je-li D = 0... kvadratická rovnice má jeden (dvojnásobný) kořen Je-li D < 0... kvadratická rovnice nemá v oboru reálných čísel žádné řešení Příklad 8: V oboru reálných čísel řešte kvadratickou rovnici 3x 2-5x - 8 = 0 Řešení: a = 3 b = -5 c = -8 x x x 1,2 1,2 1,2 - b ± = - = 2 b - 4ac 2a (- 5) ± (- 5) 5 ± 11 = 6 x 1 = 8/3 x 2 = ( -8) 5 ± = ± = ± Kvadratické rovnice - procvičovací příklady z 59

10 z 59

11 z 59

12 z 59

13 ± Vztahy mezi kořeny a koeficienty Vztah mezi kořeny a koeficienty Každou kvadratickou rovnici zapsanou ve tvaru ax 2 + bx + c = 0 můžeme převést do tzv. normovaného tvaru kvadratické rovnice. Docílíme toho tak, že celou rovnici vydělíme koeficientem a. Provést to můžeme, protože z definice kvadratické rovnice vyplývá, že tento koeficient je různý od nuly. Normovaný tvar kvadratické rovnice: x 2 b c + x + a a = 0 Pokud v takto upravené rovnici lze zlomky vykrátit tak, aby z nich vznikla celá čísla, můžeme při řešení kvadratické rovnice často využít vztah mezi kořeny a koeficienty a vyřešit tak celou kvadratickou rovnici zpaměti. Položme: p = b/a q = c/a Dostaneme: x 2 + px + q = 0 Pro řešení kvadratické rovnice pak platí: x 1 + x 2 = -p x 1. x 2 = q Kvadratickou rovnici tedy nemusíme nyní už řešit jen podle vzorce, ale můžeme ji vyřešit též výše uvedenou soustavou rovnic. Z ní dostaneme přímo kořeny x 1, x 2 kvadratické rovnice. Pozn.: Vztahu mezi kořeny a koeficienty můžeme leckdy vaužít i tehdy, potřebujeme-li trojčlen rozložit na součin dvou činitelů. Máme-li totiž trojčlen zapsaný ve tvaru x 2 + px + q, pak mnohdy snadno najdeme zpaměti dvě čísla a, b, jejichž součet je (-p) a jejichž součin je q. Hledaný rozklad má pak tvar (x - a).(x - b) Postup vztahu mezi kořeny a koeficienty můžeme využít i tehdy, známe-li kořeny kvadratické rovnice a potřebujeme najít naopak zadání kvadratické rovnice. Příklad: Napište kvadratickou rovnici, jejíž kořeny jsou 5 a -8 Řešení Platí (x - 5). (x + 8) = 0 x 2 + 8x - 5x - 40 = 0 12 z 59

14 x 2 + 3x - 40 = 0 Jiný způsob řešení: x 1 + x 2 = -p x 1. x 2 = q 5-8 = -p proto p = 3 5. (-8) = q proto q = -40 Závěr: x 2 + 3x - 40 = 0 ± Vztahy mezi kořeny a koeficienty - procvičovací příklady p = p = z 59

15 ± Soustavy rovnic Soustavy rovnic Soustava rovnic je zápis dvou nebo více rovnic, které musí platit současně. V soustavě rovnic se může vyskytovat různý počet neznámých. My se zaměříme na takové soustavy rovnic, kde počet neznámých odpovídá počtu rovnic v soustavě (tedy budeme řešit např. soustavu dvou rovnic o dvou neznámých nebo soustavu třech rovnic o třech neznámých, apod.) Soustavy rovnic můžeme řešit různými metodami - např.: metodou dosazovací metodou sčítací metodou, která kombinuje metodu sčítací a dosazovací metodou grafickou pomocí matic, resp. determinantů Zatím se omezíme na první dvě z uvedených metod. Řešení soustav rovnic metodou dosazovací Tento způsob řešení je založen na postupu, kdy z jedné rovnice vyjádříme jednu neznámou a tu pak dosadíme do zbývajících rovnic soustavy. Pokud byla zadána soustava dvou rovnic, pak už nyní řešíme jednu rovnici o jedné neznámé. Pokud původní soustava obsahovala tři nebo více rovnic, postup vyjádření neznámé opakujeme. Metoda dosazovací je vhodná tehdy, pokud u rovnic v základním tvaru (tj. u rovnic, které dostaneme po odstranění závorek a zlomků a následném sloučení členů) je alespoň u jedné neznámé v některé z rovnic koeficient 1 nebo (-1). Lze ji ale použít i jindy. Metota dosazovací se dále používá tehdy, je-li zadána soustava jedné lineární a jedné kvadratické rovnice. Takovými se ale budeme zabývat později. Metoda dosazovací se s úspěchem dá použít i při řešení soustav třech nebo více rovnic. Ukázkové příklady: Příklad 1: Řešte soustavu rovnic: x + y = 3 x - y = -1 x = 3 - y (3 - y) - y = y - y = z 59

16 -2y = -4 y = 2 x = 3-2 x = 1 Výsledek zapíšeme: [x; y] = [1; 2] Zkouška: L 1 = = 3 P 1 = 3 L 2 = 1-2 = -1 P 2 = -1 L 1 = P 1 L 2 = P 2 Příklad 2: Řešte soustavu rovnic: 2. (x + y) - 5. (y - x) = (x + 2y) + 7. (3x + 5y) = 7 Řešení: 2. (x + y) - 5. (y - x) = (x + 2y) + 7. (3x + 5y) = 7 2x + 2y - 5y + 5x = 17 3x + 6y + 21x + 35y = 7 7x - 3y = 17 24x + 41y = y x = y y = y + 41y = y + 287y = y = -359 y = -1 x = 2 Výsledek zapíšeme [x; y] = [2; -1] Zkouška: L 1 = 2. [2 + (-1)] - 5. (-1-2) = 2-5. (-3) = 17 P 1 = 17 L 2 = 3. [2 + 2.(-1)] + 7. [ (-1)] = = 7 P 2 = 7 L 1 = P 1 L 2 = P 2 Příklad 3: Řešte soustavu rovnic x - y = 1 15 z 59

17 3x - 3y = 3 x = 1 + y 3. (1 + y) - 3y = y - 3y = 3 0 = 0 Soustava má nekonečně mnoho řešení. Výsledek zapíšeme: [x; y] = [x; x - 1] (v tomto obecném zápisu výsledku první neznámou volíme libovolně a druhou neznámou vyjádříme ze kterékoliv zadané rovnice) Ověření správnosti řešení: Pro x = 1 dostáváme [1; 0] L 1 = 1-0 = 1 P 1 = 1 L 2 = = 3 P 2 = 3 L 1 = P 1 L 2 = P 2 Příklad 4: Řešte soustavu rovnic: 3x + y = 2 z + 1 3y + z = 2 x + 1 3x + z = 2 y Stanovíme podmínky řešitelnosti: z ¹ -1; x ¹ -1; y ¹ -1 3x + y = 2. (z + 1) 3y + z = 2. (x + 1) 3x + z = 2. (y + 1) 3x + y = 2z + 2 3y + z = 2x + 2 3x + z = 2y + 2 3x + y - 2z = 2-2x + 3y + z = 2 3x - 2y + z = 2 Z první rovnice vyjádříme neznámou y: y = -3x + 2z + 2 (1) Dosadíme do zbývajících dvou rovnic: 3. (-3x + 2z + 2) + z = 2. (x + 1) 3x + z = 2. (-3x + 2z ) -9x + 6z z = 2x + 2 3x + z = -6x + 4z x + 7z = -4 9x - 3z = 6 Druhou rovnici vykrátíme třemi, poté z ní vyjádříme neznámou z: z = 3x - 2 (2) Dosadíme do první rovnice: -11x + 7. (3x - 2) = -4-11x + 21x - 14 = z 59

