OBVODY STŘÍDAVÉHO PROUDU S LINEÁRNÍMI JEDNOBRANY A DVOJBRANY. Studijní text pro řešitele FO a ostatní zájemce o fyziku Přemysl Šedivý

Rozměr: px
Začít zobrazení ze stránky:

Download "OBVODY STŘÍDAVÉHO PROUDU S LINEÁRNÍMI JEDNOBRANY A DVOJBRANY. Studijní text pro řešitele FO a ostatní zájemce o fyziku Přemysl Šedivý"

Transkript

1 OBVODY STŘÍDAVÉHO POUDU S LINEÁNÍMI JEDNOBANY A DVOJBANY Studijní text pro řešitele FO a ostatní zájemce o yziku Přemysl Šedivý Obsah Jednoduchý obvod střídavého proudu Řešení obvodů střídavého proudu pomocí ázorového diagramu Užití komplexních veličin při řešení obvodů střídavého proudu symbolická metoda 8 3 Lineární jednobrany Impedance, admitance 0 4 Impedance v jednoduchém obvodu střídavého proudu 5 Spojování jednobranů 6 Frekvenční charakteristiky lineárních impedančních jednobranů 7 7 Jednoduché rezonanční jednobrany 8 Univerzální rekvenční charakteristiky rezonančních jednobranů Šířka pásma 8 9 Lineární dvojbrany Napěťový přenos 3 0 Náměty laboratorních prací 40 0 Měření indukčnosti a rezistance cívky metodou tří voltmetrů 40 0 Frekvenční charakteristiky indukčnosti a rezistance cívky 4 03 Určení rekvenčních charakteristik sériového jednobranu C a nezatíženéhodvojbranuc UrčenírekvenčníchcharakteristikWienovačlenu 45 Výsledky úloh 47

2 Jednoduchý obvod střídavého proudu Řešení obvodů střídavého proudu pomocí ázorového diagramu V tomto textu se budeme zabývat elektrickými obvody sestavenými z ideálních rezistorů, kondenzátorů a cívek připojenými k ideálním zdrojům harmonického střídavého napětí Takovéto zidealizované obvody mohou velmi dobře modelovat reálné obvody v nejrůznějších elektrotechnických zařízeních ezistory,kondenzátoryacívkyjsoulineárnísoučástkyamplituda I mstřídavého prouduprocházejícíhosoučástkoujepřímoúměrnáamplitudě U mstřídavéhonapětí Totéž platí o eektivních hodnotách proudu a napětí I= I m/, U= U m/, které budeme ve výpočtech používat častěji Voltampérová charakteristika rezistoru nezávisí na rekvenci proudu U kondenzátoru se s rostoucí rekvencí sklon charakteristiky zvětšuje a u cívky se naopak zmenšuje(obr -) I I I C U U U L I I I U U U 500 Hz 500 Hz Obr - Fázor(časový vektor)um harmonicky kmitajícího napětí určuje svou velikostí amplitudukmitů U m asvýmsměremjejich počátečníázi 0 (obr-)začne-lise včase t=0ázornapětíotáčetvkladnémsmysluúhlovourychlostí ω,budesvislá souřadnice ázoru rovna okamžité hodnotě napětí u=u msin(ωt+ 0) Stejným způsobem deinujeme ázor prouduim Fázorové diagramy jsou vhodné pro řešení jednodušších obvodů Zopakujme si nejprve, jak vypadají ázorové diagramy jednoduchých obvodů střídavého proudu s rezistorem, kondenzátorem a cívkou

3 u ωtum 0 t Obr - V obvodu s ideálním rezistorem je vztah mezi napětím a proudem vyjádřen Ohmovým zákonem u i = U I = Um = =konst I m Fázor napětí a ázor proudu mají stejný směr(obr -3) Veličinu nazýváme rezistance Neliší se od stejnosměrného odporu rezistoru ImUm i u t Obr -3 V obvodu s ideálním kondenzátorem je okamžitý náboj na deskách kondenzátoru přímo úměrný okamžitému napětí q= Cu a okamžitý proud určíme ze vztahu i= dq dt = Cdu dt Jestližeokamžitáhodnotanapětíje u=u msin(ωt+ 0),pak i=ωcu mcos(ωt+ 0)=I mcos(ωt+ 0) Im i u Um t Obr -4 3

4 Veličina U m = U I m I = ωc = XC je kapacitní reaktance(kapacitance) kondenzátoru V obvodu s kondenzátorem předbíhá proud před napětím o čtvrtinu periody, ázově o p/ Fázory obou veličin jsou navzájem kolmé(obr -4) V obvodu s ideální cívkou platí zákon elektromagnetické indukce ve tvaru Jestliže okamžitá hodnota proudu je pak Veličina u L= L di dt i=i msin(ωt+ 0), u=ωli mcos(ωt+ 0)=U mcos(ωt+ 0) U m I m = U I = ωl=xl je induktivní reaktance(induktance) cívky V obvodu s cívkou je proud opožděn za napětím o čtvrtinu periody, ázově o p/ Fázory obou veličin jsou navzájem kolmé (obr -5) Um u i Im t Obr -5 Fázové posunutí mezi napětím a proudem deinujeme vztahem = U I U cívky, kde napětí předbíhá před proudem, je kladné; u kondenzátoru je záporné V praktických situacích známe častěji eektivní hodnoty střídavých napětí a proudů než jejich amplitudy Proto i ve ázorových diagramech střídavých obvodů místo ázorů Um,Im používáme ázoryu,io velikostech rovných eektivním hodnotám U, I V sériově zapojeném obvodu je ázor proudu pro všechny součástky společný Obvykle jej umisťujeme do základní polohy na vodorovné ose a počáteční ázi proudu tedy volíme nulovou Fázor výsledného napětí je vektorovým součtem 4

5 ázorů napětí na jednotlivých součástkách Na obr -6 je schéma a ázorový diagram sériového obvodu LC Fázor proudu, který je společný pro všechny součástky,volímevzákladnípoloze( 0=0) Zdiagramusnadnoodvodímevztahypro výpočet výsledného napětí a ázového posunutí mezi napětím a proudem: U= U=U+UL+UC, U +(UL UC) = I + ( I ωl ) UL UC ωc tg = = = U I U I L U L I UL U U C UUC U C ( ωl ), ωc ωl ωc Obr -6 V paralelně zapojeném obvodu je pro všechny součástky společný ázor napětí a obvykle jej umisťujeme do základní polohy na vodorovné ose Fázor výsledného proudu je vektorovým součtem ázorů proudů procházejících jednotlivými součástkami Na obr -7 je schéma a ázorový diagram paralelního obvodu LC Z něj odvodíme vztahy pro výpočet výsledného proudu a ázového posunutí mezinapětímaproudem: I= tg = I=I+IL+IC, I +(IC IL) = U + ( ωc ωl ), ( ) U IL IC ωl ωc ( ) = = I U ωl ωc Všimnětesi,žeázovéposunutíjekladné,když I L > I C 5

6 I I L I I C IC IIU U L C IL Obr -7 Příklad Kondenzátor o kapacitě 3 mf a cívka byly sériově připojeny k síťovému transormátoru ( = 50 Hz) Vlastnosti kondenzátoru se přibližují vlastnostem kondenzátoru ideálního Cívku si můžeme představit jako sériové spojení ideální cívky o indukčnosti L saideálníhorezistoruorezistanci svoltmetrembylavobvoduzměřenanapětí U=0,5V, U C=8,0V, U L=4,5V (obr-8) Narýsujteázorovýdiagramobvoduaurčeteveličiny L sa s Řešení Fázorový diagram obvodu je na obr -8 Fázor prouduivolíme v základní poloze tím je dána i poloha ázoruuc Zbývající ázory dostaneme doplněním obrazce na trojúhelník a na rovnoběžník Velikosti ázorů vynášíme v eektivních hodnotách velikostiázorůsetímzmenší krátzázorovéhodiagramuurčímeúhel,který svíráázornapětíulsázoremproudui: U = U C+ U L U CU Lcos ψ= U C+ U L U CU Lsin, Obvodem prochází proud sin = U C+ U L U U CU L I= UC X C = ωcu C Z ázorového diagramu samotné cívky(obr -9) odvodíme U = U Lcos, U L= U Lsin, s= U I, UL Ls= ωi Numericky: =54,3, I=0,8A, s=47ω, L s=0,h 6

7 I L s, s C U L U C U UC ψ UI UL I L s s U L U U UL I UL U Obr -8 Obr-9 Úlohy Žárovkusjmenovitýmihodnotaminapětíaproudu U jm=6,3v, I jm=0,0a chceme napájet ze síťového transormátoru, jehož sekundární vinutí má eektivní hodnotu napětí V Jak velkou kapacitu musí mít sériově připojený kondenzátor, aby byly dodrženy jmenovité hodnoty? Jak velké napětí na kondenzátoru naměříme? Jaké bude ázové posunutí mezi celkovým napětím a proudem? Kondenzátorokapacitě,0 mfarezistoroodporukωjsouparalelněpřipojeny któnovémugenerátoruorekvenci,0khzcelkovýproudvobvoduje4,0majaké proudy procházejí oběma součástkami? Jaké je svorkové napětí generátoru? Jaké je ázové posunutí mezi celkovým napětím a proudem? 7

