2. Řešení algebraické

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "2. Řešení algebraické"

Transkript

1 @ Řešení algebraické Definice: Nechť a, c jsou reálná čísla. Rovnice v R (s neznámou x) daná formulí se nazývá lineární rovnice a ax + c = 0 se nazývají lineární nerovnice. ax + c 0 ax + c < 0 ax + c > 0 ax + c 0 Příklad: Řešte v R rovnici 3x - 6 = 0 Řešení: rozbor 3x - 6 = 0 přičteme 6 3x = 6 vydělíme 3 x = 2 L(2) = = 0 P(2) = 0 => L(2)=P(2) Příklad: Řešte v R nerovnice 2x - 6 < 0-3x + 2 < 0 Řešení: rozbor rozbor rozbor 2x - 6 < 0-3x + 2 < 0 přičteme 6 2x < 6 odečteme 6 odečteme 2-3x < -2 odečteme 2 vydělíme 2 kladné x < 3 x (- ; 3) vynásobíme 2 - kladné vydělíme 3 záporné x > 2/3 x (2/3; + ) vynásobíme 3 záporné poznámka: Zkouška nerovnic se v praxi obvykle neprovádí novým opisováním obráceného postupu, ale rozbor se prochází krok za krokem v opačném pořadí kroků a každý se znovu zdůvodňuje. poznámka: Při prvním seznamování se s řešením rovnic, je možné další kroky této lekce vynechat a vrátit se k nim později.

2 @019 Napsané rovnice jsou jedny z mnoha, které dané zadání splňují. Nepochybujeme o tom, že i ty vaše jsou správné. Napište aspoň jednu lineární rovnici, která rovnice řešení a) má právě jedno řešení v N (přirozená čísla) x - 3 = 0 x = 3 b) má právě jedno řešení v C - (celá záporná) 2x + 4 = 0 x = -2 c) má právě jedno řešení rovné 0 x + 0 = 0 x = 0 d) nemá žádné řešení v R 0.x - 7 = 0 Ø e) má za řešení všechna čísla z R 0.x + 0 = 0 R f) má právě jedno řešení v R \ Q (iracionální) 2x - = 0 x = /2 g) má právě jedno řešení větší než 1000 x = 0 x = 1001 h) má právě jedno řešení v Q \ C (racionální, ale ne celá) 3x - 2 = 0 x = 2/3

3 @018 Úkol: Jistě každý z vás vyřeší snadno lineární rovnici v R, je-li napsána ve tvaru podle definice ax + c = 0. A proto úkol bude obrácený. Napište aspoň jednu lineární rovnici, která a) má právě jedno řešení v N (přirozená čísla) b) má právě jedno řešení v C - (celá záporná čísla) c) má právě jedno řešení rovné 0 d) nemá žádné řešení v R e) má za řešení všechna čísla z R f) má právě jedno řešení v R \ Q (reálná, ale ne racionální = iracionální čísla) g) má právě jedno řešení větší než 1000 h) má právě jedno řešení v Q \ C (racionální, ale ne celá = zlomky, které nejdou vykrátit) výsledek

4 @017a přehled - obecné řešení Nyní si proveďme obecné řešení lineární rovnice. a,c R ax + c = 0 ax = -c vydělíme a a 0 a = 0 x = -c/a jediný kandidát na řešení nutná L(-c/a) = a(-c/a) + c = -c + c = 0 P(-c/a) = 0 0.x = -c c 0 c = 0 0.x = -c 0.x = 0 vlevo nula, vpravo nenula - nesplňuje žádné reálné číslo splňují všechna reálná čísla odečteme c rozklad na dva rozklad na dva Souhrn: Množina řešení lineární rovnice v R může být: 1. jednoprvková množina řešením je jedno konkrétní reálné číslo 2. prázdná množina řešení neexistuje 3. celé R existuje nekonečně mnoho řešení Původní rovnice, která po úpravách vede k lineární rovnici, může mít některá omezení související s omezujícími podmínkami (dělení nulou, záporné číslo pod odmocninou, apod.).