18 10x = 10 x = 1 Dosadíme do rovnice (2): z = = 1 Dosadíme do rovnice (1): y = = 1 Výsledky neodporují podmínkám řešitelnosti. Zapíšeme výsledek: [x; y; z] = [1; 1; 1] Zkouška: L = = = 2 P 1 = 2 L 1 = P L = = 2 2 = P 2 = 2 L 2 = P L = = 2 3 = P 3 = 2 L 3 = P Shrnutí postupu řešení soustavy rovnic dosazovací metodou: 1. Jsou-li ve jmenovateli neznámé, stanovíme podmínky řešitelnosti 2. Rovnice upravíme do "základního" tvaru, tj. do tvaru, kdy na levé straně rovnice máme sloučené neznámé (v pořadí podle abecedy) a na pravé straně máme číslo; používáme přitom běžného postupu řešení samostatných rovnic - tedy nejprve odstraňujeme závorky, pak zlomky, atd. 3. Z libovolné rovnice vyjádříme libovolnou neznámou (výhodné je volit tu, kde je koeficient 1). 4. Tuto vyjádřenou neznámou dosadíme do zbývající rovnice (příp. do zbývajících rovnic, je-li jich více). 5. Vyřešíme vzniklou rovnici o jedné neznámé běžným způsobem (platí tehdy, pokud byla zadána soustava dvou rovnic o dvou neznámých; pokud rovnic bylo více, vznikla nám nyní soustava více rovnic a musíme dále opakovat kroky 2) - 4) ). 6. Vypočtenou neznámou dosadíme do rovnice, kde jsme vyjádřili první neznámou (krok 3) ) a vyřešíme druhou neznámou. 7. Provedeme zkoušku, a to tak, že dosazujeme do každé strany každé rovnice. 8. Zapíšeme výsledek uspořádanou dvojicí. Řešení soustav rovnic metodou sčítací Sčítací metodu je výhodné použít tehdy, pokud je u všech neznámých v rovnicích upravených do "základního" tvaru koeficient jiný než číslo 1 nebo (-1). Lze ji s výhodou ale samozřejmě použít i v případě, že tam jednička je. Sčítací metodu používáme zpravidla u soustavy dvou rovnic o dvou neznámých. Je ji ale možno použít i pro více rovnic. Ukázkové příklady: Příklad 5: Řešte soustavu rovnic: 2. (x - 3y) = 15 4x - y = -3 2x - 6y = 15 (1) 17 z 59

19 4x - y = -3 Rovnice upravíme tak, aby po jejich sečtení vypadla neznámá x. Znamená to, že první rovnici vynásobíme číslem (-2) a druhou necháme beze změn. Pozn.: Sečíst rovnice znamená sečíst jejich levé strany a jejich pravé strany. -4x + 12y = -30 4x - y = -3 Rovnice sečteme -4x + 4x + 12y - y = y = -33 y = -3 Vrátíme se k rovnicím v zápisu (1), tj. k rovnicím upraveným do "základního" tvaru. Nyní je upravíme tak, aby po jejich sečtení vypadla neznámá y. Stačí tedy první rovnici ponechat a druhou vynásobit číslem (-6): 2x - 6y = 15-24x + 6y = 18 Obě rovnice opět sečteme: 2x - 24x - 6y + 6y = x = 33 x = -1,5 Zapíšeme výsledek: [x; y] = [-1,5; -3] Zkouška se provádí stejným způsobem jako u dosazovací metody. Pozn.: Někdy se soustava rovnic také řeší tak, že jednu neznámou vyřešíme sčítací metodou a vzniklý kořen pak dosadíme do některé ze zadaných rovnic. Vyřešením rovnice o jedné neznámé pak získáme kořen druhý. V tomto případě ale už nelze hovořit o sčítací metodě. Pozn.: Pokud chceme řešit sčítací metodou soustavu více než dvou rovnic, pak postupujeme tak, že např. v soustavě třech rovnic, která je v "základním" tvaru, upravíme rovnice tak, aby po sečtení libovolných dvou rovnic vypadla jedna neznámá a při sečtení jiné libovolné dvojice vypadla tatáž neznámá. Tím získáme soustavu dvou rovnic o dvou neznámých, kterou pak řešíme podle postupu v příkladu 5. ± Soustavy rovnic - jednodušší příklady Řešením je uspořádaná dvojice [4; 2] 18 z 59

20 Řešením je uspořádaná dvojice [1; -1] Řešení je uspořádaná dvojice [1; 3] Řešením je uspořádaná dvojice [8; 3] Nekonečně mnoho řešení Řešením je uspořádaná dvojice [7; 5] Řešením je uspořádaná dvojice [1; 2] Řešením je uspořádaná dvojice [4; -3] 19 z 59

21 Nekonečně mnoho řešení Soustava nemá řešení Nemá řešení Řešením je uspořádaná dvojice [11; 6] Řešením je uspořádaná dvojice [1; -1] 20 z 59

22 Řešením je uspořádaná dvojice [1; -1] Řešením je uspořádaná dvojice [3; 2] Nemá řešení. ± Soustavy rovnic - složitější příklady [5; 5; 5] [4; 6; 8] 21 z 59

23 [3; 2,5] [20; 17; 5] [15; 12; 10] é5 5 ê ;- ;- ë3 3 4 ; 3 7ù 3ú û [1; -1; 2] [4; 1; 2; 3] 22 z 59

24 [3; 4] [3; 2; 1] [1/3; 1/2] [1; 6] [1; 1; 1; 1] 23 z 59

25 [5; 2; 0] Nemá řešení [3; 4; 5] [0; 0; 0] 24 z 59

26 [-0,25; 3,75; 7,75; 0,25] [3; 2; 2; 3] [10; 1] [7; 5; -3] Nekonečně mnoho řešení 25 z 59

27 [0,2; -1; 1] Nemá řešení [0; 0,5; 0] [1; 2; -2] [5; 4; 1; 2; 1] 26 z 59

28 [8; 5; 3] ± Nerovnice v součinovém a podílovém tvaru Nerovnice v součinovém nebo podílovém tvaru Pokud máme nerovnici v podílovém tvaru, tzn. že ve jmenovateli je výraz s neznámou, nemůžeme takovouto nerovnici násobit nejmenším společným jmenovatelem jako tomu bylo u rovnic, protože nevíme, zda je jmenovatel kladný nebo záporný. Použijeme tedy jiný postup. Stejný postup použijeme i tehdy, budeme-li mít na jedné straně nerovnice součin (nebo podíl) a na druhé straně nerovnice číslo nula. Do takového tvaru lze nerovnici poměrně často převést. Postup je pak následující: 1. Zvážíme, zda podíl (nebo součin) má být kladný nebo záporný (případně nezáporný nebo nekladný) 2. Má-li být kladný, musí být oba činitelé, příp. dělenec i dělitel, buď oba kladné nebo oba záporné; to využijeme v dalším řešení. Má-li být záporný, pak musí být buď první činitel kladný a druhý záporný nebo první činitel záporný a druhý kladný (obdobně pro zlomek). 3. Ze dvou situací, které tak postupně řešíme, nakonec uděláme sjednocení. Ukázkové příklady: Příklad 1: Řešení: Vidíme, že nerovnice je v podílovém tvaru, na pravé straně je číslo 0. Aby byla splněna, mohou tedy nastat dvě situace: 1. možnost: x - Ö3 > 0 Ù 2x + Ö2 > 0 Odtud: x > Ö3 Ù x > -Ö2/2 Z těchto dvou nerovnic děláme průnik (musí platit současně); vhodné je grafické znázornění: Řešením je to, co je šrafováno obousměrně, tedy interval (Ö3; + ) 2. možnost: 27 z 59