8 Užití komplexních veličin při řešení obvodů střídavého proudu symbolická metoda Symbolickou metodu používáme při řešení složitějších obvodů Fázory napětí a proudu považujeme za komplexní veličiny zobrazené v Gaussově rovině Také vztahy mezi jednotlivými ázory v obvodu vyjadřujeme pomocí komplexních veličin S komplexními veličinami počítáme stejně jako s komplexními čísly v matematice Z praktických důvodů je však orma zápisu poněkud odlišná Komplexní veličiny budeme zapisovat v algebraickém, goniometrickém nebo exponenciálnímtvaru:a=ea+j ImA=A(cos +j sin )=Ae j, kde ea=a cos jereálnásložka, ImA= A sin je imaginární složka, j= jeimaginárníjednotka, A= A = e A+Im Ajeabsolutníhodnota, je argument VpsanémtextupoužijemeprokomplexníveličinuAsymbol Apodobnějakoujiných vektorů Komplexní veličina má kromě absolutní hodnoty a argumentu i yzikální jednotku Dvě komplexní veličinya,bjsou si rovny právě tehdy, když ea= eb, ImA= ImB Součet dvou B A+B komplexních veličina,btéhož druhu je deinován vztahem A+B=eA+eB+j(ImA+ImB), kterému odpovídá A A B vektorový součet v Gaussově rovině(obr -) Im Im A Im e Obr - Be A AB Be Obr-,Obr-3 8

9 Součin dvou komplexních veličina,bje deinován vztahem A B=eA eb ImA ImB+j(eA ImB+ImA eb) Absolutní hodnota součinu je rovna součinu absolutních hodnot obou činitelů a argument součinu je součtem argumentů(obr -) AB =AB, AB= A+ B Podíl dvou komplexních veličina,bupravujeme obvykle na tvar AB=A B B = (ea+j ImA)(eB j ImB) (eb) +(ImB), kdeb =eb j ImBjeveličinakomplexněsdruženákveličiněB Absolutní hodnota podílu je rovna podílu absolutních hodnot obou veličin a argument podílu je roven rozdílu obou argumentů(obr -3) AB = A, A/B= A B B Im j A A A Im Ae jψ e jψ ψ e e j A Ae jψ Obr -4 Obr -5 Vynásobíme-li komplexní veličinu komplexní jednotkou e jψ =cos ψ+jsin ψ, otočísejejíobrazvgaussověroviněoúhel ψabsolutníhodnotaveličinysepřitom nezměnívydělíme-likomplexníveličinukomplexníjednotkou e jψ (cožjetotéž, jakokdyžjivynásobímekomplexníjednotkou e jψ ), otočísejejíobrazvgaussově rovině o úhel ψ (obr -4) Otočení o p/ dosáhneme vynásobením komplexní veličiny komplexní jednotkou j = cos(p/) + j sin(p/) Podobně otočení o p/ dosáhneme vynásobením komplexní jednotkou j = cos(p/) j sin(p/) (obr -5) 9

10 Také otáčení ázoru napětí nebo Uproudu v závislosti na čase můžeme vyjádřit pomocí násobení komplexní jednotkou(obr -6) Poloha ázoru napětí v čase t je určena komplexníveličinouu e jωt = U m e j0 e jωt = U m e j(ωt+0) Im u Ue jωt ωt 0 e t Obr -6 3 Lineární jednobrany Impedance, admitance Jednobran je do obvodu připojen pomocí jediné dvojice svorek(obr 3-) Může být tvořen jedinou součástkou, nebo větším počtem součástek různě propojených Jednobrany sestavené z rezistorů, kondenzátorů a cívek mají při konstantní rekvenci střídavého proudu lineární voltampérovou charakteristiku celkový proud I je přímo úměrný celkovému napětí U Jednobran složený pouze z rezistorů(odporový jednobran)sevobvoduchovájakojedinýrezistorcelkovýproudjeveáziscelkovým napětím a voltampérová charakteristika nezávisí na rekvenci Jestliže se však v jednobranu vyskytují kondenzátory nebo cívky, dochází zpravidla mezi celkovým proudem a celkovým napětím k ázovému posunutí, jehož velikost závisí na rekvenci, a voltampérová charakteristika má pro různé rekvence různý sklon Použijeme-li pro popis obvodu s lineárním jednobranem symbolickou metodu, považujeme ázory napětí a prouduu,iza komplexní veličiny zobrazené v Gaussově rovině Poměr těchto veličin se nazývá impedance jednobranu: Z=UI Při stálé rekvenci střídavého proudu je impedance lineárního jednobranu konstantní a zcela vyjadřuje jeho vlastnosti Absolutní hodnotu a argument impedance určíme pomocí vztahů Z= U I = Um I m, Z= U I Řešení některých úloh se zjednoduší zavedením veličiny převrácené k impedanci, která 0

11 se nazývá admitance Y= Z=IU, Y = I m = =, Y= Z= I U Z IU U m I Vztah mezi ázemi ázorůu,ia argumenty veličinz,yznázorňuje Z obr 3- Im I U Z U Y U I I U e Obr 3- Obr 3-4 Impedance v jednoduchém obvodu střídavého proudu Základní poznatky o jednoduchých obvodech střídavého proudu, které jsme zopakovali v kap, můžeme vyjádřit také takto: V obvodu s rezistorem platí Z= U I =, U= I, Z=0, Z= (cos0+jsin0)=,y= V obvodu s kondenzátorem je ázor napětí opožděn o p/ za ázorem proudu Platí Z= U I = XC= ωc, Z= U I= p, Z= ωc [ cos ( p ) +jsin ( p )] = j ωc = jωc Y=j ωc Vobvoduscívkoupředbíháázornapětíop/předázoremprouduPlatí Z= ωl [ Z= U I = XL= ωl, Z= U I=p, cos ( p ) +jsin ( p )] =jωl, Y= jωl = j ωl

12 5 Spojování jednobranů Při sériovém spojení několika jednobranů(obr 5-) je ázor prouduispolečný pro všechny jednobrany a ázor celkového napětí je vektorovým součtem jednotlivých ázorů napětí: Celková impedance obvodu je Z=UI=U I+U U=U+U+ +UN I+ +UN I=Z+Z+ +ZN Fázor celkového napětí se rozloží na jednotlivé jednobrany v poměru U:U:U: :UN=Z:Z:Z: :ZN Podobný vztah je i mezi eektivními hodnotami napětí, amplitudami napětí a absolutními hodnotami impedancí U: U : U : : U N= Z : Z : Z : : Z N, U m: U m: U m: : U Nm= Z : Z : Z : : Z N I I Z U U I I I 3 Z Z Z 3 U Z U Z 3 U 3 Obr 5- ImZ Obr 5- Například v sériovém obvodu LC(obr -6) platí Z= +jωl j ωc, Z= U ( I = + ωl ), ωc ωl ωc tg = ez=

13 Při paralelním spojení několika jednobranů(obr 5-) je ázor napětí společný pro všechny jednobrany a ázor celkového proudu je vektorovým součtem jednotlivých ázorů proudů I=I+I+ +IN Celková admitance obvodu je Y=IU=IU+IU+ +INU=Y+Y+ +YN, Z= Z + Z + + ZN Pokud jsou paralelně spojeny jen dva jednobrany, platí Z=ZZ Z+Z Fázor celkového proudu se rozloží na jednotlivé jednobrany v poměru I:I:I: :IN=Y:Y:Y: :YN Podobný vztah je i mezi eektivními hodnotami proudu, amplitudami proudu a absolutními hodnotami admitancí I: I : I : : I N= Y : Y : Y : : Y N, I m: I m: I m: ImY : I Nm= Y : Y : Y : : Y N Například v paralelním obvodu LC(obr -7) platí Y=IU= +j ωc j ωl, Y = I ( U = + ωc ), ωl ( tg = ωc ey= ) ωl Příklad Skutečnou cívku, která má při dané rekvenci impedancizo absolutní hodnotě Z aargumentu = U I,můžemenahraditsériovýmspojením ideálnícívky oindukčnosti L saideálníhorezistoruorezistanci sneboparalelnímspojenímideální cívkyoindukčnosti L paideálníhorezistoruorezistanci p(obr5-3)určetevztahy meziveličinami Z,, L s, s, L p, p 3

14 L s Z p L p s Obr 5-3 Řešení Z rovnosti komplexních výrazů pro impedanci plyne Z= Zcos +jzsin = s+jωl s s= Zcos, Z rovnosti komplexních výrazů pro admitanci Z= plyne L s= Zsin ω cos jsin = = + s jωls = = Z(cos +jsin ) Z p j ωl p s+jωl s s+ ω L s p= s+ ω L s s = Z cos, Lp= Ls+ s ω L s = Z ωsin Pokud se vlastnosti cívky blíží k vlastnostem cívky ideální, tj p/, platí s ωl s, p ωl p, L s L p L, p ω L s Příklad 3 eproduktorová soustava se dvěma reproduktory je zapojena podle obr 5-4 Výškový reproduktor je ve větvi s kondenzátorem a hloubkový ve větvi s cívkou vysvětlete Obareproduktorysevobvoduchovajíjakorezistoryostejnérezistanci =5Ω Cívku a kondenzátor považujeme za ideální součástky Ukažte, že indukčnost L cívky a kapacitu C kondenzátoru lze zvolit tak, aby impedance soustavy byla při všech rekvencích reálná a konstantní Taková soustava má vlastnosti jediného rezistoru určete jeho rezistanci Dálepožadujeme,abypřidělicímkmitočtu d =khzmělyobareproduktorystejný příkon Určete indukčnost cívky a kapacitu kondenzátoru 4