5 @017b Nyní si proveďme obecné řešení lineární nerovnice. a,c R ax + c > 0 ax > -c dělíme a<0, mění se relační znaménko kandidáti řešení = intervaly a < 0 a = 0 a > 0 x < -c/a nerovnice se mění na 0.x > -c 0 > -c c<0 c=0 c>0 0=0.x < c 0=0.x > 0 0=0.x < c neslučitelné podmínky nelze splnit pro žádné x nepravdivý výrok 0 > 0 stejné podmínky splňuje každé reálné x x > -c/a (- ;-c/a) Ø Ø R (-c/a;+ ) obrácením postupu není co zkoušet není co zkoušet obrácením postupu obrácením postupu odečteme c rozklad na tři dělíme a>0, relační znaménko se nemění rozklad na tři násobíme 1 relace se obrací Souhrn: Množina řešení lineární nerovnice v R může být: 1. celé R existuje nekonečně mnoho řešení 2. jednostranně neomezený interval existuje nekonečně mnoho řešení 3. prázdná množina řešení neexistuje Původní rovnice, která po úpravách vede k lineární rovnici, může mít některá omezení související s omezujícími podmínkami (dělení nulou, záporné číslo pod odmocninou, apod.).

6 @020 Nepochybujeme o tom, že dokážete vyřešit jakoukoli lineární rovnici ve tvaru ax + c = 0 Když se ale říká budeme řešit lineární rovnice, málokdy se tím myslí lineární rovnice v tomto základním tvaru. Ve většině případů se musí zadaná rovnice upravit do tohoto tvaru. Pravidla pro úpravu rovnic jsou uvedena v první lekci tohoto kurzu. Obvykle obsahuje zadaná rovnice nějakou specifiku, která určuje její označení. Tak máme lineární rovnice s racionalitou, s absolutní hodnotou, s odmocninou. Je to spíše školní označení, protože jen sbírky úloh, či kurz podobný našemu, ví předem, že po úpravách dostane řešitel lineární rovnici. Pokud pro řešení rovnice používáme pouze algebraických úprav, říkáme, že rovnici řešíme algebraicky. KONEC LEKCE

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

6. Lineární (ne)rovnice s odmocninou

6. Lineární (ne)rovnice s odmocninou @06 6. Lineární (ne)rovnice s odmocninou rovnice Když se řekne s odmocninou, znamená to, že zadaná rovnice obsahuje neznámou pod odmocninou. není (ne)rovnice s odmocninou neznámá x není pod odmocninou

Více

Rovnice s parametrem (17. - 18. lekce)

Rovnice s parametrem (17. - 18. lekce) Rovnice s parametrem (17. - 18. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 22. října 2011 Lineární rovnice s parametrem

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

STŘEDOŠKOLSKÁ MATEMATIKA

STŘEDOŠKOLSKÁ MATEMATIKA STŘEDOŠKOLSKÁ MATEMATIKA MOCNINY, ODMOCNINY, ALGEBRAICKÉ VÝRAZY VŠB Technická univerzita Ostrava Ekonomická fakulta 006 Mocniny, odmocniny, algebraické výrazy http://moodle.vsb.cz/ 1 OBSAH 1 Informace

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. @083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x

Více

2.7.6 Rovnice vyšších řádů

2.7.6 Rovnice vyšších řádů 6 Rovnice vyšších řádů Předpoklady: 50, 05 Pedagogická poznámka: Pokud mám jenom trochu čas probírám látku této hodiny ve dvou vyučovacích hodinách V první probíráme separaci kořenů, v druhé pak snížení

Více

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy . Celistvé výrazy a jejich úprava.1. Číselné výrazy 8. ročník. Celistvé výrazy a jejich úprava Proměnná je znak, zpravidla ve tvaru písmene, který zastupuje čísla z dané množiny čísel. Většinou se setkáváme

Více

Sbírka. úloh z matematiky. pro 2. ročník. tříletých učebních oborů

Sbírka. úloh z matematiky. pro 2. ročník. tříletých učebních oborů Sbírka úloh z matematik pro. ročník tříletých učebních oborů Jméno: Třída: Obsah Výraz Člen výrazu Absolutní hodnota Sčítání a odčítání výrazů 6 Násobení výrazů 6 Dělení výrazů jednočlenem 8 Vtýkání před