29 x - Ö3 < 0 Ù 2x + Ö2 < 0 Odtud: x < Ö3 Ù x < -Ö2/2 Z těchto dvou nerovnic opět děláme průnik (musí platit současně); vhodné je opět grafické znázornění: Řešením je opět to, co je šrafováno obousměrně, tedy interval (- ; -Ö2/2 ) Celkovým řešením je sjednocení obou intervalů, tedy x Î (- ; -Ö2/2 ) È (Ö3; + ) Celkové řešení graficky znázorníme: Ověření správnosti: Pro x = 2: L = = = přibližně 0,05 > P = 0 L > P Příklad 2: Převedeme vše na levou stranu a poté na společného jmenovatele: ( x + 2 )(. x - 2) - ( x - 5 )(. x + 2) + 3. ( x - 5) ( x - 5 )(. x + 2) V čitateli roznásobíme a sloučíme: x x 2 6x - 9 ( x - 5 )(. x + 2) 3. ( 2x - 3) ( x - 5 )(. x + 2) - 2x + 5x x -15 > 0 ( x - 5 )(. x + 2) > 0 > 0 > 0 Celou nerovnici vydělíme třemi, znak nerovnosti se nezmění: ( 2x - 3) ( x - 5 )(. x + 2) > 0 Nyní mohou nastat následující situace: 1. možnost: 2x - 3 > 0 Ù x - 5 < 0 Ù x + 2 < 0 28 z 59

30 x > 3/2 Ù x < 5 Ù x < -2 Závěr: x Î { } 2. možnost: 2x - 3 < 0 Ù x - 5 > 0 Ù x + 2 < 0 x < 3/2 Ù x > 5 Ù x < -2 Závěr: x Î { } 3. možnost: 2x - 3 < 0 Ù x - 5 < 0 Ù x + 2 > 0 x < 3/2 Ù x < 5 Ù x > -2 Závěr: x Î (-2; 3/2) 4. možnost: 2x - 3 > 0 Ù x - 5 > 0 Ù x + 2 > 0 x > 3/2 Ù x > 5 Ù x > -2 Závěr: x Î (5; + ) Celkové řešení: x Î (-2; 3/2) È (5; + ) Graficky znázorníme: Ověření správnosti řešení: Pro x = 0: L = = P = 1- = 1- = -0, L > P Příklad 3: Řešení: 29 z 59

31 ± Nerovnice v součinovém a podílovém tvaru - procvičovací příklady z 59

32 z 59

33 x 4 - x 3 -x 2 - x ± Kvadratické nerovnice Kvadratické nerovnice S kvadratickými nerovnicemi už jsme se vlastně setkali, aniž jsme si to uvědomili, v kapitole Nerovnice v 32 z 59

34 součinovém a podílovém tvaru. Přesněji tedy řečeno v její druhé části, tedy v kapitole nerovnice v součinovém tvaru. Řešit už tedy umíme nerovnice typu (x+3). (x - 5) < 0 Tento typ nerovnic tedy už nebude předmětem výkladu. Problém však může někdy nastat, budeme-li mít zadánu nerovnici formou trojčlenu - např. x 2-2x - 15 < 0 V tomto případě si musíme nejprve zadaný trojčlen rozložit na součin. K tomu využijeme znalost řešení kvadratické rovnice. Napíšeme si tedy pomocnou kvadratickou rovnici x 2-2x - 15 = 0 a tu normálně podle vzorce vyřešíme. Zjistíme, její kořeny jsou -3 a 5. Proto hledaný rozklad bude mít podobu (x + 3). (x - 5) Někdy se nám ale stane, že při řešení kvadratické rovnice vyjde diskriminant (tj. číslo pod odmocninou) záporný. V tom případě rozklad na součin v oboru reálných čísel neexistuje. Pak nastanou dvě možnosti: nerovnice nemá žádné řešení nerovnice má nekonečně mnoho řešení Která z uvedených možností nastane, o tom se přesvědčíme tak, že do zadané nerovnice dosadíme libovolné číslo. Vyjde-li nepravdivá nerovnost, řešení neexistuje; vyjde-li pravdivá nerovnost, řešení je nekonečně mnoho. I v tomto případě ale pozor na podmínky řešitelnosti! Trochu zjednodušit práci si můžeme i tehdy, vyjde-li diskriminant pomocné kvadratické rovnice roven nule. Není to však nezbytně nutné. Kvadratické nerovnice můžeme výhodně řešit i graficky. Např. kvadratickou nerovnici x 2-2x - 15 < 0 bychom mohli graficky vyřešit takto: 1. Zápis si upravíme na x 2-15 < 2x 2. Vytvoříme dvě funkce - z každé strany vzniklé nerovnice jednu - tedy f 1: y = x 2-15 f 2: y = 2x 3. Narýsujeme grafy obou funkcí do jednoho souřadného systému 4. Na ose x nyní vyznačíme interval, v němž platí, že hodnoty kvadratické funkce jsou menší než hodnoty funkce lineární. Vidíme, že se jedná o otevřený interval (-3; 5) 33 z 59

35 ± Kvadratické nerovnice - procvičovací příklady 1. Řeš kvadratickou nerovnici 3x 2-2x + 1 > 0 K = R 2. Řeš kvadratickou nerovnici x 2-5x + 6 > 0 K = (- ; 2) È (3; + ) 3. Řeš kvadratickou nerovnici x 2 + x K = <-4; 3> 4. Řeš kvadratickou nerovnici -x 2 + 3x K = R 5. Řeš kvadratickou nerovnici 2x 2-8x + 8 > 0 R \ {2} 6. Řeš kvadratickou nerovnici -2x 2 + x - 2 > 0 K = { } 7. Řeš kvadratickou nerovnici x 2-6x + 10 < 0 K = { } 8. Řeš kvadratickou nerovnici -x 2-6x - 8 > 0 K = (-4; -2) 9. Řeš kvadratickou nerovnici x 2 + 2x 3 K = <-3; 1> 10. Řeš kvadratickou nerovnici x 2 - x K = <-2; 3> ± Funkce Funkce je přiřazení, které každému prvku nějaké zadané množiny M přiřazuje právě jedno reálné číslo. Množinu M nazýváme definiční obor - značíme D, případně D(f) Reálná čísla, která jsou takto přiřazena, nám tvoří další množinu, kterou nazýváme obor hodnot funkce - značíme H, případně H(f). Funkce může být zadána různými způsoby: tabulkou x y spojnicovým diagramem 34 z 59

36 rovnicí y = 2x + 5 grafem ± Funkce - procvičovací příklady 1. Určete, zda jde o tabulku představující funkci: x y Ne 2. Určete, zda jde o tabulku představující funkci: x y * o # $ 1298 Ne 35 z 59

37 3. Určete, zda jde o tabulku představující funkci: x y Ano 4. Určete, zda jde o graf funkce: 1302 Ne 5. Určete, zda jde o tabulku představující funkci: x * o # o y Ne 6. Určete, zda jde o graf funkce: 1303 Ne 36 z 59