15 L C Obr 5-4 Řešení Celková impedance soustavy je Z=Z Z = Z+Z ( + jωc ) (+jωl) +j ωl++ jωc + L ( C +j ωl ) ωc = ( +j ωl ) ωc Tento zlomek je reálný pro všechny rekvence, jestliže poměr reálných částí čitatele a jmenovatele je při všech rekvencích stejný jako podíl imaginárních částí: + L ( ωl ) C = ωc ωl ωc Vtakovémpřípadě Z= =konst Přidělicímkmitočtu d musíplatit I = I Ztohoplyne Z = Z, + XC = + XL, XC= XL, ω d= LC =4p d Kapacitu kondenzátoru a indukčnost cívky určíme ze vztahů: L C LC = C =4p d, L C LC= L = 4p d, C= p d, L= p d Podosazeníčíselnýchhodnotdostáváme C=3 mf, L=0,80mH Příklad 4 Dokonalejšího oddělení vysokých a hlubokých tónů dosáhneme pomocí reproduktorové soustavy druhého řádu zapojené podle obr 5-5 Kondenzátory a cívky v obou větvích jsou stejné, oba reproduktory mají rezistanci 5 Ω Také tato soustava může mít při všech rekvencích konstantní reálnou impedanci a při dělicím kmitočtu d =khzstejnýelektrickýpříkonoboureproduktorů Určete potřebné hodnoty kapacity C a indukčnosti L 5

16 L C C L Obr 5-5 Řešení Celková admitance soustavy je Y= Z + Z = jωc + j ωl + +jωl jωl+ jωc + jωc = = jωc ω LC ω CL+jωL + +jωc ω CL+jωL = ω LC+jωC ω CL+jωL Tento zlomek je reálný pro všechny rekvence, jestliže L C =, L=C PodosazeníaúpravědostanemeZ= Přidělicímkmitočtu d musíplatit I = I Ztohoplyne Y = Y, jω d C ω dlc = +jω d C, ω dlc=, LC =4p d Kapacitu kondenzátoru a indukčnost cívky určíme ze vztahů L C LC = C =4p d, L L LC= C = 4p d, C= p d, L= pd Podosazeníčíselnýchhodnotdostáváme C=3 mf, L=,mH 6

17 Úloha 3 eproduktorová soustava na obr 5-6 může také splňovat požadavky z příkladu 3 Jaká musí být kapacita kondenzátoru a indukčnost cívky? L C Obr Frekvenční charakteristiky lineárních impedančních jednobranů Z Z ImZ ez Z( ) Obr 6- Obr 6- Impedance lineárního jednobranu, ve kterém se vyskytují kondenzátory a cívky, závisí obvyklenarekvencistřídavéhoprouduz=z() Směnícíserekvencísemění absolutníhodnotaimpedance Z= Z() ijejíargument =() Tytozávislosti znázorňujeme graicky pomocí dvou samostatných graů, které nazýváme rekvenční charakteristika absolutní hodnoty impedance a rekvenční charakteristika áze(obr 6-) Můžeme také použít jediný gra v Gaussově rovině, který zobrazuje komplexní unkciz=z() a nazývá se komplexní rekvenční charakteristika 7

18 Je to křivka, kterou při změnách rekvence probíhá koncový bod vektoru impedance K jednotlivým bodům křivky připisujeme příslušné rekvence(obr 6-) Příklad 5 V intervalu(0 Hz; 000 Hz) určete rekvenční charakteristiky sériového jednobranu Ltvořenéhocívkouoindukčnosti L=0,0Harezistoremoodporu =00Ω Řešení Impedanci jednobranu, její absolutní hodnotu a argument určíme pomocí vztahů Z= +jωl, Z = + ω L, tg = ωl Frekvenční charakteristiky(obr 6-3, 6-4) sestrojíme na základě tabulky: Z Ω 600 ImZ Ω /Hz Z/Ω Hz Hz ez Ω Obr Hz Obr 6-3 8

19 Popsaným způsobem bychom pro různé jednobrany L dostali různé rekvenční charakteristiky Značného zjednodušení dosáhneme zavedením nových veličin: poměrnáimpedancejednobranu L z=z =+jωl, Platívztahy mezníúhlovárekvence ω m= L, meznírekvence m= pl a poměrná rekvence ω z=+j =+j, ω m m z= z = + m, =arctg, m m jejichž graickým vyjádřením jsou univerzální rekvenční charakteristiky sériových obvodů L(obr 6-5, 6-6) Abychom obsáhli velký obor poměrných rekvencí a velký obor poměrných impedancí, volíme na vodorovné ose logaritmickou stupnici a absolutní hodnotu vyjadřujeme v decibelech: ( ) z db 0 3 0, z db=0log z =0log 0 db/dek 0 m + m =0log Imz + m z 0 m ez Obr 6-6 0, 0 m Obr 6-5 9

20 Diskuse: a)přinízkýchrekvencích m můžemeindukčnísložkuobvoduzanedbatplatí z, z db 0, 0 b)přimeznírekvenci = m dostáváme z=, z db=3, =45 c)přivysokýchrekvencích m převládávlivindukčnostiplatí z, z db 0log m, 90 Podobným způsobem postupujeme i při určování rekvenčních charakteristik jiných jednobranů Příklad 6 Určete univerzální rekvenční charakteristiky paralelního jednobranu C Řešení Paralelní jednobran C má impedanci Z= j ωc + jωc = +jωc Zaveďme veličiny mezní úhlová rekvence a mezní rekvence: Poměrná impedance je Platí z= + ω m= C, m= pc z=z = +jωc = = ω +j ω m ( ), = arctg, m m +j m z db= 0log ( ) + m Diskuse: a)přinízkýchrekvencích m můžemekapacitnísložkuobvoduzanedbatplatí z, z db 0, 0 0

21 b)přimeznírekvenci = m dostáváme z=, z db= 3, = 45 c)přivysokýchrekvencích m převládávlivkapacityaplatí z 0, z db 0log m, 90 Frekvenční charakteristiky absolutní hodnoty relativní impedance a áze jsou na obr 6-7 Komplexní rekvenční charakteristika poměrné impedance je půlkružnice o poloměru0,5astředuvbodě 0,5+0j (obr6-8)ležícívečtvrtémkvadrantugaussovy roviny, neboť z= =cos, <0 +tg 3 0 z db 0, 0, -0 db/dek 0 0 m m Imz 0,5 z 0, 0,5 0,8 0,5 ez m Obr 6-7 Obr 6-8 Úlohy 4 V intervalu(0 Hz; 500 Hz) určete rekvenční charakteristiky paralelního jednobranu Ltvořenéhocívkouoindukčnosti L=0,0H arezistoremoodporu =00Ω 5 Určete univerzální rekvenční charakteristiky paralelního jednobranu L 6 Určete univerzální rekvenční charakteristiky sériového jednobranu C

22 7 Jednoduché rezonanční jednobrany Jednoduché rezonanční jednobrany vznikají sériovým nebo paralelním spojením cívky a kondenzátoru Tomu odpovídají schémata na obr 7-, kde skutečnou cívku nahrazujeme sériovým nebo paralelním spojením ideální cívky a rezistoru Kondenzátor můžeme při nižších rekvencích považovat za ideální L s L p p C L s C s s C a) b) c) Obr 7- Měníme-li rekvenci střídavého proudu v obvodu s rezonančním jednobranem, docházípřiurčitérekvenci rkvyrovnánívlivuinduktivníakapacitníreaktanceacelý jednobran se chová jako rezistor ázové posunutí mezi napětím a proudem je nulové Tento stav se nazývá rezonance V oblasti rezonance se vlastnosti rezonančního jednobranu výrazně mění už při malých změnách rekvence Příklad 7 Určete rekvenční charakteristiky sériového rezonančního jednobranu podle obr 7-a pro L s=0,50h, s=00ω, C=0,50 mf Řešení Pro sériový rezonanční jednobran platí vztahy odvozené v kap 5: Z= +jωl s j ωc, Z= + Diskuse: ( ωl s ), =arctg ωc a) Při sériové rezonanci platí Thomsonův vztah ω= ω r= LsC, = r= p L sc ωl s ωc ezonančníimpedancejereálnáamáminimálníabsolutníhodnotu Z r= snapájíme-li obvod z generátoru se stálým svorkovým napětím(generátor s malým vnitřním odporem) a měníme-li rekvenci napětí, prochází obvodem při rezonanci největší proudnakondenzátoruanacívcevznikajístejněvelkánapětí U Cr= U Lr,kterávšak

23 majíopačnouázi(obr-6)protoseneuplatňujívcelkovémnapětí U r,kteréjeproto stejněvelkéjakonapětínasamotnémrezistoru sobvykleplatí U r U Cr= U Lr Poměr Q= UCr U r = ULr U r = se nazývá činitel jakosti obvodu ω rc s = ωrls s b)přinízkýchrekvencích r převládákapacitnísložkaimpedanceaplatí Z jωc, Z ωc, 90 c)přivysokýchrekvencích r převládáindukčnísložkaimpedanceaplatí Z j ωl, Z ωl, 90 Z kω 3 ωc ωl Z Z r Z r r 0, 0,4 0,8,,4,6,8 B khz Obr 7- Prodanéhodnotyindukčnosti L s,rezistance sakapacity Cdostáváme: 3