Více

MAT 1 Mnohočleny a racionální lomená funkce

MAT 1 Mnohočleny a racionální lomená funkce MAT 1 Mnohočleny a racionální lomená funkce Studijní materiály Pro listování dokumentem NEpoužívejte kolečko myši nebo zvolte možnost Full Screen. Brno 2012 RNDr. Rudolf Schwarz, CSc. First Prev Next Last

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

ARITMETIKA - SEKUNDA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

ARITMETIKA - SEKUNDA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky ARITMETIKA - SEKUNDA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro nižší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose 3. Celá čísla 6. ročník 3. Celá čísla 3.1. Vymezení pojmu celé číslo Ve své dosavadní praxi jste se setkávali pouze s přirozenými čísly. Tato čísla určovala konkrétní počet (6 jablek, 7 kilogramů jablek,

Více

ZÁKLADNÍ POZNATKY Z MATEMATIKY

ZÁKLADNÍ POZNATKY Z MATEMATIKY ZÁKLADNÍ POZNATKY Z MATEMATIKY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ FUNKCE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE DO ROZVOJE

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

15. Soustava lineárních nerovnic - optimalizace

15. Soustava lineárních nerovnic - optimalizace @173 15. Soustava lineárních nerovnic - optimalizace Jak jsme se dozvěděli v 3. lekci tohoto kurzu, je obrazem rovnice ax + by + c = 0, a,b,c R (a; b) (0; 0) přímka a obrazem nerovnic ax + by + c 0, a,b,c

Více

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny.

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny. 1. Auto zrychlí rovnoměrně zrychleným pohybem z 0 km h -1 na 72 km h -1 za 10 sekund. 2. Auto zastaví z rychlosti 64,8 km h -1 rovnoměrně zrychleným (zpomaleným) pohybem za 9 sekund. V obou případech nakreslete

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

Funkce, které jsme až dosud probírali, se souhrnně nazývají elementární funkce. Elementární snad proto, že jsou takové hladké, žádný nečekaný zlom.

Funkce, které jsme až dosud probírali, se souhrnně nazývají elementární funkce. Elementární snad proto, že jsou takové hladké, žádný nečekaný zlom. @213 17. Speciální funkce Funkce, které jsme až dosud probírali, se souhrnně nazývají elementární funkce. Elementární snad proto, že jsou takové hladké, žádný nečekaný zlom. Nyní si řekneme něco o třech

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

takţe podmínka vypadá takto jmenovatel = 0 jmenovatel 0 něco < 0 něco 0 vnitřek 0 vnitřek > 0 cos(argument) = 0 sin(argument) =

takţe podmínka vypadá takto jmenovatel = 0 jmenovatel 0 něco < 0 něco 0 vnitřek 0 vnitřek > 0 cos(argument) = 0 sin(argument) = ZJIŠŤOVÁNÍ DEFINIČNÍHO OBORU FUNKCÍ Definiční obor funkce f(x) zjišťujeme tímto postupem: I. Vypíšeme si všechny výrazy pro které by mohlo být něco zakázáno a napíšeme podmínky pro to, aby se ty zakázané

Více

1. 1 P Ř I R O Z E N Á Č Í S L A

1. 1 P Ř I R O Z E N Á Č Í S L A 1. Č Í S E L N É O B O R Y 1. 1 P Ř I R O Z E N Á Č Í S L A Přirozená čísla (definice, značení, množinový zápis) Číslice (cifry 0 9) Číslo (rozvinutý resp. zkrácený zápis přirozeného čísla v desítkové

Více

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1.

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1. Eponenciální rovnice Eponenciální rovnice jsou rovnice, ve kterých se neznámá vsktuje v eponentu. Řešíme je v závislosti na tpu rovnice několika základními metodami. A. Metoda převedení na stejný základ

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L.

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Soustavy o jedné rovnici neboli rovnice. Algebraické rovnice: Polynom= 0. POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Rovnice 1. stupně: lineární, ax + b = 0, a 0. Řešení: x = b a. Rovnice 2. stupně:

Více

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444 ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují.