38 7. Určete, zda jde o zápis funkce: y = 2x Ano 8. Určete, zda jde o graf funkce: Ano 9. Určete, zda jde o tabulku představující funkci: x * o # $ y Ano 10. Určete, zda jde o graf funkce: 1301 Ne ± Definiční obor funkce Určování definičního oboru funkce je trochu podobná činnost jako určování podmínek řešitelnosti u lomených výrazů. Musíme tedy vždy určit, pro jaká čísla funkce nenabývá žádné funkční hodnoty - jinými slovy, pro jaké 37 z 59

39 hodnoty nezávisle proměnné neexistuje odpovídající závisle proměnná. Z uvedeného tedy vyplývá, že pokud má být definiční obor funkce jiný než celá množina reálných čísel, je to zpravidla tehdy, pokud se v rovnici, představující zápis funkce, vyskytuje proměnná ve jmenovateli, pod sudou odmocninou, za logaritmem, apod. Definiční obor funkce f zapisujeme: D(f) = R D(f) = (- ; 0> D(f) = {2; 6; 8} D(f) = R \ {0} Při zápisu tedy používáme označení číselných oborů, intervaly, případně množiny. ± Definiční obor funkce - ukázkové příklady 1. Určete definiční obor D(f) funkce f: 1314 y = Návod: 4 2 x Řešení: V zápisu se sice vyskytuje sudá odmocnina, proto se nabízí uvést jako definiční obor všechna nezáporná čísla. Vzhledem k tomu, že ale pod odmocninou je sudá mocnina, ta vlastně nikdy nedosáhne záporné hodnoty. Proto v tomto případě není omezení žádné a definičním oborem jsou všechna reálná čísla. D(f) = R 38 z 59

40 2. Určete definiční obor D(f) funkce f: y = 6x - ( x Návod: Řešení: ) V zápisu funkce se vyskytuje sudá odmocnina, proto musíme dohlédnout, aby výraz pod touto odmocninou nikdy nedosáhl záporné hodnoty. Proto musí platit, že 6x - (x ) ³ 0 Znamená to tedy, že musíme vyřešit kvadratickou nerovnici. Nejprve si výraz na levé straně rozložíme na součin: 6x - (x ) = -x 2 + 6x - 11 = -(x 2-6x + 11) Trojčlen v závorce můžeme rozložit na součin tak, že si vyřešíme pomyslnou kvadratickou rovnici x 2-6x + 11 = 0 přes vzorec a diskriminant. D = b 2-4ac = (-6) = Vzhledem k tomu, že diskriminant vyšel záporný, nemá kvadratická rovnice řešení, proto neexistuje ani rozklad trojčlenu na součin na levé straně nerovnice. Proto mohou nyní nastat dvě možnosti: 1. Buď je zadaná nerovnice splněna pro jakékoliv reálné číslo 2. Nebo není zadaná rovnice splněna pro žádné reálné číslo Která z obou možností nastane, zjistíme snadno tak, že si dosadíme libovolné číslo a posoudíme-je-li v tu chvíli splněna rovnost. Např. pro x = 0 dostaneme -11 ³ 0 To ale není splněno nikdy, proto definičním oborem není žádné reálné číslo, tedy definičním oborem je prázdná množina. D(f) = { } 3. Určete definiční obor funkce f: y = ( 2x -1).( x + 3) Návod: Řešení: V zápisu rovnice funkce se vyskytuje sudá odmocnina, proto musíme dohlédnout, aby výraz pod touto odmocninou byl nezáporný. Tedy musí platit: (2x - 1). (x + 3) ³ 0 Aby byl součin nezáporný, musí být buď oba činitelé nezáporní nebo naopak obačinitelé nekladní. Řešíme tedy dvě situace: 1. (2x - 1) ³ 0 Ù (x + 3) ³ 0 2. (2x - 1) 0 Ù (x + 3) 0 x ³ 0,5 Ù x ³ -3 x 0,5 Ù x -3 x Î <0,5; + ) x Î (- ; -3> Vzhledem k tomu, že stačí, aby nastala alespoň jedna ze situací, je celkovým řešením sjednocení obou intervalů, tedy x Î (- ; -3> È <0,5; + ) x Î (- ; -3> È <0,5; + ) z 59

41 4. Určete definiční obor D(t) funkce f: y = Návod: Řešení: x 6-5x V zápisu rovnice se vyskytují sudé odmocniny. Musíme tedy dohlédnout, aby výrazy pod nimi byly nezáporné. Řešení tedy bude mít dvě části: 1. Čitatel - proto x ³ 0 2. Jmenovatel - proto 6-5x > 0 (rovnost vypadává, protože ve jmenovateli by jinak vyšla nula), odtud x < 6/5 Z obou závěrů uděláme nyní průnik, protože musí být splněny současně: 1316 Závěrem tedy bude uzavřený interval <0; 6/5) D(f) = <0; 6/5) ± Definiční obor funkce - procvičovací příklady y = x x Î {± Ö3} 3 x z 59

42 ± Lineární funkce Lineární funkce je funkce, která je dána rovnicí y = ax + b, kde a, b jsou reálná čísla. Grafem lineární funkce je přímka (nebo její část). Definičním oborem každé lineární funkce jsou všechna reálná čísla (pokud není definiční obor omezen intervalem). Oborem hodnot každé lineární funkce (pokud se nejedná o funkci konstantní nebo funkci, kde definiční obor je omezen intervalem) jsou všechna reálná čísla. Průsečíky grafu lineární funkce s osami: 41 z 59

43 1. s osou x: - v tomto případě je druhá souřadnice bodů rovna nule, proto do rovnice funkce dosadíme za y = 0 a vypočteme první souřadnici průsečíku s osou x. Příklad: Určete průsečík funkce y = 2x - 1 s osou x. Řešení: Hledaný bod X[x; y] Dosadíme za y = 0, proto 0 = 2x - 1 Vyřešíme vzniklou rovnici a dostáváme x = 0,5 Závěr: Hledaný průsečík je X[0.5; 0]. 2. s osou y: - v tomto případě je první souřadnice bodů rovna nule, proto do rovnice funkce dosadíme za x = 0 a vypočteme druhou souřadnici průsečíků s osou y. Příklad: Určete průsečík funkce y = 2x - 1 s osou y. Řešení: Hledaný bod Y[x;y] Dosadíme za x = 0, proto y = Vyřešíme vzniklou rovnici a dostáváme y = -1 Závěr: Hledaný průsečík je Y[0; -1]. Zvláštní případy lineární funkce: 1. Je-li v rovnici lineární funkce číslo a = 0, pak y = 0. x + b, neboli y = b - jedná se o tzv. konstantní funkci - grafem je přímka, která je rovnoběžná s osou x 2. Je-li v rovnici lineární funkce číslo b = 0, pak y = ax + 0, neboli y = ax - jedná se o přímou úměrnost - grafem je přímka (nebo její část), která vždy prochází počátkem souřadného systému 42 z 59