24 r=636,6hz, Q=5,0 Při kreslení rekvenčních charakteristik(obr 7-) můžeme vycházet z tabulky: /Hz 636, Z/Ω ,8 43,5 66,5 77,9 84,0 85,9 /Hz Z/Ω ,7 55,7 67,7 78,3 83, 86,0 Příklad 8 Sériovoukombinaciideálnícívkyoindukčnosti L s=0,50 H arezistoruorezistanci s=00ω zpředcházejícíhopříkladumůžemepřirekvenciokolo637hznahradit paralelníkombinacíideálnícívkyoindukčnosti L parezistoruorezistanci p: L p= L s+ s ω r L s =0,60H, p= s+ ω r L s s =500Ω Určete rekvenční charakteristiky paralelního rezonančního jednobranu podle obr 7-bpro L p=0,60h, p=500ω, C=0,50 mf Řešení Vyjdeme ze vztahů odvozených v kap 5: Z= +j ωc j, Z= p ωl p Diskuse: =arctg [ p + p ( ωl p ωc )] ( ωc a) Také při paralelní rezonanci platí Thomsonův vztah ω= ω r=, = r= LpC p L pc ), ωl p ezonanční impedance je reálná a dosahuje maximální absolutní hodnoty Z r= p Napájíme-li obvod z generátoru se stálou amplitudou střídavého proudu(generátor s velkým vnitřním odporem), naměříme při rezonanci největší napětí Proudy ve větvi skondenzátorem I Cravevětviscívkou I Lrjsoustejněvelké,majívšakopačnou ázianavenekserušícelkovýrezonančníproud I rjestejnýjakoproudprocházející rezistorem pajeobvyklemnohemmenšínež I Cra I LrPoměr 4

25 Q= ICr I r = ILr I r = ω rc p= p ω rl p se nazývá činitel jakosti paralelního rezonančního jednobranu b)přinízkýchrekvencích r převládáindukčnísložkaimpedanceaplatí Z j ωl, Z ωl, 90 c)přivysokýchrekvencích r převládákapacitnísložkaimpedanceaplatí Z jωc, Z ωc, 90 Prodanéhodnotyindukčnosti L p,rezistance pakapacity Cdostáváme r=64,3hz, Q=5, Z kω 5 Z r 4 Z r 3 ωc Z ωl r 0 0 0, 0,4 0,8,,4,6,8 B khz Obr 7-3 Při kreslení rekvenčních charakteristik(obr 7-3) můžeme vycházet z tabulky: 5

26 /Hz 64, Z/kΩ 5,0 4,8 3,38,90,0 0,5 0,35 0,4 49,5 68,6 78,7 84,4 86, /Hz Z/kΩ 4,8 3,7,09,09 0,63 0,36,0 5,3 66,3 78,0 83,0 86,0 Příklad 9 Určete rekvenční charakteristiky paralelního rezonančního jednobranu s rezistorem vindukčnívětvipodleobr7-cpro L s=0,50h, s=00ω, C=0,50 mf Řešení Celková admitance jednobranu Y= s+jωl s +jωc= ω L sc+jωc s s+j ωl s je reálná, jestliže reálné a imaginární části čitatele a jmenovatele zlomku mají stejný poměr ω L sc s = Cs L s Úpravou dostaneme rezonanční úhlovou rekvenci ω r= L s sc L, s která je poněkud menší než při sériové rezonanci ezonanční admitance a impedance jsou Yr= Y r= Cs, Zr= Z r= Ls L s C s Průběh rekvenčních charakteristik(obr 7-4) vypočítáme užitím vztahů Z= s+ ω L s ( ω L ), =arctg ωls ωc s arctg sc + ω C s s ω L sc Prodanéhodnotyindukčnosti L s,rezistance sakapacity Cdostáváme Z r=5000ω, r=63,7hz Přikreslenícharakteristikmůžemevycházetztabulky: /Hz 63, Z/kΩ 5,00 4,99 3,68,0,06 0,5 0,35 0,8 53,8 75,6 85, 88,9 89,6 /Hz Z/kΩ 4,40,89,96,07 0,65 0,4 8,7 4,7 53,4 60,6 60, 53, 6

27 Absolutní hodnota impedance dosáhne maxima při vyšší rekvenci než je rekvence rezonanční, kdy platí ω max= Ls Cs+ L s+l sc s+4c s 3L sc Vnašempřípadě max=636,9hz, Z max=5,099kω Přinízkýchrekvencích r senejvíceuplatňujerezistance splatí Z s, 0 Z kω ωc Z ωl s r 0 0 0, 0,4 0,8,,4,6,8 30 khz Obr 7-4 Frekvenční charakteristiky paralelního jednobranu podle obr 7-b a paralelního jednobranusesériovýmrezistoremvindukčnívětvisepodstatnělišíjenpro 0, jinak je jejich průběh obdobný Musíme si ovšem uvědomit, že v obou případech pracujeme s určitou idealizací skutečného paralelního rezonančního jednobranu tvořeného reálnou cívkou a kondenzátorem Jeho rekvenční charakteristiky by ležely mezi teoretickými charakteristikami z obr 7-3 a 7-4 7

28 8 Univerzální rekvenční charakteristiky rezonančních jednobranů Šířka pásma Popis vlastností sériových rezonančních jednobranů podle obr 7-a a paralelních rezonančních jednobranů podle obr 7-b můžeme zjednodušit a sjednotit zavedením veličin Vztah mezi poměrnou rekvencí poměrnáimpedancez=zz r apoměrnérozladění F= ω ω r ωr ω = r r r apoměrnýmrozladěním F r = F + F 4 + jegraickyznázorněnnaobr8-promalározladění F platí r + F / r 7 6 F F + F F Obr 8-8

29 Při laboratorních pracích můžeme využít tabulku: F / r,68 0,68,44 0,44 3,303 0,303 4,36 0,36 F / r 5,93 0,93 6,6 0,6 7,40 0,40 Poměrná impedance sériového rezonančního jednobranu podle obr 7-a je ( z=z ωls =+j ) ( ) ω =+j Q ωr =+j QF, s s ωc s ω r ω neboť Vztahy L s s = Q ω r, C s = Qω r z= +(QF), =arctg(qf) vyjadřují absolutní hodnotu poměrné impedance a ázové posunutí mezi napětím a proudem jako unkce jediné proměnné QF Gray těchto unkcí(obr 8-) jsou univerzální rekvenční charakteristiky sériového rezonančního jednobranu Univerzální komplexní rekvenční charakteristika sériového rezonančního jednobranu v Gaussově rovině je přímka procházející bodem + 0j rovnoběžně s imaginární osou(obr 8-3) Imz z z 4 3 QF QF ez QF Obr Obr 8-9

30 Šířka pásma B sériového rezonačního obvodu je deinována jako velikost rekvenčního intervalu,vekterémplatí z Příkonjednobranu P = U cos /Z přistálém napětí U neklesne uvnitřpásma pod jednu polovinupříkonurezonančního P r = = U / s Vkrajníchbodechtohotointervaluplatí QF =, F,= ± Q Pokudje Q, můžemepsát + F r =+ ( Q, = r + ) (, apodobně = r ), Q Q Pro jednobran z př 7 dostáváme B= = r Q B= 637Hz 5 =7Hz Poměrná impedance paralelního rezonančního jednobranu podle obr 7-b je z=z = ( )= ( )= p +j pωc p ω +jq ωr ωl p ω r ω zčehožplyne = arctg(qf), z= Imz z z QF= 0,5 0,5 +jqf, = +(QF) +tg =cos QF QF=0 ez QF QF= Obr QF Obr

31 Univerzální komplexní rekvenční charakteristika je kružnice v Gaussově rovině se středemvbodě 0,5+0j apoloměrem0,5(obr8-5) Šířka pásma B paralelního rezonančního jednobranu je deinována jako velikost rekvenčníhointervalu,vekterém z / Příkonjednobranu P = I Zcos při stálém proudu I neklesne uvnitř pásma pod jednu polovinu příkonu rezonančního P r= PI Vkrajníchbodechtohotointervaluplatí QF =Podobnějakousériovéhojednobranumůžemeodvodit B= r/q Projednobranzpř8dostaneme B= 64Hz 5, =Hz Úlohy 7 Sériový rezonanční jednobran z př 7 připojíme k tónovému generátoru, který má eektivníhodnotunapětínaprázdno U 0=0V avnitřníodpor 75Ω(Generátor se chová jako sériové spojení ideálního zdroje harmonického napětí a rezistoru) Na generátorunastavímerezonančnírekvenci rjakábudeeektivníhodnotaproudu procházejícího obvodem? Jaké bude svorkové napětí generátoru? Jaké napětí naměříme na samotném kondenzátoru? 8Któnovémugenerátoru,kterýmáeektivníhodnotunapětínaprázdno U 0=0V a vnitřní odpor,5 kω, připojíme paralelní rezonanční jednobran z př 8 a nastavíme jeho rezonanční rekvenci Jaký proud budeme odebírat z generátoru a jaké bude jeho svorkové napětí? Jaké proudy budou procházet kondenzátorem a cívkou? 9 Jak se změní rekvenční charakteristiky sériového rezonančního jednobranu z př 7, zmenšíme-li rezistanci cívky na 00 Ω? 0Jakéhodnoty L p, pbymuselamítcívka,abyskondenzátoremokapacitě500 pftvořilaparalelnírezonančníjednobransrezonančnírekvencí r =500kHz a činitelemjakosti Q=0? 3