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. .. Funkce, definiční obor funkce Předpoklady: 03 Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. Uděláme si na tabuli jenom krátký seznam: S = a, y = x, s = vt, výška lidí v

Více

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03 Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

Reálná čísla. Sjednocením množiny racionálních a iracionálních čísel vzniká množina

Reálná čísla. Sjednocením množiny racionálních a iracionálních čísel vzniká množina Reálná čísla Iracionální číslo je číslo vyjádřené ve tvaru nekonečného desetinného rozvoje, ve kterém se nevyskytuje žádná perioda. Při počítání je potřeba iracionální číslo vyjádřit zaokrouhlené na určitý

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4. Z daných tří soustav rovnic o neznámých x, x vyberte právě všechny ty, které jsou regulární.

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Algebraické výrazy pro učební obory

Algebraické výrazy pro učební obory Variace 1 Algebraické výrazy pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Algebraické výrazy

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy

Více

ZÁKLADNÍ POZNATKY Z MATEMATIKY

ZÁKLADNÍ POZNATKY Z MATEMATIKY ZÁKLADNÍ POZNATKY Z MATEMATIKY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

Informace k jednotlivým zkouškám na jednotlivých oborech:

Informace k jednotlivým zkouškám na jednotlivých oborech: Informace k jednotlivým zkouškám na jednotlivých oborech: Obor Obchodní akademie 63-41-M/004 1. Praktická maturitní zkouška Praktická maturitní zkouška z odborných předmětů ekonomických se skládá z obsahu

Více

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Variace 1 Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 11 Katedra ekonometrie FEM UO Brno Jedná se o speciální případ dopravních úloh, řeší např. problematiku optimálního přiřazení strojů na pracoviště. Příklad Podnik má k dispozici 3 jeřáby,

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Algebra Struktury s jednou operací Teoretická informatika 2 Proč zavádíme algebru hledáme nástroj pro popis objektů reálného světa (zejména

Více

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 2 3 x. a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 6; x = 13 28 = 1 7 a jeho hodnotu pro x = 2

a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 2 3 x. a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 6; x = 13 28 = 1 7 a jeho hodnotu pro x = 2 Obsah Definiční obory výrazů s proměnnou... Zápisy výrazů...3 Sčítání a odčítání mnohočlenů...4 Násobení mnohočlenů...5 Dělení mnohočlenů...7 Rozklad mnohočlenů na součin vytýkání...9 Rozklad mnohočlenů

Více

ČOČKY JAKO ZOBRAZOVACÍ SOUSTAVY aneb O spojkách a rozptylkách. PaedDr. Jozef Beňuška jbenuska@nextra.sk

ČOČKY JAKO ZOBRAZOVACÍ SOUSTAVY aneb O spojkách a rozptylkách. PaedDr. Jozef Beňuška jbenuska@nextra.sk ČOČKY JAKO ZOBRAZOVACÍ SOUSTAVY aneb O spojkách a rozptlkách PaedDr. Jozef Beňuška jbenuska@nextra.sk Optická soustava - je soustava optických prostředí a jejich rozhraní, která mění směr chodu světelných

Více

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky.

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky. Výrzy Výrz je druh mtemtického zápisu, který obshuje konstnty, proměnné, symboly mtemtických opercí, závorky. Příkldy výrzů: + výrz obshuje pouze konstnty číselný výrz x výrz obshuje konstntu ( proměnnou

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

Informace k jednotlivým zkouškám na jednotlivých oborech:

Informace k jednotlivým zkouškám na jednotlivých oborech: Informace k jednotlivým zkouškám na jednotlivých oborech: I. Obor Ekonomické lyceum 78-42-M/002 1. Práce s obhajobou z ekonomiky nebo společenských věd: Témata pro práci s obhajobou budou žáci zpracovávat

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

1. Jordanův kanonický tvar

1. Jordanův kanonický tvar . Jordanův kanonický tvar Obecně nelze pro zadaný lineární operátor ϕ : U U najít bázi α takovou, že (ϕ) α,α by byla diagonální. Obecně však platí, že pro každý lineární operátor ϕ : U U nad komplexními

Více

Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24.

Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24. Neurčité rovnice 4. Nejjednodušší rovnice neurčité 2. stupně In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24. Persistent URL: http://dml.cz/dmlcz/402869

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

16. DEFINIČNÍ OBORY FUNKCÍ

16. DEFINIČNÍ OBORY FUNKCÍ 6 DEFINIČNÍ OBORY FUNKCÍ 6 Urči definiční obor funkce 7 46 0 7 46 = 0 46 ± 5, = = 7; = 4 7 D ( f ) = ( ; 7 ; ) 7 f : y = 7 46 Funkce odmocnina je definována pro kladná reálná čísla a pro nulu Problematické

Více

Matematická analýza 1b. 9. Primitivní funkce

Matematická analýza 1b. 9. Primitivní funkce Matematická analýza 1b 9. Primitivní funkce 9.1 Základní vlastnosti Definice Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Školní výstupy Učivo Průřezová témata, přesahy, poznámky. Školní výstupy Učivo Průřezová témata, přesahy, poznámky

Školní výstupy Učivo Průřezová témata, přesahy, poznámky. Školní výstupy Učivo Průřezová témata, přesahy, poznámky Gymnázium Rumburk (vyšší stupeň osmiletého gymnázia a čtyřleté gymnázium v Rumburku) Předmět:Matematika Charakteristika vyučovacího předmětu 1. Obsahové, časové a organizační vymezení Předmět vzniká Matematika

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

MATEMATIKA Přijímací zkoušky na ČVUT

MATEMATIKA Přijímací zkoušky na ČVUT Kolektiv MATEMATIKA Přijímací zkoušky na ČVUT Praha 200 Vydavatelství ČVUT Lektoři: doc. RNDr. Čeněk Zlatník, CSc. doc. RNDr. Ludmila Machačová, CSc. Jaroslav Černý, Růžena Černá, František Gemperle, Vladimíra

Více

Základní pojmy o signálech

Základní pojmy o signálech Základní pojmy o signálech klasifikace signálů transformace časové osy energie a výkon periodické signály harmonický signál jednotkový skok a impuls Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná

Více

Matematika - 6. ročník

Matematika - 6. ročník Matematika - 6. ročník Učivo Výstupy Kompetence Průřezová témata Metody a formy Přirozená čísla - zápis čísla v desítkové soustavě - zaokrouhlování - zobrazení na číselné ose - početní operace v oboru

Více

MO-ME-N-T MOderní MEtody s Novými Technologiemi

MO-ME-N-T MOderní MEtody s Novými Technologiemi Projekt: Reg.č.: Operační program: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Škola: Hotelová škola, Vyšší odborná škola hotelnictví a turismu

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

15. Goniometrické funkce

15. Goniometrické funkce @157 15. Goniometrické funkce Pravoúhlý trojúhelník Ze základní školy znáte funkce sin a cos jako poměr odvěsen pravoúhlého trojúhelníka ku přeponě. @160 Měření úhlů Velikost úhlů se měří buď mírou stupňovou

Více

Číselné soustavy a převody mezi nimi

Číselné soustavy a převody mezi nimi Číselné soustavy a převody mezi nimi Základní požadavek na počítač je schopnost zobrazovat a pamatovat si čísla a provádět operace s těmito čísly. Čísla mohou být zobrazena v různých číselných soustavách.

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr Matematika - 6. ročník Provádí početní operace v oboru desetinná čísla racionálních čísel - čtení a zápis v desítkové soustavě F užití desetinných čísel - čte a zapisuje desetinná čísla - zaokrouhlování

Více

diferenciální rovnice verze 1.1

diferenciální rovnice verze 1.1 Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování

Více

ϵ = b a 2 n a n = a, pak b ϵ < a n < b + ϵ (2) < ϵ, což je spor, protože jsme volili ϵ = b a

ϵ = b a 2 n a n = a, pak b ϵ < a n < b + ϵ (2) < ϵ, což je spor, protože jsme volili ϵ = b a MA 6. cvičení výpočet limit posloupností Lukáš Pospíšil,202 Malý (ale pěkný) důkaz na úvod V dnešním cvičení se naučíme počítat jednoduché limity, nicméně by na začátek bylo vhodné ukázat, že to co hledáme,

Více

5.2. Funkce, definiční obor funkce a množina hodnot funkce

5.2. Funkce, definiční obor funkce a množina hodnot funkce 5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří

Více

MATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám

MATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám MATEMATIKA DIDAKTICKÝ TEST MAHZD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického

Více

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta Řetězové zlomky a dobré aproximace Motivace Chceme-li znát přibližnou hodnotu nějakého iracionálního čísla, obvykle používáme jeho (nekonečný) desetinný rozvoj Z takového rozvoje, řekněme z rozvoje 345926535897932384626433832795028849769399375

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

Pravidla pro hodnocení a klasifikaci v jednotlivých předmětech a seminářích

Pravidla pro hodnocení a klasifikaci v jednotlivých předmětech a seminářích Pravidla pro hodnocení a klasifikaci v jednotlivých předmětech a seminářích Povinností žáka je napsat seminární práci nejpozději ve 3.ročníku (septima) v semináři (dle zájmu žáka). Práce bude ohodnocena

Více

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Matematika pro studenty ekonomie Vydala Grada Publishing, a.s. U Průhonu 22, 70 00 Praha 7 tel.: +420 234 264 40, fax: +420 234 264 400 www.grada.cz jako svou

Více

Teorie sférické trigonometrie

Teorie sférické trigonometrie Teorie sférické trigonometrie Trigonometrie (z řeckého trigónon = trojúhelník a metrein= měřit) je oblast goniometrie zabývající se praktickým užitím goniometrických funkcí při řešení úloh o trojúhelnících.

Více

VY_42_INOVACE_MA3_01-36

VY_42_INOVACE_MA3_01-36 Název školy Základní škola Benešov, Jiráskova 888 Číslo projektu CZ.1.07/1.4.00/21.1278 Název projektu Pojďte s námi Číslo a název šablony klíčové aktivity VY_42_INOVACE_MA3_01-36 Inovace a zkvalitnění

Více

Výroková logika (5) 1. Základní pojmy Ke každé větě dopište do závorky, zda věta je pravda, či nepravda.

Výroková logika (5) 1. Základní pojmy Ke každé větě dopište do závorky, zda věta je pravda, či nepravda. m_1_vyrok_priklady 6.5.011 1/9 m_1_vyrok_priklady 6.5.011 /9 Výroková logika (5) 1. Základní pojmy Ke každé větě dopište do závorky, zda věta je pravda, či nepravda. A: Číslo 6 je dělitelné 5-ti. (nepravda)

Více

Vzdělávací oblast: MATEMATIKA A JEJÍ APLIKACE Vyučovací předmět: MATEMATIKA Ročník: 7.

Vzdělávací oblast: MATEMATIKA A JEJÍ APLIKACE Vyučovací předmět: MATEMATIKA Ročník: 7. Vzdělávací oblast: MATEMATIKA A JEJÍ APLIKACE Vyučovací předmět: MATEMATIKA Ročník: 7. Výstupy dle RVP Školní výstupy Učivo žák: v oboru celých a racionálních čísel; využívá ve výpočtech druhou mocninu

Více

Nástroje pro analýzu dat

Nástroje pro analýzu dat 7 Nástroje pro analýzu dat V té to ka pi to le: Ověřování vstupních dat Hledání řešení Řešitel Scénáře Citlivostní analýza Rychlá analýza Kapitola 7 Nástroje pro analýzu dat Součástí Excelu jsou nástroje

Více

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA DIDAKTICKÝ TEST MAIZD15C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického

Více

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula.

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Celá čísla Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Množinu celých čísel označujeme Z Z = { 3, 2, 1,0, 1,2, 3, } Vlastností této množiny je,

Více

1. Vypočítejte: 775522 : 11. 2. Základní čtvercová síť má délky strany čtverců 1 cm. Určete obsah vyznačeného obrazce, odpověď zdůvodněte.

1. Vypočítejte: 775522 : 11. 2. Základní čtvercová síť má délky strany čtverců 1 cm. Určete obsah vyznačeného obrazce, odpověď zdůvodněte. Z A D Á N Í Gymnázium Ohradní Praha 4 / 5. třída / 03-04 / 1. kolo 1. Vypočítejte: 775522 : 11 2. Základní čtvercová síť má délky strany čtverců 1 cm. Určete obsah vyznačeného obrazce, odpověď zdůvodněte.

Více

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Algebra študenti MFF 15. augusta 2008 1 8 Algebra Požadavky Grupa, okruh, těleso definice a příklady Podgrupa, normální podgrupa, faktorgrupa, ideál

Více