44 Vlastnosti lineární funkce: 1. Lineární funkce je rostoucí, je-li a > Lineární funkce je klesající, je-li a < 0. Číslo a se také někdy nazývá směrnice přímky. Pozn.: Je-li a = 0, je funkce konstantní, tedy nerostoucí i neklesající. Určení rovnice lineární funkce ze zadaných bodů Vzhledem k tomu, že víme, že grafem lineární funkce je přímka, a přímka je vždy jednoznačně určena dvěma body, stačí nám pro zadání lineární funkce její dva body. Jedním z těchto bodů, případně i oběma body, může být klidně některý z průsečíků s osami, případně i počátek souřadného systému. Příklad: Určete rovnici lineární funkce, jejíž graf prochází body A[2; 3], B[-1; 2] Řešení: Obecná rovnice je y = ax + b. Dosadíme do ní postupně souřadnice obou bodů: 3 = 2a + b 2 = -a + b Dostali jsme soustavu rovnic, kterou vyřešíme sčítací nebo dosazovací metodou. Já použiji např. sčítací: První rovnici opíšu, druhou vynásobím dvěma: 3 = 2a + b 4 = -2a + 2b Obě rovnice sečtu: 7 = 3b b = 7/3 Vrátím se k původním rovnicím a tentokráte opět první rovnici opíšu a druhou vynásobím (-1): 3 = 2a + b -2 = a - b Opět obě rovnice sečtu: 1 = 3a a = 1/3 Dosadíme zpět do původní obecné rovnice lineární funkce a dostaneme: 1 7 y = x Tím jsme stanovili rovnici lineární funkce, která oběma body prochází. 43 z 59

45 Grafické řešení soustavy lineárních rovnic Obě rovnice převedeme do tvaru y = ax + b a sestrojíme grafy obou nově vzniklých funkcí. Souřadnice průsečíku těchto funkcí představují řešení původní soustavy lineárních rovnic. ± Lineární funkce - procvičovací příklady z 59

46 z 59

47 z 59

48 z 59

49 ± Kvadratická funkce Kvadratická funkce je funkce, která je dána rovnicí y = ax 2 + bx + c, kde a, b, c jsou reálná čísla a číslo a ¹ 0. Grafem kvadratické funkce je parabola (nebo její část). 48 z 59

50 Graf kvadratické funkce y -1,5-1 -0,5 0 0,5 1 1,5 x Definičním oborem kvadratické funkce jsou všechna reálná čísla. Je-li číslo a > 0, pak má funkce minimum (viz horní obrázek), je-li a < 0, pak má funkce maximum. Graf kvadratické funkce -1,5-1 -0,5 0 0,5 1 1,5 y x Názvy členů funkce: ax 2... kvadratický člen bx... lineární člen c... absolutní člen I. Kvadratická funkce bez lineárního a bez absolutního členu - jedná se o funkci, která je dána rovnicí y = ax 2 - definičním oborem jsou všechna reálná čísla - oborem hodnot je interval <0; + ), je-li a > 0 a interval (- ; 0> je-li a < 0 - souřadnice maxima (resp. minima): M[0; 0] - graf tedy protíná obě osy v počátku souřadného systému - čím je absolutní hodnota čísla a větší, tím je graf užší, sevřenější. II. Kvadratická funkce bez lineárního členu 49 z 59

51 - jedná se o funkci, která je dána rovnicí y = ax 2 + c - definičním oborem jsou opět všechna reálná čísla - oborem hodnot je interval: pro a > 0... <c; + ) pro a < 0... (- ; c> - souřadnice maxima (resp. minima): M[0; c] - graf tedy protíná osu y v bodě, který nazýváme maximum (resp. minimum) - je-li c > 0 a zároveň a < 0 nebo c < 0 a zároveň a > 0, pak graf protíná i osu x, a to ve dvou bodech, které jsou osově souměrné podle osy y. Souřadnice průsečíků s osou x mají v tomto případě souřadnice: é - c ù X1ê ; 0 ú ë a û é - c ù X 2 ê- ; 0ú ë a û III. Kvadratická funkce se všemi členy - jedná se o funkci, která je dána rovnicí y = ax 2 + bx + c - definičním oborem jsou opět všechna reálná čísla Příklad.: Je dána funkce y = 2x 2 + 3x + 4. Určete, zda má funkce maximum nebo minimum, zjistěte jeho souřadnice a určete souřadnice průsečíků s oběma osami. Řešení: Zda má funkce maximum nebo minimum, to rozhodneme podle čísla a. Vzhledem k tomu, že a = 2, což je větší než nula, má funkce minimum. Jeho souřadnice určíme tzv. doplněním na čtverec. Postup: 1. Vytkneme číslo a... y = 2.(x 2 + 1,5x + 2) 2. Podíváme se, jaké znaménko je u lineárního členu a podle toho rozhodneme, zda použijeme vzorec (A+B) 2 nebo (A-B) 2. V tomto případě použijeme ten první. 3. Z kvadratického členu u trojčlenu v závorce určíme číslo A. V tomto případě je tedy x. 4. Z lineárního členu u trojčlenu v závorce určíme číslo B. V tomto případě je tedy 0,75 5. Použijeme vzorec a dostaneme y = 2.[(x + 0,75) 2-0, ] Pozn. 0,75 2 odečítáme proto, aby nebyla porušena rovnost, protože jsme to zahrnuli do závorky 6. Odstraníme hranatou závorku roznásobením číslem a: y = 2.(x + 0,75) 2 + 2, Určíme souřadnice hledaného minima: M[-0,75; 2,875] Všimněme si, že první souřadnici určujeme vždy s opačným znaménkem než má člen v závorce a naopak u druhé souřadnice zůstává znaménko zachováno. Určení průsečíků s osami: a) s osou x V tomto případě y = 0, dosadíme do rovnice funkce a vypočteme x 2x 2 + 3x + 4 = 0 Diskriminant D = = 9-32 = -23 Vzhledem k tomu, že diskriminant vyšel záporný, nemá kvadratická rovnice řešení a neexistují tedy průsečíky s osou x. b) s osou y V tomto případě x = 0, dosadíme do rovnice funkce a vypočteme y y = = 4 Hledané souřadnice tedy jsou Y[0; 4] Pokud máme souřadnice průsečíků a souřadnice extrému (tj. minima nebo maxima), pak můžeme snadno určit průběh grafu a graf tedy načrtnout. Číslo 2 před závorkou nám ještě říká, že graf bude trochu užší. Ačkoliv to nebylo úkolem, můžeme nyní i určit obor hodnot funkce zadané v předcházejícím příkladu. Je to jednoduché. Funkce má minimum, tedy hodnoty se nedostanou pod druhou souřadnici tohoto bodu. Oborem hodnot je tedy interval <2,875; + ) ± Kvadratická funkce - procvičovací příklady 50 z 59

52 z 59

53 z 59

54 z 59

55 Platí - viz graf 54 z 59

56 Existuje - viz graf 55 z 59

57 Neexistuje - viz graf ± Mocninné funkce Mocninné funkce Mocninná funkce je taková funkce, ve které se vyskytuje obecně člen x n A. Uvažujme, že n je přirozené číslo: Nejjednodušším případem je funkce y = x n. Vlastnosti mocninné funkce y = x n : 1. Pro n - sudé: funkce je zdola omezená definičním oborem jsou všechna reálná čísla oborem hodnot je interval <0; + ) funkce je sudá funkce je rostoucí v intervalu (0; + ) funkce je klesající v intervalu (- ; 0) graf funkce je souměrný podle osy y grafem je parabola 2. Pro n - liché (n ¹ 1): funkce není ani zdola, ani shora omezená definičním oborem jsou všechna reálná čísla 56 z 59