32 9 Lineární dvojbrany Napěťový přenos V elektronických zařízeních se přenos harmonického napětí z jednoho obvodu, vstupního, do druhého obvodu, výstupního, často uskutečňuje pomocí vazebních členů vytvořených z lineárních součástek(rezistorů, kondenzátorů a cívek) připojených do obvodů pomocí dvou vstupních a dvou výstupních svorek Takový vazební člen se nazývá lineární dvojbran Soustava součástek tvořící dvojbran mívá jen tři vývody, znichžjedenjespolečnýproobaobvodyjednavstupnísvorkajepakpřímospojena s jednou svorkou výstupní Vstupní obvod obsahuje zdroj harmonického napětí a do výstupního obvodu je zařazen spotřebič zátěž(obr 9-) Pokud není výstupní obvod zapojen, jedná se o dvojbran na výstupu nezatížený(obr 9-) U U U U Obr 9- ImA Obr 9- Vlastnosti lineárního dvojbranu charakterizuje veličina napěťový přenos A=U, U kdeu,u jsou ázory vstupního a výstupního napětí Pro absolutní hodnotu napěťového přenosu a ázové posunutí mezi výstupním a vstupním napětím platí A= Um = U = e A+Im A, = =arctg U m U ea Při stálé rekvenci je napěťový přenos dvojbranu konstantní To znamená, že amplitudavýstupníhonapětí U mjepřímoúměrnáamplituděvstupníhonapětí U ma ázové posunutí obou napětí nezávisí na jejich amplitudě Měníme-li ale rekvenci napětí,měnísezpravidlainapěťovýpřenosdvojbranufunkce A=A(), =() můžeme graicky znázornit dvěma způsoby: a) pomocí dvou samostatných graů, které nazýváme rekvenční charakteristika absolutní hodnoty napěťového přenosu neboli útlumová charakteristika a rekvenční charakteristika ázového posunutí, b) pomocí jediného grau v Gaussově rovině, který se nazývá komplexní rekvenční charakteristika napěťového přenosu V prvním případě absolutní hodnotu napěťového přenosu často vyjadřujeme v decibelech a=0log A 3

33 Příklad 0 Určete rekvenční charakteristiky nezatíženého dvojbranu C(obr 9-3) Řešení Jedná se vlastně o sériové spojení rezistoru s kondenzátorem, kde se napětí rozdělí vpoměruimpedancí A=U U = j ωc + jωc = +jωc Zavedením mezní úhlové rekvence a mezní rekvence ω m= C, m= pc sjednotíme popis všech nezatížených dvojbranů C pomocí vztahů: A= + A= +j = ω ω m ( ), = arctg, m m +j m a= 0log ( ) + m Diskuse: a)přinízkýchrekvencích m jekapacitníreaktancekondenzátorumnohem větší než odpor rezistoru a na výstupu dvojbranu je téměř celé vstupní napětí Platí A, a 0, 0 b)přimeznírekvenci = m dostáváme A=, a= 3dB, = 45 c)přivysokýchrekvencích m vznikávelkýúbyteknapětínarezistoruaplatí A 0, a 0log m, 90 Univerzální rekvenční charakteristiky dvojbranu C jsou na obr 9-4 a 9-5 Komplexní rekvenční charakteristika je půlkružnice o poloměru 0,5 a středu v bodě 0,5+0j ležícívečtvrtémkvadrantugaussovyroviny 33

Obsah OBVODY STŘÍDAVÉHO PROUDU S LINEÁRNÍMI JEDNOBRANY A DVOJBRANY. Studijní text pro řešitele FO a ostatní zájemce o fyziku Přemysl Šedivý

Obsah OBVODY STŘÍDAVÉHO PROUDU S LINEÁRNÍMI JEDNOBRANY A DVOJBRANY. Studijní text pro řešitele FO a ostatní zájemce o fyziku Přemysl Šedivý OBVODY STŘÍDVÉHO POD S NEÁNÍM JEDNOBNY DVOJBNY Studijní text pro řešitele FO a ostatní zájemce o yziku Přemysl Šedivý Obsah Jednoduchý obvod střídavého proudu Řešení obvodů střídavého proudu pomocí ázorového

Více

3. Kmitočtové charakteristiky

3. Kmitočtové charakteristiky 3. Kmitočtové charakteristiky Po základním seznámení s programem ATP a jeho preprocesorem ATPDraw následuje využití jednotlivých prvků v jednoduchých obvodech. Jednotlivé příklady obvodů jsou uzpůsobeny

Více

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor. FREKVENČNĚ ZÁVISLÉ OBVODY Základní pojmy: IMPEDANCE Z (Ω)- charakterizuje vlastnosti prvku pro střídavý proud. Impedance je základní vlastností, kterou potřebujeme znát pro analýzu střídavých elektrických

Více

Elektrická měření pro I. ročník (Laboratorní cvičení)

Elektrická měření pro I. ročník (Laboratorní cvičení) Střední škola informatiky a spojů, Brno, Čichnova 23 Elektrická měření pro I. ročník (Laboratorní cvičení) Studentská verze Zpracoval: Ing. Jiří Dlapal B R N O 2011 Úvod Výuka předmětu Elektrická měření

Více

Teoretický úvod: [%] (1)

Teoretický úvod: [%] (1) Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy Číslo úlohy ZESILOVAČ OSCILÁTOR 101-4R Zadání 1. Podle přípravku

Více

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu.

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu. Pracovní úkoly. Změřte účiník: a) rezistoru, b) kondenzátoru C = 0 µf) c) cívky. Určete chybu měření. Diskutujte shodu výsledků s teoretickými hodnotami pro ideální prvky. Pro cívku vypočtěte indukčnost

Více

FYZIKA II. Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování)

FYZIKA II. Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování) FYZIKA II Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování) Osnova přednášky činitel jakosti, vektorové diagramy v komplexní rovině Sériový RLC obvod - fázový posuv, rezonance

Více

1.1. Základní pojmy 1.2. Jednoduché obvody se střídavým proudem

1.1. Základní pojmy 1.2. Jednoduché obvody se střídavým proudem Praktické příklady z Elektrotechniky. Střídavé obvody.. Základní pojmy.. Jednoduché obvody se střídavým proudem Příklad : Stanovte napětí na ideálním kondenzátoru s kapacitou 0 µf, kterým prochází proud

Více

Poř. č. Příjmení a jméno Třída Skupina Školní rok 2 BARTEK Tomáš S3 1 2009/10

Poř. č. Příjmení a jméno Třída Skupina Školní rok 2 BARTEK Tomáš S3 1 2009/10 Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy MĚŘENÍ CHARAKTERISTIK REZONANČNÍCH OBVODŮ Číslo úlohy 301-3R Zadání

Více

Název: Měření paralelního rezonančního LC obvodu

Název: Měření paralelního rezonančního LC obvodu Název: Měření paralelního rezonančního LC obvodu Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek:

Více

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr. Zadání: A. Na předloženém kompenzovaném vstupní děliči k nf milivoltmetru se vstupní impedancí Z vst = MΩ 25 pf, pro dělící poměry :2,

Více

Fyzikální praktikum...

Fyzikální praktikum... Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum... Úloha č.... Název úlohy:... Jméno:...Datum měření:... Datum odevzdání:... Připomínky opravujícího: Možný počet bodů Udělený počet bodů Práce při

Více

6. Střídavý proud. 6. 1. Sinusových průběh

6. Střídavý proud. 6. 1. Sinusových průběh 6. Střídavý proud - je takový proud, který mění v čase svoji velikost a smysl. Nejsnáze řešitelný střídavý proud matematicky i graficky je sinusový střídavý proud, který vyplývá z konstrukce sinusovky.

Více

Jednoduché rezonanční obvody

Jednoduché rezonanční obvody Jednoduché rezonanční obvody Jednoduché rezonanční obvody vzniknou spojením činného odporu, cívky a kondenzátoru jedním ze způsobů uvedených na obr.. Činný odpor nemusí být bezpodmínečně připojen jako

Více

Mˇeˇren ı vlastn ı indukˇcnosti Ondˇrej ˇ Sika

Mˇeˇren ı vlastn ı indukˇcnosti Ondˇrej ˇ Sika Obsah 1 Zadání 3 2 Teoretický úvod 3 2.1 Indukčnost.................................. 3 2.2 Indukčnost cívky.............................. 3 2.3 Vlastní indukčnost............................. 3 2.4 Statická

Více

Zesilovače. Ing. M. Bešta

Zesilovače. Ing. M. Bešta ZESILOVAČ Zesilovač je elektrický čtyřpól, na jehož vstupní svorky přivádíme signál, který chceme zesílit. Je to tedy elektronické zařízení, které zesiluje elektrický signál. Zesilovač mění amplitudu zesilovaného

Více

Elektromagnetický oscilátor

Elektromagnetický oscilátor Elektromagnetický oscilátor Již jsme poznali kmitání mechanického oscilátoru (závaží na pružině) - potenciální energie pružnosti se přeměňuje na kinetickou energii a naopak. T =2 m k Nejjednodušší elektromagnetický

Více

VY_32_INOVACE_ENI_3.ME_01_Děliče napětí frekvenčně nezávislé Střední odborná škola a Střední odborné učiliště, Dubno Ing.

VY_32_INOVACE_ENI_3.ME_01_Děliče napětí frekvenčně nezávislé Střední odborná škola a Střední odborné učiliště, Dubno Ing. Číslo projektu..07/.5.00/34.058 Číslo materiálu VY_3_INOVAE_ENI_3.ME_0_Děliče napětí frekvenčně nezávislé Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická

Více

6 Měření transformátoru naprázdno

6 Měření transformátoru naprázdno 6 6.1 Zadání úlohy a) změřte charakteristiku naprázdno pro napětí uvedená v tabulce b) změřte převod transformátoru c) vypočtěte poměrný proud naprázdno pro jmenovité napětí transformátoru d) vypočtěte

Více

E L E K T R I C K Á M Ě Ř E N Í

E L E K T R I C K Á M Ě Ř E N Í Střední škola, Havířov Šumbark, Sýkorova 1/613, příspěvková organizace E L E K T R I C K Á M Ě Ř E N Í R O Č N Í K MĚŘENÍ ZÁKLDNÍCH ELEKTRICKÝCH ELIČIN Ing. Bouchala Petr Jméno a příjmení Třída Školní

Více

Elektronické praktikum EPR1

Elektronické praktikum EPR1 Elektronické praktikum EPR1 Úloha číslo 4 název Záporná zpětná vazba v zapojení s operačním zesilovačem MAA741 Vypracoval Pavel Pokorný PINF Datum měření 9. 12. 2008 vypracování protokolu 14. 12. 2008

Více

Magnetické pole cívky, transformátor vzorová úloha (SŠ)

Magnetické pole cívky, transformátor vzorová úloha (SŠ) Magnetické pole cívky, transformátor vzorová úloha (SŠ) Jméno Třída.. Datum 1. Teoretický úvod Vodič svinutý do prostorové křivky nazývané šroubovice tvoří válcovou cívku (solenoid). Každý závit vybudí

Více

Název: Téma: Autor: Číslo: Prosinec 2013. Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1

Název: Téma: Autor: Číslo: Prosinec 2013. Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Inovace a zkvalitnění výuky prostřednictvím ICT Elektrický proud střídavý Elektronický oscilátor

Více

Rezonance v obvodu RLC

Rezonance v obvodu RLC 99 Pomůcky: Systém ISES, moduly: voltmetr, ampérmetr, dva kondenzátory na destičkách (černý a stříbrný), dvě cívky na uzavřeném jádře s pohyblivým jhem, rezistor 100 Ω, 7 spojovacích vodičů, 2 krokosvorky,

Více

Měřicí přístroje a měřicí metody

Měřicí přístroje a měřicí metody Měřicí přístroje a měřicí metody Základní elektrické veličiny určují kvalitativně i kvantitativně stav elektrických obvodů a objektů. Neelektrické fyzikální veličiny lze převést na elektrické veličiny

Více

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jiří Kozlík dne: 17.10.2013

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jiří Kozlík dne: 17.10.2013 Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum II Úloha č. 5 Název: Měření osciloskopem Pracoval: Jiří Kozlík dne: 17.10.2013 Odevzdal dne: 24.10.2013 Pracovní úkol 1. Pomocí

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

Profilová část maturitní zkoušky 2015/2016

Profilová část maturitní zkoušky 2015/2016 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2015/2016 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 26-41-M/01 Elektrotechnika Zaměření: počítačové

Více

- Stabilizátory se Zenerovou diodou - Integrované stabilizátory

- Stabilizátory se Zenerovou diodou - Integrované stabilizátory 1.2 Stabilizátory 1.2.1 Úkol: 1. Změřte VA charakteristiku Zenerovy diody 2. Změřte zatěžovací charakteristiku stabilizátoru se Zenerovou diodou 3. Změřte převodní charakteristiku stabilizátoru se Zenerovou

Více

Elektronika ve fyzikálním experimentu

Elektronika ve fyzikálním experimentu Elektronika ve fyzikálním experimentu Josef Lazar Ústav přístrojové techniky, AV ČR, v.v.i. E-mail: joe@isibrno.cz www: http://www.isibrno.cz/~joe/elektronika/ Elektrický obvod Analogie s kapalinou Základními

Více

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze.

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze. Nejprve několik fyzikálních analogií úvodem Rezonance Rezonance je fyzikálním jevem, kdy má systém tendenci kmitat s velkou amplitudou na určité frekvenci, kdy malá budící síla může vyvolat vibrace s velkou

Více

4.2.13 Regulace napětí a proudu reostatem a potenciometrem

4.2.13 Regulace napětí a proudu reostatem a potenciometrem 4..3 Regulace napětí a proudu reostatem a potenciometrem Předpoklady: 405, 407, 40 Nejde o dva, ale pouze o jeden druh součástky (reostat) ve dvou různých zapojeních (jako reostat a jako potenciometr).

Více

Střídavý proud, trojfázový proud, transformátory

Střídavý proud, trojfázový proud, transformátory Variace 1 Střídavý proud, trojfázový proud, transformátory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1.

Více

Pracovní list žáka (SŠ)

Pracovní list žáka (SŠ) Pracovní list žáka (SŠ) Magnetické pole cívky, transformátor Jméno Třída.. Datum 1. Teoretický úvod Vodič svinutý do prostorové křivky nazývané šroubovice tvoří válcovou cívku (solenoid). Každý závit vybudí

Více

Integrovaná střední škola, Sokolnice 496

Integrovaná střední škola, Sokolnice 496 Název projektu: Moderní škola Integrovaná střední škola, Sokolnice 496 Registrační číslo: CZ.1.07/1.5.00/34.0467 Název klíčové aktivity: V/2 - Inovace a zkvalitnění výuky směřující k rozvoji odborných

Více

ELEKTRICKÝ PROUD V KOVECH. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník

ELEKTRICKÝ PROUD V KOVECH. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník ELEKTRICKÝ PROUD V KOVECH Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník Elektrický proud Uspořádaný pohyb volných částic s nábojem Směr: od + k ( dle dohody - ve směru kladných

Více

Laboratorní práce č. 4: Určení elektrického odporu

Laboratorní práce č. 4: Určení elektrického odporu Přírodní vědy moderně a interaktivně FYZIKA. ročník šestiletého studia Laboratorní práce č. 4: Určení elektrického odporu G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA. ročník šestiletého

Více

Účinky elektrického proudu. vzorová úloha (SŠ)

Účinky elektrického proudu. vzorová úloha (SŠ) Účinky elektrického proudu vzorová úloha (SŠ) Jméno Třída.. Datum.. 1. Teoretický úvod Elektrický proud jako jev je tvořen uspořádaným pohybem volných částic s elektrickým nábojem. Elektrický proud jako

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ELEKTRICKÝ NÁBOJ A COULOMBŮV ZÁKON 1) Dvě malé kuličky, z nichž

Více

Pracovní list žáka (ZŠ)

Pracovní list žáka (ZŠ) Pracovní list žáka (ZŠ) Účinky elektrického proudu Jméno Třída.. Datum.. 1. Teoretický úvod Elektrický proud jako jev je tvořen uspořádaným pohybem volných částic s elektrickým nábojem. Elektrický proud

Více

Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu

Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud v kovech Elektrický proud = usměrněný pohyb

Více

MĚŘENÍ JALOVÉHO VÝKONU

MĚŘENÍ JALOVÉHO VÝKONU MĚŘENÍ JALOVÉHO VÝKONU &1. Které elektrické stroje jsou spotřebiči jalového výkonu a na co ho potřebují? &2. Nakreslete fázorový diagram RL zátěže připojené na zdroj střídavého napětí. &2.1 Z fázorového

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: XVIII Název: Přechodové jevy v RLC obvodu Pracoval: Pavel Brožek stud. skup. 12 dne 24.10.2008

Více

MĚŘENÍ Laboratorní cvičení z měření. Měření vlastní a vzájemné indukčnosti, část 3-1-3

MĚŘENÍ Laboratorní cvičení z měření. Měření vlastní a vzájemné indukčnosti, část 3-1-3 MĚŘENÍ Laboratorní cvičení z měření Měření vlastní a vzájemné indukčnosti, část Číslo projektu: Název projektu: Šablona: / novace a zkvalitnění výuky prostřednictvím CT Sada: 0 Číslo materiálu: VY_3_NOVACE_

Více

Oscilátory. Návod k přípravku pro laboratorní cvičení v předmětu EO.

Oscilátory. Návod k přípravku pro laboratorní cvičení v předmětu EO. Oscilátory Návod k přípravku pro laboratorní cvičení v předmětu EO. Měření se skládá ze dvou základních úkolů: (a) měření vlastností oscilátoru 1 s Wienovým členem (můstkový oscilátor s operačním zesilovačem)

Více

C p. R d dielektrické ztráty R sk odpor závislý na frekvenci C p kapacita mezi přívody a závity

C p. R d dielektrické ztráty R sk odpor závislý na frekvenci C p kapacita mezi přívody a závity RIEDL 3.EB-6-1/8 1.ZADÁNÍ a) Změřte indukčnosti předložených cívek ohmovou metodou při obou možných způsobech zapojení měřících přístrojů. b) Měření proveďte při kmitočtech měřeného proudu 50, 100, 400

Více

Střední od 1Ω do 10 6 Ω Velké od 10 6 Ω do 10 14 Ω

Střední od 1Ω do 10 6 Ω Velké od 10 6 Ω do 10 14 Ω Měření odporu Elektrický odpor základní vlastnost všech pasivních a aktivních prvků přímé měření ohmmetrem nepříliš přesné používáme nepřímé měřící metody výchylkové můstkové rozsah odporů ovlivňující

Více

Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice 2 Číslo úlohy : 1

Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice 2 Číslo úlohy : 1 Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice Číslo úlohy : 1 Název úlohy : Vypracoval : ročník : 3 skupina : F-Zt Vnější podmínky měření : měřeno dne : 3.. 004 teplota : C tlak

Více

Měření vlnové délky, impedance, návrh impedančního přizpůsobení

Měření vlnové délky, impedance, návrh impedančního přizpůsobení Měření vlnové délky, impedance, návrh impedančního přizpůsobení 1. Zadání: a) Změřte závislost v na kmitočtu pro f 8,12GHz. b) Změřte zadanou impedanci a impedančně ji přizpůsobte. 2. Schéma měřicí soupravy:

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Pracovní list žáka (SŠ)

Pracovní list žáka (SŠ) Pracovní list žáka (SŠ) vzorová úloha (SŠ) Jméno Třída.. Datum.. 1 Teoretický úvod Rezistory lze zapojovat do série nebo paralelně. Pro výsledný odpor sériového zapojení rezistorů platí: R = R1 + R2 +

Více

RLC obvody sériový a paralelní rezonanční obvod

RLC obvody sériový a paralelní rezonanční obvod Vysoká škola báňská Technická universita Ostrava Fakulta elektrotechniky a informatiky Základy elektroniky ZE aboratorní úloha č. 2 R obvody sériový a paralelní rezonanční obvod Datum měření: 24. 9. 2011

Více

2 Teoretický úvod 3. 4 Schéma zapojení 6. 4.2 Měření třemi wattmetry (Aronovo zapojení)... 6. 5.2 Tabulka hodnot pro měření dvěmi wattmetry...