58 funkce je v celém definičním oboru rostoucí oborem hodnot jsou všechna reálná čísla graf funkce je středově souměrný podle počátku grafem je kubická parabola Bude-li mít mocninná funkce rovnici y = x n + c, pak je graf tvarově shodný s grafem funkce y = x n, avšak je posunutý ve směru osy y o hodnotu c. Bude-li mít mocninná funkce rovnici y = (x - a) n, pak graf je tvarově shodný s grafem funkce y = x n, avšak je posunutý ve směru osy x o hodnotu a. Pozn.: Logicky lze odvodit, že graf může být posunut současně ve směru obou os. B. Nyní uvažujme, že číslo n je záporné celé číslo Nejjednodušším případem je funkce y = x -n, kde n je přirozené číslo Vlastnosti mocninné funkce y = x -n, kde n Î N 1. Pro n - sudé: definičním oborem jsou všechna reálná čísla s výjimkou 0 oborem hodnot jsou všechna kladná reálná čísla v záporné části definičního oboru je funkce rostoucí, v kladné části definičního oboru je funkce klesající graf funkce je souměrný podle osy y 2. Pro n - liché: definičním oborem jsou všechna reálná čísla s výjimkou 0 oborem hodnot jsou všechna reálná čísla s výjimkou 0 funkce je v celém definičním oboru klesající graf funkce je souměrný podle počátku Pozn.: I v tomto případě můžeme funkci různě modifikovat posouváním ve směru osy y, ve směru osy x, případně ve směru obou os. ± Mocninné funkce - procvičovací příklady z 59

59 Načrtněte graf funkce y = (x - 1) z 59

60 5. Načrtněte graf funkce y = (1 - x) Načrtněte graf funkce y = x z 59

61 Obsah Intervaly 1 Nerovnice 2 Nerovnice - procvičovací příklady 3 Kvadratické rovnice 5 Kvadratické rovnice - procvičovací příklady 8 Vztahy mezi kořeny a koeficienty 12 Vztahy mezi kořeny a koeficienty - procvičovací příklady 13 Soustavy rovnic 14 Soustavy rovnic - jednodušší příklady 18 Soustavy rovnic - složitější příklady 21 Nerovnice v součinovém a podílovém tvaru 27 Nerovnice v součinovém a podílovém tvaru - procvičovací příklady 30 Kvadratické nerovnice 32 Kvadratické nerovnice - procvičovací příklady 34 Funkce 34 Funkce - procvičovací příklady 35 Definiční obor funkce 37 Definiční obor funkce - ukázkové příklady 38 Definiční obor funkce - procvičovací příklady 40 Lineární funkce 41 Lineární funkce - procvičovací příklady 44 Kvadratická funkce 48 Kvadratická funkce - procvičovací příklady 50 Mocninné funkce 56 Mocninné funkce - procvičovací příklady :29:54 Vytištěno v programu dosystem - EduBase (www.dosli.cz)

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ FUNKCE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE DO ROZVOJE

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

Sbírka úloh z matematiky

Sbírka úloh z matematiky Střední průmyslová škola a Střední odborné učiliště, Trutnov, Školní 101 Sbírka úloh z matematiky v rámci projektu královéhradeckého kraje zavádění inovativních metod výuky pomocí ICT v předmětu matematika

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

takţe podmínka vypadá takto jmenovatel = 0 jmenovatel 0 něco < 0 něco 0 vnitřek 0 vnitřek > 0 cos(argument) = 0 sin(argument) =

takţe podmínka vypadá takto jmenovatel = 0 jmenovatel 0 něco < 0 něco 0 vnitřek 0 vnitřek > 0 cos(argument) = 0 sin(argument) = ZJIŠŤOVÁNÍ DEFINIČNÍHO OBORU FUNKCÍ Definiční obor funkce f(x) zjišťujeme tímto postupem: I. Vypíšeme si všechny výrazy pro které by mohlo být něco zakázáno a napíšeme podmínky pro to, aby se ty zakázané

Více

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. @083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x

Více

5.2. Funkce, definiční obor funkce a množina hodnot funkce

5.2. Funkce, definiční obor funkce a množina hodnot funkce 5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří

Více

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1.

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1. Eponenciální rovnice Eponenciální rovnice jsou rovnice, ve kterých se neznámá vsktuje v eponentu. Řešíme je v závislosti na tpu rovnice několika základními metodami. A. Metoda převedení na stejný základ

Více

Řešení slovních úloh pomocí lineárních rovnic

Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh představuje spojení tří, dnes bohužel nelehkých, úloh porozumění čtenému textu (pochopení zadání), jeho matematizaci (převedení na rovnici)

Více

Funkce. Definiční obor a obor hodnot

Funkce. Definiční obor a obor hodnot Funkce Definiční obor a obor hodnot Opakování definice funkce Funkce je předpis, který každému číslu z definičního oboru, který je podmnožinou množiny všech reálných čísel R, přiřazuje právě jedno reálné

Více

6. Lineární (ne)rovnice s odmocninou

6. Lineární (ne)rovnice s odmocninou @06 6. Lineární (ne)rovnice s odmocninou rovnice Když se řekne s odmocninou, znamená to, že zadaná rovnice obsahuje neznámou pod odmocninou. není (ne)rovnice s odmocninou neznámá x není pod odmocninou

Více

MATEMATIKA Přijímací zkoušky na ČVUT

MATEMATIKA Přijímací zkoušky na ČVUT Kolektiv MATEMATIKA Přijímací zkoušky na ČVUT Praha 200 Vydavatelství ČVUT Lektoři: doc. RNDr. Čeněk Zlatník, CSc. doc. RNDr. Ludmila Machačová, CSc. Jaroslav Černý, Růžena Černá, František Gemperle, Vladimíra

Více

2.7.6 Rovnice vyšších řádů

2.7.6 Rovnice vyšších řádů 6 Rovnice vyšších řádů Předpoklady: 50, 05 Pedagogická poznámka: Pokud mám jenom trochu čas probírám látku této hodiny ve dvou vyučovacích hodinách V první probíráme separaci kořenů, v druhé pak snížení

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

MAT 1 Mnohočleny a racionální lomená funkce

MAT 1 Mnohočleny a racionální lomená funkce MAT 1 Mnohočleny a racionální lomená funkce Studijní materiály Pro listování dokumentem NEpoužívejte kolečko myši nebo zvolte možnost Full Screen. Brno 2012 RNDr. Rudolf Schwarz, CSc. First Prev Next Last

Více

STŘEDOŠKOLSKÁ MATEMATIKA

STŘEDOŠKOLSKÁ MATEMATIKA STŘEDOŠKOLSKÁ MATEMATIKA MOCNINY, ODMOCNINY, ALGEBRAICKÉ VÝRAZY VŠB Technická univerzita Ostrava Ekonomická fakulta 006 Mocniny, odmocniny, algebraické výrazy http://moodle.vsb.cz/ 1 OBSAH 1 Informace

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro gymnázia Vzdělávací oblast: Matematika a její aplikace Tematický okruh: Závislosti

Více

Algebraické výrazy pro učební obory

Algebraické výrazy pro učební obory Variace 1 Algebraické výrazy pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Algebraické výrazy

Více

GONIOMETRICKÉ FUNKCE

GONIOMETRICKÉ FUNKCE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol GONIOMETRICKÉ

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

MATEMATIKA 1 pro obory Finance a řízení a Cestovní ruch

MATEMATIKA 1 pro obory Finance a řízení a Cestovní ruch MATEMATIKA 1 pro obory Finance a řízení a Cestovní ruch Marie Hojdarová Jana Krejčová Martina Zámková RNDr. Marie Hojdarová, CSc., RNDr. Jana Krejčová, Ph.D., RNDr. Ing. Martina Zámková, Ph.D. ISBN: 978-80-87035-94-8