2 Teoretický úvod 3. 4 Schéma zapojení 6. 4.2 Měření třemi wattmetry (Aronovo zapojení)... 6. 5.2 Tabulka hodnot pro měření dvěmi wattmetry... Měření trojfázového činného výkonu Obsah 1 Zadání 3 2 Teoretický úvod 3 2.1 Vznik a přenos třífázového proudu a napětí................ 3 2.2 Zapojení do hvězdy............................. 3 2.3 Zapojení

Více

1 Zdroj napětí náhradní obvod

1 Zdroj napětí náhradní obvod 1 Zdroj napětí náhradní obvod Příklad 1. Zdroj napětí má na svorkách naprázdno napětí 6 V. Při zatížení odporem 30 Ω klesne napětí na 5,7 V. Co vše můžete o tomto zdroji říci za předpokladu, že je v celém

Více

Teorie elektromagnetického pole Laboratorní úlohy

Teorie elektromagnetického pole Laboratorní úlohy Teorie elektromagnetického pole Laboratorní úlohy Martin Bruchanov 31. května 24 1. Vzájemná induktivní vazba dvou kruhových vzduchových cívek 1.1. Vlastní indukčnost cívky Naměřené hodnoty Napětí na primární

Více

Kategorie M. Test. U všech výpočtů uvádějte použité vztahy včetně dosazení! 1 Sběrnice RS-485 se používá pro:

Kategorie M. Test. U všech výpočtů uvádějte použité vztahy včetně dosazení! 1 Sběrnice RS-485 se používá pro: Krajské kolo soutěže dětí a mládeže v radioelektronice, Vyškov 2009 Test Kategorie M START. ČÍSLO BODŮ/OPRAVIL U všech výpočtů uvádějte použité vztahy včetně dosazení! 1 Sběrnice RS-485 se používá pro:

Více

Elektrický proud 2. Zápisy do sešitu

Elektrický proud 2. Zápisy do sešitu Elektrický proud 2 Zápisy do sešitu Směr elektrického proudu v obvodu 1/2 V různých materiálech vedou elektrický proud různé částice: kovy volné elektrony kapaliny (roztoky) ionty plyny kladné ionty a

Více

4. Měření rychlosti zvuku ve vzduchu. A) Kalibrace tónového generátoru

4. Měření rychlosti zvuku ve vzduchu. A) Kalibrace tónového generátoru 4. Měření rychlosti zvuku ve vzduchu Pomůcky: 1) Generátor normálové frekvence 2) Tónový generátor 3) Digitální osciloskop 4) Zesilovač 5) Trubice s reproduktorem a posuvným mikrofonem 6) Konektory A)

Více

Korekční křivka měřícího transformátoru proudu

Korekční křivka měřícího transformátoru proudu 5 Přesnost a korekční křivka měřícího transformátoru proudu 5.1 Zadání a) Změřte hodnoty sekundárního proudu při zvyšujícím se vstupním proudu pro tři různé transformátory. b) U všech naměřených proudů

Více

Nízkofrekvenční (do 1 MHz) Vysokofrekvenční (stovky MHz až jednotky GHz) Generátory cm vln (až desítky GHz)

Nízkofrekvenční (do 1 MHz) Vysokofrekvenční (stovky MHz až jednotky GHz) Generátory cm vln (až desítky GHz) Provazník oscilatory.docx Oscilátory Oscilátory dělíme podle několika hledisek (uvedené třídění není zcela jednotné - bylo použito vžitých názvů, které vznikaly v různém období vývoje a za zcela odlišných

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

Laboratorní práce č. 1: Určení voltampérových charakteristik spotřebičů

Laboratorní práce č. 1: Určení voltampérových charakteristik spotřebičů Přírodní vědy moderně a interaktivně FYZIKA 5. ročník šestiletého a 3. ročník čtyřletého studia Laboratorní práce č. 1: Určení voltampérových charakteristik spotřebičů G Gymnázium Hranice Přírodní vědy

Více

I. STEJNOSMĚ RNÉ OBVODY

I. STEJNOSMĚ RNÉ OBVODY Řešené příklady s komentářem Ing. Vítězslav Stýskala, leden 000 Katedra obecné elektrotechniky FEI, VŠB-Technická univerzita Ostrava stýskala, 000 Určeno pro posluchače bakalářských studijních programů

Více

VY_32_INOVACE_ENI_2.MA_04_Zesilovače a Oscilátory

VY_32_INOVACE_ENI_2.MA_04_Zesilovače a Oscilátory Číslo projektu Číslo materiálu CZ..07/.5.00/34.058 VY_3_INOVACE_ENI_.MA_04_Zesilovače a Oscilátory Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická

Více

1.1 Pokyny pro měření

1.1 Pokyny pro měření Elektronické součástky - laboratorní cvičení 1 Bipolární tranzistor jako zesilovač Úkol: Proměřte amplitudové kmitočtové charakteristiky bipolárního tranzistoru 1. v zapojení se společným emitorem (SE)

Více

Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící, výpočetní a regulační technice. Má napěťové zesílení alespoň A u

Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící, výpočetní a regulační technice. Má napěťové zesílení alespoň A u Fyzikální praktikum č.: 7 Datum: 7.4.2005 Vypracoval: Tomáš Henych Název: Operační zesilovač, jeho vlastnosti a využití Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící,

Více

ISŠ Nova Paka, Kumburska 846, 50931 Nova Paka Automatizace Dynamické vlastnosti členů členy a regulátory

ISŠ Nova Paka, Kumburska 846, 50931 Nova Paka Automatizace Dynamické vlastnosti členů členy a regulátory Regulátory a vlastnosti regulátorů Jak již bylo uvedeno, vlastnosti regulátorů určují kvalitu regulace. Při volbě regulátoru je třeba přihlížet i k přenosovým vlastnostem regulované soustavy. Cílem je,

Více

1. Zadání. 2. Teorie úlohy ID: 78 357. Jméno: Jan Švec. Předmět: Elektromagnetické vlny, antény a vedení. Číslo úlohy: 7. Měřeno dne: 30.3.

1. Zadání. 2. Teorie úlohy ID: 78 357. Jméno: Jan Švec. Předmět: Elektromagnetické vlny, antény a vedení. Číslo úlohy: 7. Měřeno dne: 30.3. Předmět: Elektromagnetické vlny, antény a vedení Úloha: Symetrizační obvody Jméno: Jan Švec Měřeno dne: 3.3.29 Odevzdáno dne: 6.3.29 ID: 78 357 Číslo úlohy: 7 Klasifikace: 1. Zadání 1. Změřte kmitočtovou

Více

ρ = měrný odpor, ρ [Ω m] l = délka vodiče

ρ = měrný odpor, ρ [Ω m] l = délka vodiče 7 Kapitola 2 Měření elektrických odporů 2 Úvod Ohmův zákon definuje ohmický odpor, zkráceně jen odpor, R elektrického vodiče jako konstantu úměrnosti mezi stejnosměrným proudem I, který protéká vodičem

Více

Návrh frekvenčního filtru

Návrh frekvenčního filtru Návrh frekvenčního filtru Vypracoval: Martin Dlouhý, Petr Salajka 25. 9 2010 1 1 Zadání 1. Navrhněte co nejjednodušší přenosovou funkci frekvenčního pásmového filtru Dolní propusti typu Bessel, která bude

Více

Pracovní list - Laboratorní práce č. 7 Jméno: Třída: Skupina:

Pracovní list - Laboratorní práce č. 7 Jméno: Třída: Skupina: Projekt Efektivní Učení Reformou oblastí gymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Pracovní list - Laboratorní práce č. 7 Jméno: Třída:

Více

Základní otázky pro teoretickou část zkoušky.

Základní otázky pro teoretickou část zkoušky. Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.

Více

Laboratorní úloha č. 2 - Vnitřní odpor zdroje

Laboratorní úloha č. 2 - Vnitřní odpor zdroje Laboratorní úloha č. 2 - Vnitřní odpor zdroje Úkoly měření: 1. Sestrojte obvod pro určení vnitřního odporu zdroje. 2. Určete elektromotorické napětí zdroje a hodnotu vnitřního odporu R i zdroje včetně

Více

Ekvivalence obvodových prvků. sériové řazení společný proud napětí na jednotlivých rezistorech se sčítá

Ekvivalence obvodových prvků. sériové řazení společný proud napětí na jednotlivých rezistorech se sčítá neboli sériové a paralelní řazení prvků Rezistor Ekvivalence obvodových prvků sériové řazení společný proud napětí na jednotlivých rezistorech se sčítá Paralelní řazení společné napětí proudy jednotlivými

Více

Zdroje napětí - usměrňovače

Zdroje napětí - usměrňovače ZDROJE NAPĚTÍ Napájecí zdroje napětí slouží k přeměně AC napětí na napětí DC a následnému předání energie do zátěže, která tento druh napětí (proudu) vyžaduje ke správné činnosti. Blokové schéma síťového

Více

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE STŘEDNÍ PRŮMYSLOVÁ ŠKOLA V ČESKÝCH BUDĚJOVICÍCH, DUKELSKÁ 13 PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE Provedl: Tomáš PRŮCHA Datum: 23. 1. 2009 Číslo: Kontroloval: Datum: 4 Pořadové číslo žáka: 24

Více

1.7.4. Skládání kmitů

1.7.4. Skládání kmitů .7.4. Skládání kmitů. Umět vysvětlit pojem superpozice.. Umět rozdělit různé typy skládání kmitů podle směru a frekvence. 3. Umět určit amplitudu a fázi výsledného kmitu. 4. Vysvětlit pojem fázor. 5. Znát

Více

Základní elektronické obvody

Základní elektronické obvody Základní elektronické obvody Soustava jednotek Coulomb (C) = jednotka elektrického náboje q Elektrický proud i = náboj, který proteče průřezem vodiče za jednotku času i [A] = dq [C] / dt [s] Volt (V) =

Více

Výkon střídavého proudu, účiník

Výkon střídavého proudu, účiník ng. Jaromír Tyrbach Výkon střídavého proudu, účiník odle toho, kterého prvku obvodu se výkon týká, rozlišujeme u střídavých obvodů výkon činný, jalový a zdánlivý. Ve střídavých obvodech se neustále mění

Více

Laboratorní práce č. 2: Ověření činnosti transformátoru

Laboratorní práce č. 2: Ověření činnosti transformátoru Přírodní vědy moderně a interaktivně FYZIKA. ročník šestiletého studia Laboratorní práce č. : Ověření činnosti transformátoru G Hranice Přírodní vědy moderně a interaktivně FYZIKA. ročník šestiletého

Více

Ele 1 elektromagnetická indukce, střídavý proud, základní veličiny, RLC v obvodu střídavého proudu

Ele 1 elektromagnetická indukce, střídavý proud, základní veličiny, RLC v obvodu střídavého proudu Předmět: Ročník: Vytvořil: Datum: ELEKTROTECHNIKA PRVNÍ ZDENĚK KOVAL Název zpracovaného celku: 30. 9. 203 Ele elektromagnetická indukce, střídavý proud, základní veličiny, RLC v obvodu střídavého proudu

Více

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Téma: Elektřina a magnetismus Autor: Název: Alena Škárová Výkon v obvodu

Více

napájecí zdroj I 1 zesilovač Obr. 1: Zesilovač jako čtyřpól

napájecí zdroj I 1 zesilovač Obr. 1: Zesilovač jako čtyřpól . ZESILOVACÍ OBVODY (ZESILOVAČE).. Rozdělení, základní pojmy a vlastnosti ZESILOVAČ Zesilovač je elektronické zařízení, které zesiluje elektrický signál. Má vstup a výstup, tzn. je to čtyřpól na jehož

Více

POKUSY S OPERAČNÍMI ZESILOVAČI Studijní text pro řešitele FO Přemysl Šedivý, gymnázium J. K. Tyla, Hradec Králové

POKUSY S OPERAČNÍMI ZESILOVAČI Studijní text pro řešitele FO Přemysl Šedivý, gymnázium J. K. Tyla, Hradec Králové POKUSY S OPERAČNÍMI ZESILOVAČI Studijní text pro řešitele FO Přemysl Šedivý, gymnázium J. K. Tyla, Hradec Králové Úvod Operační zesilovače(oz) původně vznikly jako složité elektronické obvody pro náročné

Více

Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky

Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky Tématické okruhy teoretických zkoušek Part 66 1 3.1 Teorie elektronu 1 1 1 Struktura a rozložení elektrických nábojů uvnitř: atomů, molekul, iontů, sloučenin; Molekulární struktura vodičů, polovodičů a

Více

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI 0a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI Úvod: Klasický síťový transformátor transformátor s jádrem skládaným z plechů je stále běžně používanou součástí

Více

Měření transformátoru naprázdno a nakrátko

Měření transformátoru naprázdno a nakrátko Měření u naprázdno a nakrátko Měření naprázdno Teoretický rozbor Stav naprázdno je stavem u, při kterém je I =. řesto primárním vinutím protéká proud I tzv. magnetizační, jenž je nutný pro vybuzení magnetického

Více

Laboratorní práce č. 3: Měření elektrického proudu a napětí

Laboratorní práce č. 3: Měření elektrického proudu a napětí Přírodní vědy moderně a interaktivně FYZIK 1. ročník šestiletého studia Laboratorní práce č. 3: Měření elektrického proudu a napětí Přírodní vědy moderně a interaktivně FYZIK 1. ročník šestiletého studia

Více

Oscilátory Oscilátory

Oscilátory Oscilátory Oscilátory. Oscilátory Oscilátory dělíme podle několika hledisek (uvedené třídění není zcela jednotné bylo použito vžitých názvů, které vznikaly v různých období vývoje a za zcela odlišných podmínek):

Více

NÁVRH TRANSFORMÁTORU. Postup školního výpočtu distribučního transformátoru

NÁVRH TRANSFORMÁTORU. Postup školního výpočtu distribučního transformátoru NÁVRH TRANSFORMÁTORU Postup školního výpočtu distribučního transformátoru Pro návrh transformátoru se zadává: - zdánlivý výkon S [kva ] - vstupní a výstupní sdružené napětí ve tvaru /U [V] - kmitočet f

Více

LABORATORNÍ CVIČENÍ Elektrotechnika a elektronika

LABORATORNÍ CVIČENÍ Elektrotechnika a elektronika VUT FSI BRNO ÚVSSaR, ODBOR ELEKTROTECHNIKY JMÉNO: ŠKOLNÍ ROK: 2010/2011 PŘEDNÁŠKOVÁ SKUPINA: 1E/95 LABORATORNÍ CVIČENÍ Elektrotechnika a elektronika ROČNÍK: 1. KROUŽEK: 2EL SEMESTR: LETNÍ UČITEL: Ing.

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: XI Název: Charakteristiky diody Pracoval: Pavel Brožek stud. skup. 12 dne 9.1.2009 Odevzdal

Více

ŘEŠENÉ PŘÍKLADY K DOPLNĚNÍ VÝUKY

ŘEŠENÉ PŘÍKLADY K DOPLNĚNÍ VÝUKY ŘEŠENÉ PŘÍKLDY K DOPLNĚNÍ ÝKY. TÝDEN Příklad. K baterii s vnitřním napětím a vnitřním odporem i je připojen vnější odpor (viz obr..). rčete proud, který prochází obvodem, úbytek napětí Δ na vnitřním odporu

Více

VY_32_INOVACE_EM_1.06_měření činného, zdánlivého a jalového výkonu v jednofázové soustavě

VY_32_INOVACE_EM_1.06_měření činného, zdánlivého a jalového výkonu v jednofázové soustavě Číslo projektu Číslo materiálu Název školy Autor Název Téma hodiny Předmět Ročník /y/ CZ.1.07/1.5.00/34.0394 VY_32_INOVACE_EM_1.06_měření činného, zdánlivého a jalového výkonu v jednofázové soustavě Střední

Více

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úlohač.5 Název: Měření osciloskopem. Pracoval: Lukáš Ledvina

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úlohač.5 Název: Měření osciloskopem. Pracoval: Lukáš Ledvina Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II. úlohač.5 Název: Měření osciloskopem Pracoval: Lukáš Ledvina stud.skup.14 dne:23.10.2009 Odevzdaldne: Možný počet bodů

Více

pracovní list studenta Elektrický proud v kovech Voltampérová charakteristika spotřebiče Eva Bochníčková

pracovní list studenta Elektrický proud v kovech Voltampérová charakteristika spotřebiče Eva Bochníčková pracovní list studenta Elektrický proud v kovech Eva Bochníčková Výstup RVP: Klíčová slova: žák měří vybrané veličiny vhodnými metodami, zpracuje získaná data formou grafu; porovná získanou závislost s

Více

Ele 1 základní pojmy, požadavky a parametry, transformátory - jejich význam. princip činnosti transformátoru, zvláštní transformátory

Ele 1 základní pojmy, požadavky a parametry, transformátory - jejich význam. princip činnosti transformátoru, zvláštní transformátory ,Předmět: Ročník: Vytvořil: Datum: ELEKTROTECHNIKA PRVNÍ ZDENĚK KOVAL Název zpracovaného celku: 29. 11. 2013 Ele 1 základní pojmy, požadavky a parametry, transformátory - jejich význam. princip činnosti

Více

4.7.3 Transformátor. Předpoklady: 4508, 4701

4.7.3 Transformátor. Předpoklady: 4508, 4701 4.7.3 Transformátor Předpoklady: 4508, 4701 Pomůcky: jádro pro transformátor, cívky 60, 300, 600, 100, 1000 z, čtyři multimetry, vodiče, žárovka 6 V dvakrát, hřebík, cín, cívka 6 z, tavný závit, žiletky.

Více

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE STŘEDNÍ PRŮMYSLOVÁ ŠKOLA V ČESKÝCH BUDĚJOVICÍCH, DUKELSKÁ 13 PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE Provedl: Tomáš PRŮCHA Datum: 17. 4. 2009 Číslo: Kontroloval: Datum: 5 Pořadové číslo žáka: 24

Více

Jméno a příjmení. Ročník. Měřeno dne. 11.3.2013 Příprava Opravy Učitel Hodnocení. Charakteristiky optoelektronických součástek

Jméno a příjmení. Ročník. Měřeno dne. 11.3.2013 Příprava Opravy Učitel Hodnocení. Charakteristiky optoelektronických součástek FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Petr Švaňa Ročník 1 Předmět IFY Kroužek 38 ID 155793 Spolupracoval Měřeno dne Odevzdáno dne Ladislav Šulák 25.2.2013 11.3.2013 Příprava Opravy

Více