Více

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1 Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1 Funkce pro UO 1 Co je to matematická funkce? Mějme dvě množiny čísel. Množinu A a množinu B, které jsou neprázdné. Jestliže přiřadíme

Více

5. Kvadratická funkce

5. Kvadratická funkce @063 5. Kvadratická funkce Kvadratickou funkci také znáte ze základní školy, i když jen v té nejjednodušší podobě. Definice: Kvadratická funkce je dána předpisem f: y = ax 2 + bx + c, kde a, b, c R, a

Více

Sbírka. úloh z matematiky. pro 2. ročník. tříletých učebních oborů

Sbírka. úloh z matematiky. pro 2. ročník. tříletých učebních oborů Sbírka úloh z matematik pro. ročník tříletých učebních oborů Jméno: Třída: Obsah Výraz Člen výrazu Absolutní hodnota Sčítání a odčítání výrazů 6 Násobení výrazů 6 Dělení výrazů jednočlenem 8 Vtýkání před

Více

O FUNKCÍCH. Obsah. Petr Šedivý www.e-matematika.cz Šedivá matematika

O FUNKCÍCH. Obsah. Petr Šedivý www.e-matematika.cz Šedivá matematika O FUNKCÍCH Obsah Nezbytně nutná kapitola, kterou musíte znát pro studium limit, derivací a integrálů. Základ, bez kterého se neobejdete. Nejprve se seznámíte se všemi typy funkcí, které budete potřebovat,

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

Funkce, funkční závislosti Lineární funkce

Funkce, funkční závislosti Lineární funkce Funkce, funkční závislosti Lineární funkce Obsah: Definice funkce Grafické znázornění funkce Konstantní funkce Lineární funkce Vlastnosti lineárních funkcí Lineární funkce - příklady Zdroje Z Návrat na

Více

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy . Celistvé výrazy a jejich úprava.1. Číselné výrazy 8. ročník. Celistvé výrazy a jejich úprava Proměnná je znak, zpravidla ve tvaru písmene, který zastupuje čísla z dané množiny čísel. Většinou se setkáváme

Více

Vzdálenosti. Copyright c 2006 Helena Říhová

Vzdálenosti. Copyright c 2006 Helena Říhová Vzdálenosti Copyright c 2006 Helena Říhová Obsah 1 Vzdálenosti 3 1.1 Vzdálenostivrovině... 3 1.1.1 Vzdálenostdvoubodů..... 3 1.1.2 Vzdálenostboduodpřímky..... 4 1.1.3 Vzdálenostdvourovnoběžek.... 5 1.2

Více

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce)

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce) Předmět: Ročník: Vytvořil: Datum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: LOKÁLNÍ EXTRÉMY LOKÁLNÍ EXTRÉMY (maimum a minimum funkce) Lokální etrémy jsou body, v nichž funkce

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

Funkce, které jsme až dosud probírali, se souhrnně nazývají elementární funkce. Elementární snad proto, že jsou takové hladké, žádný nečekaný zlom.

Funkce, které jsme až dosud probírali, se souhrnně nazývají elementární funkce. Elementární snad proto, že jsou takové hladké, žádný nečekaný zlom. @213 17. Speciální funkce Funkce, které jsme až dosud probírali, se souhrnně nazývají elementární funkce. Elementární snad proto, že jsou takové hladké, žádný nečekaný zlom. Nyní si řekneme něco o třech

Více

16. DEFINIČNÍ OBORY FUNKCÍ

16. DEFINIČNÍ OBORY FUNKCÍ 6 DEFINIČNÍ OBORY FUNKCÍ 6 Urči definiční obor funkce 7 46 0 7 46 = 0 46 ± 5, = = 7; = 4 7 D ( f ) = ( ; 7 ; ) 7 f : y = 7 46 Funkce odmocnina je definována pro kladná reálná čísla a pro nulu Problematické

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10.

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10. MA. cvičení průběh funkce Lukáš Pospíšil,202 Průběh funkce Pod úkolem vyšetřete průběh funkce budeme rozumět nalezení všech kvalitativních vlastností zadané funkce - tedy bude potřeba zjistit o funkci

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

ZÁKLADNÍ POZNATKY Z MATEMATIKY

ZÁKLADNÍ POZNATKY Z MATEMATIKY ZÁKLADNÍ POZNATKY Z MATEMATIKY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

4.2.15 Funkce kotangens

4.2.15 Funkce kotangens 4..5 Funkce kotangens Předpoklady: 44 Pedagogická poznámka: Pokud nemáte čas, doporučuji nechat tuto hodinu studentům na domácí práci. Nedá se na tom nic zkazit a v budoucnu to není nikde příliš potřeba.

Více

15. Goniometrické funkce

15. Goniometrické funkce @157 15. Goniometrické funkce Pravoúhlý trojúhelník Ze základní školy znáte funkce sin a cos jako poměr odvěsen pravoúhlého trojúhelníka ku přeponě. @160 Měření úhlů Velikost úhlů se měří buď mírou stupňovou

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L.

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Soustavy o jedné rovnici neboli rovnice. Algebraické rovnice: Polynom= 0. POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Rovnice 1. stupně: lineární, ax + b = 0, a 0. Řešení: x = b a. Rovnice 2. stupně:

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT7

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT7 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT7. Najděte rovnici tečny ke křivce y x v bodě a. x Tečna je přímka. Přímka se zapisuje jako lineární

Více

11.1 Jedna rovnice pro jednu neznámou

11.1 Jedna rovnice pro jednu neznámou 52. ešení rovnic Mathcad je schopen řešit i velmi složité rovnice, kdy hledaná neznámá je obsažena současně v několika různých funkcích apod.. Jedna rovnice pro jednu neznámou.. Funkce root Před vlastním

Více

Reálná čísla. Sjednocením množiny racionálních a iracionálních čísel vzniká množina

Reálná čísla. Sjednocením množiny racionálních a iracionálních čísel vzniká množina Reálná čísla Iracionální číslo je číslo vyjádřené ve tvaru nekonečného desetinného rozvoje, ve kterém se nevyskytuje žádná perioda. Při počítání je potřeba iracionální číslo vyjádřit zaokrouhlené na určitý

Více

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr Matematika - 6. ročník Provádí početní operace v oboru desetinná čísla racionálních čísel - čtení a zápis v desítkové soustavě F užití desetinných čísel - čte a zapisuje desetinná čísla - zaokrouhlování

Více

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444 ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní

Více

Využití programu MS Excel při výuce vlastností kvadratické funkce

Využití programu MS Excel při výuce vlastností kvadratické funkce Využití programu MS Excel při výuce vlastností kvadratické funkce Martin Mikuláš Tabulkové kalkulátory lze ve škole velmi dobře využít při výuce matematiky. Lze v nich totiž snadno naprogramovat aplikace,

Více

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny.

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny. 1. Auto zrychlí rovnoměrně zrychleným pohybem z 0 km h -1 na 72 km h -1 za 10 sekund. 2. Auto zastaví z rychlosti 64,8 km h -1 rovnoměrně zrychleným (zpomaleným) pohybem za 9 sekund. V obou případech nakreslete

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4. Z daných tří soustav rovnic o neznámých x, x vyberte právě všechny ty, které jsou regulární.

Více

2.5.1 Kvadratická funkce

2.5.1 Kvadratická funkce .5.1 Kvadratická funkce Předpoklad: 1 Pedagogická poznámka: Velká většina studentů zvládne hodinu zcela samostatně. Snažím se nezapomenout je pochválit. Slovo kvadratická už známe, začínali jsme s kvadratickou

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

1. Definiční obor funkce dvou proměnných

1. Definiční obor funkce dvou proměnných Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

MĚSÍC MATEMATIKA GEOMETRIE

MĚSÍC MATEMATIKA GEOMETRIE 3. ročník Bod, přímka ZÁŘÍ Násobení a dělení Aplikační úlohy (nakupujeme) Bod, přímka Úsečka Násobení a dělení ŘÍJEN Procvičování Pamětné sčítání a odčítání, aplikační úlohy Polopřímka Modelování polopřímek

Více

FUNKCE NEPŘÍMÁ ÚMĚRNOST A LINEÁRNÍ LOMENÁ FUNKCE

FUNKCE NEPŘÍMÁ ÚMĚRNOST A LINEÁRNÍ LOMENÁ FUNKCE 1 Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol FUNKCE

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor Číslo projektu CZ.1.07/1.5.00/34.0743 Název škol Moravské gmnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika. Funkce. Definice funkce, graf funkce. Tet a příklad.

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná

Více

Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24.

Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24. Neurčité rovnice 4. Nejjednodušší rovnice neurčité 2. stupně In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24. Persistent URL: http://dml.cz/dmlcz/402869

Více

MATEMATIKA Charakteristika vyučovacího předmětu

MATEMATIKA Charakteristika vyučovacího předmětu MATEMATIKA Charakteristika vyučovacího předmětu Matematika se vyučuje ve všech ročnících. V primě a sekundě je vyučováno 5 hodin týdně, v tercii a kvartě 4 hodiny týdně. Předmět je tedy posílen o 2 hodiny

Více

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná

Více

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují.

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. .. Funkce, definiční obor funkce Předpoklady: 03 Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. Uděláme si na tabuli jenom krátký seznam: S = a, y = x, s = vt, výška lidí v

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

ZÁKLADNÍ POZNATKY Z MATEMATIKY

ZÁKLADNÍ POZNATKY Z MATEMATIKY ZÁKLADNÍ POZNATKY Z MATEMATIKY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

JEDNODUCHÉ LINEÁRNÍ A KVADRATICKÉ FUNKCE V GEOGEBŘE

JEDNODUCHÉ LINEÁRNÍ A KVADRATICKÉ FUNKCE V GEOGEBŘE Obsah JEDNODUCHÉ LINEÁRNÍ A KVADRATICKÉ FUNKCE V GEOGEBŘE...2 Co je to funkce?...2 Existuje snadnější definice funkce?...2 Dobře, pořád se mi to zdá trochu moc komplikonavané. Můžeme se na základní pojmy

Více

ročník 6. 7. 8. 9. celkem počet hodin 4 4 4 5 17 Předmět matematika se vyučuje jako samostatný předmět. Výuka probíhá převážně v kmenových třídách.

ročník 6. 7. 8. 9. celkem počet hodin 4 4 4 5 17 Předmět matematika se vyučuje jako samostatný předmět. Výuka probíhá převážně v kmenových třídách. MATEMATIKA Charakteristika vyučovacího předmětu Obsahové vymezení Vzdělání v matematice je zaměřeno na: užití matematiky v reálných situacích osvojení pojmů, matematických postupů rozvoj abstraktního myšlení

Více

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy 36 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ 2 1 2 1 1 y 1 2 Obráek 1.26: Průměrová rovina válcové plochy Věta: Je-li definována průměrová rovina sdružená s asymptotickým směrem, potom je s tímto směrem

Více

Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám

Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám Název školy Obchodní akademie a Hotelová škola Havlíčkův Brod Název OP OP Vzdělávání pro konkurenceschopnost Registrační

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Variace 1 Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose 3. Celá čísla 6. ročník 3. Celá čísla 3.1. Vymezení pojmu celé číslo Ve své dosavadní praxi jste se setkávali pouze s přirozenými čísly. Tato čísla určovala konkrétní počet (6 jablek, 7 kilogramů jablek,

Více

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy.

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy. Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ Úvod k učivu o přirozeném čísle. Numerace do 5, čtení čísel 0-5. Vytváření souborů o daném počtu předmětů. Znaménka méně, více, rovná se, porovnávání

Více

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta Řetězové zlomky a dobré aproximace Motivace Chceme-li znát přibližnou hodnotu nějakého iracionálního čísla, obvykle používáme jeho (nekonečný) desetinný rozvoj Z takového rozvoje, řekněme z rozvoje 345926535897932384626433832795028849769399375

Více

MO-ME-N-T MOderní MEtody s Novými Technologiemi

MO-ME-N-T MOderní MEtody s Novými Technologiemi Projekt: Reg.č.: Operační program: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Škola: Hotelová škola, Vyšší odborná škola hotelnictví a turismu

Více

Matematická vsuvka I. trojčlenka. http://www.matematika.cz/

Matematická vsuvka I. trojčlenka. http://www.matematika.cz/ Matematická vsuvka I. trojčlenka http://www.matematika.cz/ Trojčlenka přímá úměra Pokud platí, že čím více tím více, jedná se o přímou úměru. Čím více kopáčů bude kopat, tím více toho vykopají. Čím déle

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

ARITMETIKA - SEKUNDA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

ARITMETIKA - SEKUNDA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky ARITMETIKA - SEKUNDA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro nižší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy)

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy) Euklidovský prostor Euklidovy Základy (pohled do historie) dnešní definice kartézský souřadnicový systém vlastnosti rovin v E n speciální vlastnosti v E 3 (vektorový součin) a) eprostor, 16, b) P. Olšák,

Více

1. 1 P Ř I R O Z E N Á Č Í S L A

1. 1 P Ř I R O Z E N Á Č Í S L A 1. Č Í S E L N É O B O R Y 1. 1 P Ř I R O Z E N Á Č Í S L A Přirozená čísla (definice, značení, množinový zápis) Číslice (cifry 0 9) Číslo (rozvinutý resp. zkrácený zápis přirozeného čísla v desítkové

Více

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0).

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Výroková logika II Negace Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Na konkrétních příkladech si ukážeme, jak se dají výroky negovat. Obecně se výrok dá negovat tak, že před

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

M - Goniometrie a trigonometrie

M - Goniometrie a trigonometrie M - Goniometrie a trigonometrie Určeno jako učební text pro studenty dálkového studia a jako shrnující učební text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven

Více

Školní výstupy Učivo Průřezová témata Mezipředmětové vztahy

Školní výstupy Učivo Průřezová témata Mezipředmětové vztahy PŘEDMĚT: MATEMATIKA ROČNÍK: PRIMA Školní výstupy Učivo Průřezová témata Mezipředmětové vztahy Žák: rozlišuje pojmy násobek, dělitel definuje prvočíslo, číslo složené, sudé a liché číslo, čísla soudělná

Více

UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE. Matematika a její aplikace Matematika

UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE. Matematika a její aplikace Matematika UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE Vzdělávací oblast : : Cílové zaměření vzdělávací oblasti Učíme žáky využívat matematických poznatků a dovedností v praktických činnostech rozvíjet pamětˇ žáků prostřednictvím

Více

4. Topologické vlastnosti množiny reálných

4. Topologické vlastnosti množiny reálných Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 4. Topologické vlastnosti množiny reálných čísel V této kapitole definujeme přirozenou topologii na množině

Více